बोगोलीबॉव परिवर्तन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Mathematical operation in quantum optics, general relativity and other areas of physics}} | {{Short description|Mathematical operation in quantum optics, general relativity and other areas of physics}} | ||
[[सैद्धांतिक भौतिकी]] में, बोगोलीबॉव परिवर्तन, जिसे बोगोलीबॉव-वैलाटिन परिवर्तन के रूप में भी जाना जाता है, इसको स्वतंत्र रूप से 1958 में [[निकोले बोगोलीबॉव]] और [[जॉन जॉर्ज वैलेटिन]] द्वारा | [[सैद्धांतिक भौतिकी]] में, बोगोलीबॉव परिवर्तन, जिसे बोगोलीबॉव-वैलाटिन परिवर्तन के रूप में भी जाना जाता है, इसको स्वतंत्र रूप से 1958 में [[निकोले बोगोलीबॉव]] और [[जॉन जॉर्ज वैलेटिन]] द्वारा सजातीय प्रणाली में [[बीसीएस सिद्धांत]] के समाधान खोजने के लिए विकसित किया गया था।<ref>{{cite journal |last1=Valatin |first1=J. G. |title=अतिचालकता के सिद्धांत पर टिप्पणियाँ|journal=Il Nuovo Cimento |date=March 1958 |volume=7 |issue=6 |pages=843–857 |doi=10.1007/bf02745589|bibcode = 1958NCim....7..843V |s2cid=123486856 }}</ref><ref>{{cite journal |last1=Bogoljubov |first1=N. N. |title=अतिचालकता के सिद्धांत में एक नई पद्धति पर|journal=Il Nuovo Cimento |date=March 1958 |volume=7 |issue=6 |pages=794–805 |doi=10.1007/bf02745585 |bibcode = 1958NCim....7..794B |s2cid=120718745 }}</ref> बोगोलीबॉव रूपांतरण या तो [[विहित रूपान्तरण संबंध बीजगणित]] [[विहित प्रतिसंक्रमण संबंध बीजगणित]] बीजगणित का समरूपता है। यह संबंधित अभ्यावेदन पर स्वत: समानता को प्रेरित करता है। बोगोलीबॉव परिवर्तन का उपयोग अधिकांशतः [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] को विकर्ण करने के लिए किया जाता है । जो संबंधित श्रोडिंगर समीकरण के स्थिर समाधान उत्पन्न करता है। उनरुह प्रभाव, [[हॉकिंग विकिरण]], परमाणु भौतिकी में युग्मन प्रभाव, और कई अन्य विषयों को समझने के लिए बोगोलीबॉव परिवर्तन भी महत्वपूर्ण है। | ||
बोगोलीबॉव परिवर्तन का उपयोग अधिकांशतः हैमिल्टनियनों को विकर्ण करने के लिए किया जाता है । स्तर कार्य के इसी परिवर्तन के साथ परिवर्तित स्तर कार्य पर विकर्ण हैमिल्टनियन के साथ गणना की गई संचालक आइगेनवेल्यूज़ इस प्रकार पहले की तरह ही हैं। | बोगोलीबॉव परिवर्तन का उपयोग अधिकांशतः हैमिल्टनियनों को विकर्ण करने के लिए किया जाता है । स्तर कार्य के इसी परिवर्तन के साथ परिवर्तित स्तर कार्य पर विकर्ण हैमिल्टनियन के साथ गणना की गई संचालक आइगेनवेल्यूज़ इस प्रकार पहले की तरह ही हैं। | ||
'''इसकी व्याख्या [[चरण स्थान]] के | '''इसकी व्याख्या [[चरण स्थान]] के [[सहानुभूतिपूर्ण वेक्टर स्थान|सहानुभूतिपूर्ण सदिश स्थान]] के रूप में की जाती है। सिम्प्लेक्टिक आव्युह से तुलना''' | ||
== एकल [[बोसोनिक]] मोड उदाहरण == | == एकल [[बोसोनिक]] मोड उदाहरण == | ||
