सहसंबंध आयाम: Difference between revisions
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
:<math>C(\varepsilon)=\lim_{N \rightarrow \infty} \frac{g}{N^2}</math> | :<math>C(\varepsilon)=\lim_{N \rightarrow \infty} \frac{g}{N^2}</math> | ||
जहाँ g उन बिंदुओं के जोड़े की कुल संख्या है जिनके बीच की दूरी ε | जहाँ g उन बिंदुओं के जोड़े की कुल संख्या है जिनके बीच की दूरी ε (ऐसे निकटतम जोड़े का एक ग्राफिकल प्रतिनिधित्व पुनरावृत्ति प्लॉट है) से कम है। चूंकि अंकों की संख्या अनंत तक जाती है और उनके बीच की दूरी शून्य हो जाती है, इसलिए ε के छोटे मानों के लिए सहसंबंध अभिन्न रूप लेगा: | ||
:<math>C(\varepsilon) \sim \varepsilon^\nu </math> | :<math>C(\varepsilon) \sim \varepsilon^\nu </math> | ||
यदि अंकों की संख्या पर्याप्त रूप से बड़ी है, और समान रूप से वितरित है, तो सहसंबंध अभिन्न बनाम ε का [[लॉग-लॉग ग्राफ]] | यदि अंकों की संख्या पर्याप्त रूप से बड़ी है, और समान रूप से वितरित है, तो सहसंबंध अभिन्न बनाम ε का [[लॉग-लॉग ग्राफ]] ν का अनुमान देगा। इस विचार को यह समझकर गुणात्मक रूप से समझा जा सकता है कि उच्च-आयामी वस्तुओं के लिए, बिंदुओं को एक-दूसरे के निकट रखने की अधिक विधि होंगे, और इसलिए उच्च आयामों के लिए एक-दूसरे के निकट जोड़े की संख्या तेजी से बढ़ेगी। | ||
1983 में [[पीटर ग्रासबर्गर]] और [[इटामर प्रोकैसिया]] ने इस तकनीक की शुरुआत की;<ref name="grassberger"/>लेख कई भग्न वस्तुओं के लिए ऐसे अनुमानों के परिणाम देता है, साथ ही भग्न आयाम के अन्य उपायों के | 1983 में [[पीटर ग्रासबर्गर]] और [[इटामर प्रोकैसिया]] ने इस तकनीक की शुरुआत की;<ref name="grassberger"/>लेख कई भग्न वस्तुओं के लिए ऐसे अनुमानों के परिणाम देता है, साथ ही भग्न आयाम के अन्य उपायों के मानों की तुलना करता है। तकनीक का उपयोग (नियतात्मक) अराजक और वास्तव में यादृच्छिक व्यवहार के बीच अंतर करने के लिए किया जा सकता है, हालांकि यह नियतात्मक व्यवहार का पता लगाने में अच्छा नहीं हो सकता है यदि नियतात्मक उत्पादन तंत्र बहुत जटिल है।<ref>{{cite journal | last1 = DeCoster | first1 = Gregory P. | last2 = Mitchell | first2 = Douglas W. | year = 1991 | title = छोटे नमूनों में नियतत्ववाद का पता लगाने में सहसंबंध आयाम तकनीक की प्रभावकारिता| journal = Journal of Statistical Computation and Simulation | volume = 39 | issue = 4| pages = 221–229 | doi = 10.1080/00949659108811357 }}</ref> | ||
उदाहरण के तौर पर, सन इन टाइम लेख में,<ref name="sit">{{cite book | author=Sonett, C., Giampapa, M., and Matthews, M. (Eds.) | title=समय में सूर्य| publisher=[[University of Arizona Press]] | year=1992 |isbn=0-8165-1297-3 }}</ref> विधि का उपयोग यह दिखाने के लिए किया गया था कि दैनिक और 11-वर्षीय चक्रों जैसे ज्ञात चक्रों के लिए लेखांकन के बाद सूर्य पर धब्बे की संख्या बहुत कम यादृच्छिक फ्रैक्टल आकर्षण के साथ यादृच्छिक ध्वनि नहीं है, बल्कि अराजक ध्वनि है। . | उदाहरण के तौर पर, सन इन टाइम लेख में,<ref name="sit">{{cite book | author=Sonett, C., Giampapa, M., and Matthews, M. (Eds.) | title=समय में सूर्य| publisher=[[University of Arizona Press]] | year=1992 |isbn=0-8165-1297-3 }}</ref> विधि का उपयोग यह दिखाने के लिए किया गया था कि दैनिक और 11-वर्षीय चक्रों जैसे ज्ञात चक्रों के लिए लेखांकन के बाद सूर्य पर धब्बे की संख्या बहुत कम यादृच्छिक फ्रैक्टल आकर्षण के साथ यादृच्छिक ध्वनि नहीं है, बल्कि अराजक ध्वनि है। . | ||
Revision as of 20:59, 3 June 2023
कैओस सिद्धांत में, सहसंबंध आयाम ('ν द्वारा चिह्नित) यादृच्छिक बिंदुओं के एक समुच्चय द्वारा अभिग्रहण किए गए स्थान के आयाम का एक उपाय है, जिसे अधिकांश फ्रैक्टल आयाम के एक प्रकार के रूप में संदर्भित किया जाता है।[1][2][3]
