जॉर्डन माप: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, '''पीआनो जॉर्डन उपाय''' (जॉर्डन सामग्री के रूप में भी जाना जाता है) आकार (लंबाई, [[क्षेत्र (गणित)|क्षेत्रफल]], आयतन) की धारणा का एक विस्तार होता है, उदाहरण के लिए, एक [[त्रिकोण|त्रिभुज, चक्र]] या समानांतर चतुर्भुज की तुलना में अधिक जटिल आकार होता है। | गणित में, '''पीआनो जॉर्डन उपाय''' (जॉर्डन सामग्री के रूप में भी जाना जाता है) आकार (लंबाई, [[क्षेत्र (गणित)|क्षेत्रफल]], आयतन) की धारणा का एक विस्तार होता है, उदाहरण के लिए, एक [[त्रिकोण|त्रिभुज, चक्र]] या समानांतर चतुर्भुज की तुलना में अधिक जटिल आकार होता है। | ||
यह पता चलता है कि एक सेट के लिए जॉर्डन को मापना एक निश्चित प्रतिबंधात्मक होता है। इस कारण से, [[लेबेस्ग उपाय]] के साथ काम करना अधिक सामान्य होता है, जो सेट के एक बड़े वर्ग के लिए जॉर्डन उपाय का विस्तार होता है। ऐतिहासिक रूप से बोलते हुए, जॉर्डन उपाय उन्नीसवीं शताब्दी के अंत में आया था। ऐतिहासिक कारणों से, इस [[सेट समारोह|सेट योजना]] के लिए 'जॉर्डन उपाय ' शब्द अब अच्छी तरह से स्थापित होता है, इस तथ्य के अतिरिक्त यह अपनी आधुनिक परिभाषा में एक सही उपाय (गणित) नही होता है, क्योंकि जॉर्डन-मापने योग्य सेट एक σ नही बनाते है। उदाहरण के लिए, सिंगलटन सेट <math>\{x\}_{x \in \Reals}</math>में <math>\Reals</math> प्रत्येक के पास जॉर्डन का माप 0 होता है, जबकि <math>\Q \cap [0,1]</math>, उनका एक गणनीय संघ, जॉर्डन-मापने योग्य नही होता है।<ref>While a set whose measure is defined is termed ''measurable'', there is no commonly accepted term to describe a set whose Jordan content is defined. Munkres (1991) suggests the term "rectifiable" as a generalization of the use of this term to describe curves. Other authors have used terms including "admissible" (Lang, Zorich); "pavable" (Hubbard); "have content" (Burkill); "contented" (Loomis and Sternberg).</ref> इस कारण कुछ लेखक<ref>{{Cite book|title=मैनिफोल्ड्स पर विश्लेषण|last=Munkres|first=J. R.|publisher=Westview Press|year=1991|isbn=0-201-31596-3|location=Boulder, CO|pages=113}}</ref> {{em|जॉर्डन [[सामग्री (माप सिद्धांत)|सामग्री]]}} शब्द का प्रयोग करना अधिक पसंद करते | यह पता चलता है कि एक सेट के लिए जॉर्डन को मापना एक निश्चित प्रतिबंधात्मक होता है। इस कारण से, [[लेबेस्ग उपाय]] के साथ काम करना अधिक सामान्य होता है, जो सेट के एक बड़े वर्ग के लिए जॉर्डन उपाय का विस्तार होता है। ऐतिहासिक रूप से बोलते हुए, जॉर्डन उपाय उन्नीसवीं शताब्दी के अंत में आया था। ऐतिहासिक कारणों से, इस [[सेट समारोह|सेट योजना]] के लिए 'जॉर्डन उपाय ' शब्द अब अच्छी तरह से स्थापित होता है, इस तथ्य के अतिरिक्त यह अपनी आधुनिक परिभाषा में एक सही उपाय (गणित) नही होता है, क्योंकि जॉर्डन-मापने योग्य सेट एक σ नही बनाते है। उदाहरण के लिए, सिंगलटन सेट <math>\{x\}_{x \in \Reals}</math>में <math>\Reals</math> प्रत्येक के पास जॉर्डन का माप 0 होता है, जबकि <math>\Q \cap [0,1]</math>, उनका एक गणनीय संघ, जॉर्डन-मापने योग्य नही होता है।<ref>While a set whose measure is defined is termed ''measurable'', there is no commonly accepted term to describe a set whose Jordan content is defined. Munkres (1991) suggests the term "rectifiable" as a generalization of the use of this term to describe curves. Other authors have used terms including "admissible" (Lang, Zorich); "pavable" (Hubbard); "have content" (Burkill); "contented" (Loomis and Sternberg).</ref> इस कारण कुछ लेखक<ref>{{Cite book|title=मैनिफोल्ड्स पर विश्लेषण|last=Munkres|first=J. R.|publisher=Westview Press|year=1991|isbn=0-201-31596-3|location=Boulder, CO|pages=113}}</ref> {{em|जॉर्डन [[सामग्री (माप सिद्धांत)|सामग्री]]}} शब्द का प्रयोग करना अधिक पसंद करते है। | ||