Line 11: | Line 11: | ||
[[हार्मोनिक आधार]] पर बोसोनिक निर्माण और एनिहिलेशन संचालकों के लिए विहित [[कम्यूटेटर]] पर विचार करें । | [[हार्मोनिक आधार]] पर बोसोनिक निर्माण और एनिहिलेशन संचालकों के लिए विहित [[कम्यूटेटर]] पर विचार करें । | ||
:<math>\left [ \hat{a}, \hat{a}^\dagger \right ] = 1.</math> | :<math>\left [ \hat{a}, \hat{a}^\dagger \right ] = 1.</math> | ||
संचालकों की | संचालकों की नई जोड़ी को परिभाषित करें | ||
:<math>\hat{b} = u \hat{a} + v \hat{a}^\dagger,</math> | :<math>\hat{b} = u \hat{a} + v \hat{a}^\dagger,</math> | ||
:<math>\hat{b}^\dagger = u^* \hat{a}^\dagger + v^* \hat{a},</math> | :<math>\hat{b}^\dagger = u^* \hat{a}^\dagger + v^* \hat{a},</math> | ||
Line 27: | Line 27: | ||
:<math>u = e^{i \theta_1} \cosh r,</math> | :<math>u = e^{i \theta_1} \cosh r,</math> | ||
:<math>v = e^{i \theta_2} \sinh r.</math> | :<math>v = e^{i \theta_2} \sinh r.</math> | ||
इसकी व्याख्या [[चरण स्थान]] के | इसकी व्याख्या [[चरण स्थान]] के [[सहानुभूतिपूर्ण वेक्टर स्थान|सहानुभूतिपूर्ण सदिश स्थान]] के रूप में की जाती है। सिम्प्लेक्टिक आव्युह से तुलना करके विकर्णीकरण और अपघटन बलोच-मसीह अपघटन, दो कोण <math>\theta_1</math> और <math>\theta_2</math> ऑर्थोगोनल सिम्प्लेक्टिक ट्रांसफ़ॉर्मेशन (अर्थात, घुमाव) और [[निचोड़ ऑपरेटर|निचोड़ संचालक]] के अनुरूप <math>r</math> विकर्ण परिवर्तन से मेल खाता है। | ||
=== अनुप्रयोग === | === अनुप्रयोग === | ||
अतिप्रवाहता के संदर्भ में सबसे प्रमुख आवेदन स्वयं [[निकोलाई बोगोलीबॉव]] द्वारा किया गया है।<ref>N. N. Bogoliubov: ''On the theory of superfluidity'', J. Phys. (USSR), 11, p. 23 (1947), (Izv. Akad. Nauk Ser. Fiz. 11, p. 77 (1947)).</ref><ref>{{cite web |last1=Bogolubov [sic] |first1=N. |title=सुपरफ्लूडिटी के सिद्धांत पर|url=http://ufn.ru/pdf/jphysussr/1947/11_1/3jphysussr19471101.pdf |website=Advances of Physical Sciences |publisher=Lebedev Physical Institute |access-date=27 April 2017}}</ref> अन्य अनुप्रयोगों में हैमिल्टनियन (क्वांटम यांत्रिकी) और [[प्रतिलौह चुंबकत्व]] के सिद्धांत में उत्तेजना सम्मिलित हैं।<ref name="Kittel">See e.g. the textbook by [[Charles Kittel]]: ''Quantum theory of solids'', New York, Wiley 1987.</ref> घुमावदार स्थान-समय में क्वांटम क्षेत्र सिद्धांत की गणना करते समय निर्वात की परिभाषा बदल जाती है, और इन विभिन्न वैकुआओं के बीच | अतिप्रवाहता के संदर्भ में सबसे प्रमुख आवेदन स्वयं [[निकोलाई बोगोलीबॉव]] द्वारा किया गया है।<ref>N. N. Bogoliubov: ''On the theory of superfluidity'', J. Phys. (USSR), 11, p. 23 (1947), (Izv. Akad. Nauk Ser. Fiz. 11, p. 77 (1947)).