उदाहरण के लिए, यदि हमारे पास 0 और 1 के बीच वास्तविक संख्या रेखा पर यादृच्छिक बिंदुओं का एक समुच्चय है, तो सहसंबंध आयाम ν = 1 होगा, जबकि यदि उन्हें त्रि-आयामी अंतरिक्ष (या m- आयामी स्थान), में एम्बेडेड त्रिकोण पर वितरित किया जाता है सहसंबंध आयाम ν = 2 होगा। आयाम के माप से हम सहज रूप से यही अपेक्षा करेंगे। सहसंबंध आयाम की वास्तविक उपयोगिता भग्न वस्तुओं के (संभवतः भिन्नात्मक) आयामों को निर्धारित करने में है। आयाम को मापने के अन्य विधि (उदाहरण के लिए हॉसडॉर्फ आयाम, बॉक्स-गिनती आयाम, और सूचना आयाम) हैं किन्तु सहसंबंध आयाम का सीधा और त्वरित गणना होने का लाभ है, जब कम संख्या में अंक उपलब्ध होते हैं, तो कम ध्वनि होता है, और अधिकांश आयाम की अन्य गणनाओं के अनुरूप होता है।
एम-आयामी अंतरिक्ष में एन बिंदुओं के किसी भी समुच्चय के लिए
तो सहसंबंध अभिन्न C(ε) द्वारा गणना की जाती है:
जहाँ g उन बिंदुओं के जोड़े की कुल संख्या है जिनके बीच की दूरी ε (ऐसे निकटतम जोड़े का एक ग्राफिकल प्रतिनिधित्व पुनरावृत्ति प्लॉट है) से कम है। चूंकि अंकों की संख्या अनंत तक जाती है और उनके बीच की दूरी शून्य हो जाती है, इसलिए ε के छोटे मानों के लिए सहसंबंध अभिन्न रूप लेगा:
यदि अंकों की संख्या पर्याप्त रूप से बड़ी है, और समान रूप से वितरित है, तो सहसंबंध अभिन्न बनाम ε का लॉग-लॉग ग्राफ ν का अनुमान देगा। इस विचार को यह समझकर गुणात्मक रूप से समझा जा सकता है कि उच्च-आयामी वस्तुओं के लिए, बिंदुओं को एक-दूसरे के निकट रखने की अधिक विधि होंगे, और इसलिए उच्च आयामों के लिए एक-दूसरे के निकट जोड़े की संख्या तेजी से बढ़ेगी।
1983 में पीटर ग्रासबर्गर और इटामर प्रोकैसिया ने इस तकनीक की शुरुआत की;[1]लेख कई भग्न वस्तुओं के लिए ऐसे अनुमानों के परिणाम देता है, साथ ही भग्न आयाम के अन्य उपायों के मानों की तुलना करता है। तकनीक का उपयोग (नियतात्मक) अराजक और वास्तव में यादृच्छिक व्यवहार के बीच अंतर करने के लिए किया जा सकता है, हालांकि यह नियतात्मक व्यवहार का पता लगाने में अच्छा नहीं हो सकता है यदि नियतात्मक उत्पादन तंत्र बहुत जटिल है।[4] उदाहरण के तौर पर, सन इन टाइम लेख में,[5] विधि का उपयोग यह दिखाने के लिए किया गया था कि दैनिक और 11-वर्षीय चक्रों जैसे ज्ञात चक्रों के लिए लेखांकन के बाद सूर्य पर धब्बे की संख्या बहुत कम यादृच्छिक फ्रैक्टल आकर्षण के साथ यादृच्छिक ध्वनि नहीं है, बल्कि अराजक ध्वनि है। .
यह भी देखें
- टेकेंस 'प्रमेय
- सहसंबंध अभिन्न
- पुनरावृत्ति परिमाणीकरण विश्लेषण
- अनुमानित एन्ट्रापी
टिप्पणियाँ
- ↑ 1.0 1.1 Peter Grassberger and Itamar Procaccia (1983). "अजीब आकर्षित करने वालों की विचित्रता को मापना". Physica D: Nonlinear Phenomena. 9 (1‒2): 189‒208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1.
- ↑ Peter Grassberger and Itamar Procaccia (1983). "अजीब आकर्षित करने वालों की विशेषता". Physical Review Letters. 50 (5): 346‒349. Bibcode:1983PhRvL..50..346G. doi:10.1103/PhysRevLett.50.346.
- ↑ Peter Grassberger (1983). "अजीब आकर्षित करने वालों के सामान्यीकृत आयाम". Physics Letters A. 97 (6): 227‒230. Bibcode:1983PhLA...97..227G. doi:10.1016/0375-9601(83)90753-3.
- ↑ DeCoster, Gregory P.; Mitchell, Douglas W. (1991). "छोटे नमूनों में नियतत्ववाद का पता लगाने में सहसंबंध आयाम तकनीक की प्रभावकारिता". Journal of Statistical Computation and Simulation. 39 (4): 221–229. doi:10.1080/00949659108811357.
- ↑ Sonett, C., Giampapa, M., and Matthews, M. (Eds.) (1992). समय में सूर्य. University of Arizona Press. ISBN 0-8165-1297-3.
{{cite book}}
: CS1 maint: multiple names: authors list (link)
[Category:Fracta