पीआनो जॉर्डन उपाय का नाम इसके प्रवर्तकों, फ्रांसीसी गणितज्ञ [[केमिली जॉर्डन]] और इतालवी गणितज्ञ ग्यूसेप पीनो के नाम पर रखा गया था।<ref>G. Peano, "Applicazioni geometriche del calcolo infinitesimale", Fratelli Bocca, Torino, 1887.</ref> | पीआनो जॉर्डन उपाय का नाम इसके प्रवर्तकों, फ्रांसीसी गणितज्ञ [[केमिली जॉर्डन]] और इतालवी गणितज्ञ ग्यूसेप पीनो के नाम पर रखा गया था।<ref>G. Peano, "Applicazioni geometriche del calcolo infinitesimale", Fratelli Bocca, Torino, 1887.</ref> | ||
Line 65: | Line 65: | ||
* {{MathWorld|urlname=JordanMeasure|title=Jordan Measure|author=Derwent, John}} | * {{MathWorld|urlname=JordanMeasure|title=Jordan Measure|author=Derwent, John}} | ||
* {{springer|last=Terekhin|first=A.P.|author-link=|title=Jordan measure|id=J/j054350}} | * {{springer|last=Terekhin|first=A.P.|author-link=|title=Jordan measure|id=J/j054350}} | ||
[[Category:Created On 25/05/2023]] | [[Category:Created On 25/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:उपाय (माप सिद्धांत)]] |
Latest revision as of 08:50, 13 June 2023
गणित में, पीआनो जॉर्डन उपाय (जॉर्डन सामग्री के रूप में भी जाना जाता है) आकार (लंबाई, क्षेत्रफल, आयतन) की धारणा का एक विस्तार होता है, उदाहरण के लिए, एक त्रिभुज, चक्र या समानांतर चतुर्भुज की तुलना में अधिक जटिल आकार होता है।
यह पता चलता है कि एक सेट के लिए जॉर्डन को मापना एक निश्चित प्रतिबंधात्मक होता है। इस कारण से, लेबेस्ग उपाय के साथ काम करना अधिक सामान्य होता है, जो सेट के एक बड़े वर्ग के लिए जॉर्डन उपाय का विस्तार होता है। ऐतिहासिक रूप से बोलते हुए, जॉर्डन उपाय उन्नीसवीं शताब्दी के अंत में आया था। ऐतिहासिक कारणों से, इस सेट योजना के लिए 'जॉर्डन उपाय ' शब्द अब अच्छी तरह से स्थापित होता है, इस तथ्य के अतिरिक्त यह अपनी आधुनिक परिभाषा में एक सही उपाय (गणित) नही होता है, क्योंकि जॉर्डन-मापने योग्य सेट एक σ नही बनाते है। उदाहरण के लिए, सिंगलटन सेट में प्रत्येक के पास जॉर्डन का माप 0 होता है, जबकि , उनका एक गणनीय संघ, जॉर्डन-मापने योग्य नही होता है।[1] इस कारण कुछ लेखक[2] जॉर्डन सामग्री शब्द का प्रयोग करना अधिक पसंद करते है।
पीआनो जॉर्डन उपाय का नाम इसके प्रवर्तकों, फ्रांसीसी गणितज्ञ केमिली जॉर्डन और इतालवी गणितज्ञ ग्यूसेप पीनो के नाम पर रखा गया था।[3]
सरल सेटों का जॉर्डन उपाय
यूक्लिडियन स्थान पर विचार करते है जॉर्डन उपाय को पहले बंधे सेट आधे खुले अंतराल (गणित) के उत्पादों पर परिभाषित किया गया है
इस तरह के एक आयत को अंतराल की लंबाई के उत्पाद के रूप में परिभाषित किया गया है:
कोई जॉर्डन उपाय को परिभाषित नही कर सकता है व्यक्तिगत आयतों के उपायों के योग के रूप में, क्योंकि ऐसा प्रतिनिधित्व अद्वितीय से बहुत दूर होते है, और आयतों के बीच महत्वपूर्ण अधिव्यापन हो सकते है।
ऐसा कोई भी सरल सेट आयतों के एक और परिमित संघ के रूप में फिर से लिखा जा सकता है, जो इस समय पारस्परिक रूप से अलग होते है, और फिर एक जॉर्डन माप को असम्बद्ध आयतों के मापों के योग के रूप में परिभाषित करते है।
कोई दिखा सकता है कि जॉर्डन की यह परिभाषा मापती है के प्रतिनिधित्व से स्वतंत्र है पुनर्लेखन चरण में यह होता है कि आयतों के आधे-प्रारंभ अंतराल से बने होने की धारणा का उपयोग किया जाता है।