</ref><ref>{{cite web |last1=Bogolubov [sic] |first1=N. |title=सुपरफ्लूडिटी के सिद्धांत पर|url=http://ufn.ru/pdf/jphysussr/1947/11_1/3jphysussr19471101.pdf |website=Advances of Physical Sciences |publisher=Lebedev Physical Institute |access-date=27 April 2017}}</ref> अन्य अनुप्रयोगों में हैमिल्टनियन (क्वांटम यांत्रिकी) और [[प्रतिलौह चुंबकत्व]] के सिद्धांत में उत्तेजना सम्मिलित हैं।<ref name="Kittel">See e.g. the textbook by [[Charles Kittel]]: ''Quantum theory of solids'', New York, Wiley 1987.</ref> घुमावदार स्थान-समय में क्वांटम क्षेत्र सिद्धांत की गणना करते समय निर्वात की परिभाषा बदल जाती है, और इन विभिन्न वैकुआओं के बीच बोगोलीबॉव परिवर्तन संभव है। इसका उपयोग हॉकिंग विकिरण की व्युत्पत्ति में किया जाता है। क्वांटम प्रकाशिकी में बोगोलीबॉव ट्रांसफॉर्म का भी व्यापक रूप से उपयोग किया जाता है ।अधिकांशतः जब गॉसियन यूनिटरीज (जैसे बीम्सप्लिटर, चरण शिफ्टर्स और निचोड़ने के संचालन) के साथ काम करते हैं। | ||
== फर्मीओनिक मोड == | == फर्मीओनिक मोड == | ||
Line 39: | Line 39: | ||
=== अनुप्रयोग === | === अनुप्रयोग === | ||
सबसे प्रमुख अनुप्रयोग फिर से स्वयं निकोलाई बोगोलीबोव द्वारा किया गया है, इस बार [[ अतिचालकता ]] के बीसीएस सिद्धांत के लिए।<ref name="Kittel" /><ref name="NMTS1">{{cite journal |last1=Boboliubov |first1=N. N. |title=अतिचालकता के सिद्धांत में एक नई विधि। मैं|journal=Soviet Physics (U.S.S.R.) JETP |date=1 Jan 1958 |volume=7 |issue=1 |pages=41–46 }}</ref><ref name="NMTS3">{{cite journal |last1=Bogoliubov |first1=N. N. |title=सुपरकंडक्टिविटी III के सिद्धांत में एक नई विधि|journal=Soviet Physics (U.S.S.R.) JETP |date=July 1958 |volume=34 |issue=7 |pages=51–55 |url=http://www.jetp.ac.ru/files/Bogolubov_007_01_0051.pdf}}</ref><ref name="BTS">{{cite journal |last1=Bogolyubov |first1=N. N. |last2=Tolmachev |first2=V. V. |last3=Shirkov |first3=D. V. |title=अतिचालकता के सिद्धांत में एक नई विधि|journal=Fortschritte der Physik |date=November 1958 |volume=6 |issue=11–12 |pages=605–682 |doi=10.1002/prop.19580061102|bibcode = 1958ForPh...6..605B }}</ref> वह बिंदु जहां | सबसे प्रमुख अनुप्रयोग फिर से स्वयं निकोलाई बोगोलीबोव द्वारा किया गया है, इस बार [[ अतिचालकता |अतिचालकता]] के बीसीएस सिद्धांत के लिए।<ref name="Kittel" /><ref name="NMTS1">{{cite journal |last1=Boboliubov |first1=N. N. |title=अतिचालकता के सिद्धांत में एक नई विधि। मैं|journal=Soviet Physics (U.S.S.R.) JETP |date=1 Jan 1958 |volume=7 |issue=1 |pages=41–46 }}</ref><ref name="NMTS3">{{cite journal |last1=Bogoliubov |first1=N. N. |title=सुपरकंडक्टिविटी III के सिद्धांत में एक नई विधि|journal=Soviet Physics (U.S.S.R.) JETP |date=July 1958 |volume=34 |issue=7 |pages=51–55 |url=http://www.jetp.ac.ru/files/Bogolubov_007_01_0051.pdf}}</ref><ref name="BTS">{{cite journal |last1=Bogolyubov |first1=N. N. |last2=Tolmachev |first2=V. V. |last3=Shirkov |first3=D. V. |title=अतिचालकता के सिद्धांत में एक नई विधि|journal=Fortschritte der Physik |date=November 1958 |volume=6 |issue=11–12 |pages=605–682 |doi=10.1002/prop.19580061102|bibcode = 1958ForPh...6..605B }}</ref> वह बिंदु जहां बोगोलीबॉव परिवर्तन करने की आवश्यकता स्पष्ट हो जाती है,। वह यह है कि माध्य-क्षेत्र सन्निकटन में प्रणाली के हैमिल्टनियन को दोनों स्थितियों में मूल निर्माण और विनाश संचालकों में बिलिनियर शब्दों के योग के रूप में लिखा जा सकता है । जिसमें परिमित <math>\langle a_i^+a_j^+\rangle</math> सम्मिलित है । अर्थात किसी को सामान्य हार्ट्री-फॉक पद्धति से जाना चाहिए। विशेष रूप से, मीन-फील्ड बोगोलीबॉव-डी गेनेस हैमिल्टनियन औपचारिकता में सुपरकंडक्टिंग जोड़ी शब्द जैसे कि <math>\Delta a_i^+a_j^+ + \text{h.c.}</math>, बोगोलीबॉव ने संचालकों <math>b, b^\dagger</math> को बदल दिया था । और क्वासिकण्स बनाएं (प्रत्येक अच्छी तरह से परिभाषित ऊर्जा, संवेग और स्पिन के साथ किंतु इलेक्ट्रॉन और छेद स्थिति की क्वांटम सुपरपोजिशन में), और गुणांक हैं । <math>u</math> और <math>v</math> बोगोलीबॉव–डी गेनेस आव्युह के आइगेंसदिश द्वारा दिया गया था। [[परमाणु भौतिकी]] में भी, यह विधि प्रयुक्त होती है, क्योंकि यह भारी तत्व में न्यूक्लियंस की युग्मन ऊर्जा का वर्णन कर सकती है।<ref>{{cite journal |last1=Strutinsky |first1=V. M. |title=परमाणु द्रव्यमान और विरूपण ऊर्जा में शैल प्रभाव|journal=Nuclear Physics A |date=April 1967 |volume=95 |issue=2 |pages=420–442 |doi=10.1016/0375-9474(67)90510-6 |bibcode = 1967NuPhA..95..420S }}</ref> | ||
== मल्टीमोड उदाहरण == | == मल्टीमोड उदाहरण == | ||
विचाराधीन [[हिल्बर्ट अंतरिक्ष]] इन संचालकों से सुसज्जित है, और इसके बाद | विचाराधीन [[हिल्बर्ट अंतरिक्ष]] इन संचालकों से सुसज्जित है, और इसके बाद उच्च-आयामी [[क्वांटम हार्मोनिक ऑसिलेटर]] (सामान्यतः अनंत-आयामी ) का वर्णन करता है। | ||
संबंधित हैमिल्टनियन (क्वांटम यांत्रिकी) की निम्नतम स्थिति सभी विलोपन संचालकों द्वारा नष्ट कर दी जाती है । | संबंधित हैमिल्टनियन (क्वांटम यांत्रिकी) की निम्नतम स्थिति सभी विलोपन संचालकों द्वारा नष्ट कर दी जाती है । | ||
Line 59: | Line 59: | ||
उपरोक्त समीकरण संचालकों के बोगोलीबॉव परिवर्तन को परिभाषित करता है। | उपरोक्त समीकरण संचालकों के बोगोलीबॉव परिवर्तन को परिभाषित करता है। | ||