अधिक जटिल सेटों का विस्तार
ध्यान दें कि एक समुच्चय जो संवृत्त अंतरालों का गुणनफल होता है,
औपचारिक रूप से, एक बंधे हुए सेट के लिए है इसे परिभाषित करते है
यह पता चला है कि सभी आयतें (प्रारंभ या समाप्त), संकेतन आदि, जॉर्डन औसत दर्जे की होती है। इसके अतिरिक्त, यदि कोई दो निरंतर कार्यों पर विचार करता है, तो उन कार्यों के आलेखों के बीच बिंदुओं का सेट जॉर्डन मापने योग्य होता है जब तक कि सेट बाध्य होता है और दो कार्यों का सामान्य डोमेन जॉर्डन मापने योग्य होता है। जॉर्डन मापने योग्य सेटों का कोई भी परिमित संघ और प्रतिच्छेदन जॉर्डन मापने योग्य होता है। एक कॉम्पैक्ट सेट आवश्यक रूप से जॉर्डन औसत दर्जे का नही होता है। इसका आंतरिक जॉर्डन उपाय गायब हो जाता है, क्योंकि इसका पूरक (सेट सिद्धांत) सघन सेट होता है। इसके अतिरिक्त, एक घिरा हुआ प्रारंभ सेट जॉर्डन औसत दर्जे का हो यह जरूरी नही होता है। एक घिरा हुआ सेट जॉर्डन मापने योग्य होता है यदि और केवल इसका संकेतक घटक रीमैन समाकलनीय होता है।[1]
समान रूप से, एक बंधे हुए सेट के लिए आंतरिक जॉर्डन के उपाय के आंतरिक का लेबेस्ग उपाय होता है और बाहरी जॉर्डन उपाय समाप्त होने का लेबेस्गु उपाय होता है।[4] इससे यह पता चलता है कि एक घिरा हुआ सेट जॉर्डन मापने योग्य होता है यदि और केवल इसकी सीमा में लेबेस्गु उपाय शून्य होता है।
लेबेस्ग उपाय
यह अंतिम सेटों के प्रकार को बहुत सीमित करती है जो जॉर्डन औसत दर्जे के होते है। उदाहरण के लिए, अंतराल [0,1] में निहित परिमेय संख्याओं का समुच्चय जॉर्डन मापने योग्य नही होता है, क्योंकि इसकी सीमा [0,1] होती है जो जॉर्डन उपाय शून्य नही होता है। चूँकि सहज रूप से, परिमेय संख्याओं का समुच्चय एक छोटा समुच्चय होता है, क्योंकि यह गणनीय होता है, और इसका आकार शून्य होता है। एक सेट का लेबेस्ग उपाय इसके जॉर्डन उपाय के समान होता है। चूंकि, लेबेस्ग उपाय सेट को एक बहुत व्यापक वर्ग के लिए परिभाषित किया जाता है। इसके अतिरिक्त, लेबेसेग उपाय, जॉर्डन उपाय के विपरीत, एक वास्तविक उपाय होता है, अर्थात, लेबेसेग मापने योग्य सेटों का कोई भी गणनीय संघ लेबेसेग मापने योग्य होता है, जबकि जॉर्डन मापने योग्य सेटों के गणनीय संघों को जॉर्डन मापने योग्य नही होता है।
संदर्भ
- Emmanuele DiBenedetto (2002). Real analysis. Basel, Switzerland: Birkhäuser. ISBN 0-8176-4231-5.
- Richard Courant; Fritz John (1999). Introduction to Calculus and Analysis Volume II/1: Chapters 1–4 (Classics in Mathematics). Berlin: Springer. ISBN 3-540-66569-2.
- ↑ While a set whose measure is defined is termed measurable, there is no commonly accepted term to describe a set whose Jordan content is defined. Munkres (1991) suggests the term "rectifiable" as a generalization of the use of this term to describe curves. Other authors have used terms including "admissible" (Lang, Zorich); "pavable" (Hubbard); "have content" (Burkill); "contented" (Loomis and Sternberg).
- ↑ Munkres, J. R. (1991). मैनिफोल्ड्स पर विश्लेषण. Boulder, CO: Westview Press. p. 113. ISBN 0-201-31596-3.
- ↑ G. Peano, "Applicazioni geometriche del calcolo infinitesimale", Fratelli Bocca, Torino, 1887.
- ↑ Frink, Orrin Jr. (July 1933). "Jordan Measure and Riemann Integration". The Annals of Mathematics. 2. 34 (3): 518–526. doi:10.2307/1968175. ISSN 0003-486X. JSTOR 1968175.
बाहरी संबंध
- Derwent, John. "Jordan Measure". MathWorld.
- Terekhin, A.P. (2001) [1994], "Jordan measure", Encyclopedia of Mathematics, EMS Press