सभी <math>a'_i</math> दवारा नष्ट कि गई | सभी <math>a'_i</math> दवारा नष्ट कि गई मूल निम्नतम स्थिति <math>|0\rangle</math> से भिन्न है , और उन्हें संचालक-स्तर पत्राचार का उपयोग करके एक दूसरे के बोगोलीबॉव परिवर्तनों के रूप में देखा जा सकता है। उन्हें [[निचोड़ा हुआ सुसंगत राज्य|स्कुइज़ सुसंगत स्तर]] के रूप में भी परिभाषित किया जा सकता है। बीसीएस तरंग फलन, फ़र्मियन्स की [[निचोड़ा हुआ सुसंगत राज्य|स्कुइज़]] सुसंगत स्थिति का उदाहरण है।<ref>{{cite journal | last=Svozil | first=K. |author-link=Karl Svozil| title=निचोड़ा हुआ फर्मियन राज्य| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=65 | issue=26 | date=1990-12-24 | issn=0031-9007 | doi=10.1103/physrevlett.65.3341 | pages=3341–3343| pmid=10042844 | bibcode=1990PhRvL..65.3341S }}</ref> | ||
Line 152: | Line 152: | ||
\end{pmatrix} | \end{pmatrix} | ||
</math> | </math> | ||
और <math>\Gamma_\pm U (\Gamma_\pm H) U^{-1}=D</math> यदि और केवल यदि <math>U</math> विकर्ण करता है | और <math>\Gamma_\pm U (\Gamma_\pm H) U^{-1}=D</math> यदि और केवल यदि <math>U</math> विकर्ण करता है <math>\Gamma_\pm H</math>, अर्थात <math>U (\Gamma_\pm H) U^{-1} = \Gamma_\pm D</math>. है । | ||
बोगोलीबॉव रूपांतरणों के उपयोगी गुण नीचे सूचीबद्ध हैं। | बोगोलीबॉव रूपांतरणों के उपयोगी गुण नीचे सूचीबद्ध हैं। |
Revision as of 17:00, 3 May 2023
सैद्धांतिक भौतिकी में, बोगोलीबॉव परिवर्तन, जिसे बोगोलीबॉव-वैलाटिन परिवर्तन के रूप में भी जाना जाता है, इसको स्वतंत्र रूप से 1958 में निकोले बोगोलीबॉव और जॉन जॉर्ज वैलेटिन द्वारा सजातीय प्रणाली में बीसीएस सिद्धांत के समाधान खोजने के लिए विकसित किया गया था।[1][2] बोगोलीबॉव रूपांतरण या तो विहित रूपान्तरण संबंध बीजगणित विहित प्रतिसंक्रमण संबंध बीजगणित बीजगणित का समरूपता है। यह संबंधित अभ्यावेदन पर स्वत: समानता को प्रेरित करता है। बोगोलीबॉव परिवर्तन का उपयोग अधिकांशतः हैमिल्टनियन (क्वांटम यांत्रिकी) को विकर्ण करने के लिए किया जाता है । जो संबंधित श्रोडिंगर समीकरण के स्थिर समाधान उत्पन्न करता है। उनरुह प्रभाव, हॉकिंग विकिरण, परमाणु भौतिकी में युग्मन प्रभाव, और कई अन्य विषयों को समझने के लिए बोगोलीबॉव परिवर्तन भी महत्वपूर्ण है।
बोगोलीबॉव परिवर्तन का उपयोग अधिकांशतः हैमिल्टनियनों को विकर्ण करने के लिए किया जाता है । स्तर कार्य के इसी परिवर्तन के साथ परिवर्तित स्तर कार्य पर विकर्ण हैमिल्टनियन के साथ गणना की गई संचालक आइगेनवेल्यूज़ इस प्रकार पहले की तरह ही हैं।
इसकी व्याख्या चरण स्थान के सहानुभूतिपूर्ण सदिश स्थान के रूप में की जाती है। सिम्प्लेक्टिक आव्युह से तुलना
एकल बोसोनिक मोड उदाहरण
हार्मोनिक आधार पर बोसोनिक निर्माण और एनिहिलेशन संचालकों के लिए विहित कम्यूटेटर पर विचार करें ।
संचालकों की नई जोड़ी को परिभाषित करें
सम्मिश्र संख्या u और v के लिए, जहाँ बाद वाला पहले का हर्मिटियन संयुग्म है।
बोगोलीबॉव परिवर्तन संचालकों और को और को मैप करने वाला विहित परिवर्तन है । स्थिरांक u और v पर स्थितियों को खोजने के लिए जैसे परिवर्तन विहित है, कम्यूटेटर का मूल्यांकन किया जाता है, अर्थात्,
तब यह स्पष्ट होता है कि वह स्थिति है जिसके लिए परिवर्तन विहित है।
चूंकि इस स्थिति का रूप अतिपरवलय कार्य का सूचक है ।
स्थिरांक u और v के रूप में सरलता से पैरामीट्रिज्ड किया जा सकता है ।
इसकी व्याख्या चरण स्थान के सहानुभूतिपूर्ण सदिश स्थान के रूप में की जाती है। सिम्प्लेक्टिक आव्युह से तुलना करके विकर्णीकरण और अपघटन बलोच-मसीह अपघटन, दो कोण और ऑर्थोगोनल सिम्प्लेक्टिक ट्रांसफ़ॉर्मेशन (अर्थात, घुमाव) और निचोड़ संचालक के अनुरूप विकर्ण परिवर्तन से मेल खाता है।
अनुप्रयोग
अतिप्रवाहता के संदर्भ में सबसे प्रमुख आवेदन स्वयं निकोलाई बोगोलीबॉव द्वारा किया गया है।[3][4] अन्य अनुप्रयोगों में हैमिल्टनियन (क्वांटम यांत्रिकी) और प्रतिलौह चुंबकत्व के सिद्धांत में उत्तेजना सम्मिलित हैं।[5] घुमावदार स्थान-समय में क्वांटम क्षेत्र सिद्धांत की गणना करते समय निर्वात की परिभाषा बदल जाती है, और इन विभिन्न वैकुआओं के बीच बोगोलीबॉव परिवर्तन संभव है। इसका उपयोग हॉकिंग विकिरण की व्युत्पत्ति में किया जाता है। क्वांटम प्रकाशिकी में बोगोलीबॉव ट्रांसफॉर्म का भी व्यापक रूप से उपयोग किया जाता है ।अधिकांशतः जब गॉसियन यूनिटरीज (जैसे बीम्सप्लिटर, चरण शिफ्टर्स और निचोड़ने के संचालन) के साथ काम करते हैं।
फर्मीओनिक मोड
कम्यूटेटर संबंधों के लिए
बोगोलीबॉव रूपांतरण द्वारा बाधित है। इसलिए कण-प्रतिकण इंटरचेंज (या कई-बॉडी प्रणाली में कण-होल इंटरचेंज) के अनुरूप केवल महत्वहीन संभावना है, जिसमें फेज शिफ्ट संभव है। इस प्रकार एक कण के लिए परिवर्तन केवल (1) एक डिराक फर्मियन के लिए प्रयुक्त किया जा सकता है । जहां कण और एंटीकण अलग-अलग होते हैं (मेजराना फर्मियन या दाहिनी ओर के विपरीत), या (2) मल्टी-फर्मियोनिक प्रणाली के लिए जिसमें एक प्रकार का फर्मियन अधिक होता है।
अनुप्रयोग
सबसे प्रमुख अनुप्रयोग फिर से स्वयं निकोलाई बोगोलीबोव द्वारा किया गया है, इस बार अतिचालकता के बीसीएस सिद्धांत के लिए।[5][6][7][8] वह बिंदु जहां बोगोलीबॉव परिवर्तन करने की आवश्यकता स्पष्ट हो जाती है,। वह यह है कि माध्य-क्षेत्र सन्निकटन में प्रणाली के हैमिल्टनियन को दोनों स्थितियों में मूल निर्माण और विनाश संचालकों में बिलिनियर शब्दों के योग के रूप में लिखा जा सकता है । जिसमें परिमित सम्मिलित है । अर्थात किसी को सामान्य हार्ट्री-फॉक पद्धति से जाना चाहिए। विशेष रूप से, मीन-फील्ड बोगोलीबॉव-डी गेनेस हैमिल्टनियन औपचारिकता में सुपरकंडक्टिंग जोड़ी शब्द जैसे कि , बोगोलीबॉव ने संचालकों को बदल दिया था । और क्वासिकण्स बनाएं (प्रत्येक अच्छी तरह से परिभाषित ऊर्जा, संवेग और स्पिन के साथ किंतु इलेक्ट्रॉन और छेद स्थिति की क्वांटम सुपरपोजिशन में), और गुणांक हैं । और बोगोलीबॉव–डी गेनेस आव्युह के आइगेंसदिश द्वारा दिया गया था। परमाणु भौतिकी में भी, यह विधि प्रयुक्त होती है, क्योंकि यह भारी तत्व में न्यूक्लियंस की युग्मन ऊर्जा का वर्णन कर सकती है।[9]
मल्टीमोड उदाहरण
विचाराधीन हिल्बर्ट अंतरिक्ष इन संचालकों से सुसज्जित है, और इसके बाद उच्च-आयामी क्वांटम हार्मोनिक ऑसिलेटर (सामान्यतः अनंत-आयामी ) का वर्णन करता है।
संबंधित हैमिल्टनियन (क्वांटम यांत्रिकी) की निम्नतम स्थिति सभी विलोपन संचालकों द्वारा नष्ट कर दी जाती है ।
सभी उत्तेजित स्थितिएँ कुछ सृजन संचालकों द्वारा उत्साहित निम्नतम स्थिति के रैखिक संयोजन के रूप में प्राप्त की जाती हैं ।
कोई एक रेखीय पुनर्परिभाषा द्वारा सृजन और विनाश संचालकों को फिर से परिभाषित कर सकता है ।
जहां गुणांक विनाश संचालकों और निर्माण संचालकों की गारंटी देने के लिए कुछ नियमों को पूरा करना चाहिए । हर्मिटियन संयुग्म समीकरण द्वारा परिभाषित, बोसोन के लिए और एंटीकोमुटेटर फर्मिऑन के लिए समान कम्यूटेटर हैं ।
उपरोक्त समीकरण संचालकों के बोगोलीबॉव परिवर्तन को परिभाषित करता है।
सभी दवारा नष्ट कि गई मूल निम्नतम स्थिति से भिन्न है , और उन्हें संचालक-स्तर पत्राचार का उपयोग करके एक दूसरे के बोगोलीबॉव परिवर्तनों के रूप में देखा जा सकता है। उन्हें स्कुइज़ सुसंगत स्तर के रूप में भी परिभाषित किया जा सकता है। बीसीएस तरंग फलन, फ़र्मियन्स की स्कुइज़ सुसंगत स्थिति का उदाहरण है।[10]
एकीकृत आव्युह विवरण
क्योंकि बोगोलीबॉव परिवर्तन संचालकों के रैखिक पुनर्संयोजन हैं, उन्हें आव्युह परिवर्तनों के संदर्भ में लिखना अधिक सुविधाजनक और व्यावहारिक है। यदि नष्ट करने वालों की जोड़ी के रूप में रूपांतरित करें ।
जहाँ आव्यूह है। फिर स्वाभाविक रूप से
फर्मियन संचालकों के लिए, रूपांतरण संबंधों की आवश्यकता आव्युह के रूप में दो आवश्यकताओं में परिलक्षित होती है ।
और
बोसोन संचालकों के लिए, रूपांतरण संबंधों की आवश्यकता होती है ।
और
इन शर्तों को समान रूप से लिखा जा सकता है ।
जहाँ
जहाँ क्रमशः फर्मियंस और बोसोन पर प्रयुक्त होता है।
आव्युह विवरण का उपयोग करके द्विघात हैमिल्टनियन का विकर्ण बनाता है । बोगोलीबॉव परिवर्तन हमें द्विघात हैमिल्टनियन को विकर्ण करने देता है ।
केवल आव्युह को विकर्ण करके . उपर्युक्त नोटेशन में, संचालक और संख्यात्मक आव्युह को अलग करना महत्वपूर्ण है । इस तथ्य को पुनर्लेखन द्वारा देखा जा सकता है। जैसे
और यदि और केवल यदि विकर्ण करता है , अर्थात . है ।
बोगोलीबॉव रूपांतरणों के उपयोगी गुण नीचे सूचीबद्ध हैं।
Boson | Fermion | |
---|---|---|
Transformation matrix | ||
Inverse transformation matrix | ||
Gamma | ||
Diagonalization |
यह भी देखें
- होल्स्टीन-प्रिमाकॉफ परिवर्तन
- जॉर्डन-विग्नर परिवर्तन
- जॉर्डन-श्विंगर परिवर्तन
- छोटा परिवर्तन
संदर्भ
- ↑ Valatin, J. G. (March 1958). "अतिचालकता के सिद्धांत पर टिप्पणियाँ". Il Nuovo Cimento. 7 (6): 843–857. Bibcode:1958NCim....7..843V. doi:10.1007/bf02745589. S2CID 123486856.
- ↑ Bogoljubov, N. N. (March 1958). "अतिचालकता के सिद्धांत में एक नई पद्धति पर". Il Nuovo Cimento. 7 (6): 794–805. Bibcode:1958NCim....7..794B. doi:10.1007/bf02745585. S2CID 120718745.
- ↑ N. N. Bogoliubov: On the theory of superfluidity, J. Phys. (USSR), 11, p. 23 (1947), (Izv. Akad. Nauk Ser. Fiz. 11, p. 77 (1947)).
- ↑ Bogolubov [sic], N. "सुपरफ्लूडिटी के सिद्धांत पर" (PDF). Advances of Physical Sciences. Lebedev Physical Institute. Retrieved 27 April 2017.
- ↑ 5.0 5.1 See e.g. the textbook by Charles Kittel: Quantum theory of solids, New York, Wiley 1987.
- ↑ Boboliubov, N. N. (1 Jan 1958). "अतिचालकता के सिद्धांत में एक नई विधि। मैं". Soviet Physics (U.S.S.R.) JETP. 7 (1): 41–46.
- ↑ Bogoliubov, N. N. (July 1958). "सुपरकंडक्टिविटी III के सिद्धांत में एक नई विधि" (PDF). Soviet Physics (U.S.S.R.) JETP. 34 (7): 51–55.
- ↑ Bogolyubov, N. N.; Tolmachev, V. V.; Shirkov, D. V. (November 1958). "अतिचालकता के सिद्धांत में एक नई विधि". Fortschritte der Physik. 6 (11–12): 605–682. Bibcode:1958ForPh...6..605B. doi:10.1002/prop.19580061102.
- ↑ Strutinsky, V. M. (April 1967). "परमाणु द्रव्यमान और विरूपण ऊर्जा में शैल प्रभाव". Nuclear Physics A. 95 (2): 420–442. Bibcode:1967NuPhA..95..420S. doi:10.1016/0375-9474(67)90510-6.
- ↑ Svozil, K. (1990-12-24). "निचोड़ा हुआ फर्मियन राज्य". Physical Review Letters. American Physical Society (APS). 65 (26): 3341–3343. Bibcode:1990PhRvL..65.3341S. doi:10.1103/physrevlett.65.3341. ISSN 0031-9007. PMID 10042844.
अग्रिम पठन
The whole topic, and a lot of definite applications, are treated in the following textbooks:
- Blaizot, J.-P.; Ripka, G. (1985). Quantum Theory of Finite Systems. MIT Press. ISBN 0-262-02214-1.
- Fetter, A.; Walecka, J. (2003). Quantum Theory of Many-Particle Systems. Dover. ISBN 0-486-42827-3.
- Kittel, Ch. (1987). Quantum theory of solids. Wiley. ISBN 0-471-62412-8.
- Wagner, M. (1986). Unitary Transformations in Solid State Physics. Elsevier Science. ISBN 0-444-86975-1.