खुला सेट
This article needs additional citations for verification. (April 2012) (Learn how and when to remove this template message) |

गणित में, खुले सेट वास्तविक रेखा में खुले सेटों का सामान्यीकरण हैं।
एक मीट्रिक स्थान में (किसी भी दो बिंदुओं के बीच परिभाषित दूरी मीट्रिक (गणित) के साथ एक सेट (गणित)), खुले सेट वे सेट हैं जो प्रत्येक बिंदु P के साथ हैं, उन सभी बिंदुओं को सम्मालित करता है जो P के पर्याप्त निकट हैं (अर्थात, वे सभी बिंदु जिनकी P से दूरी P के आधार पर कुछ मान से कम है).
अधिक सामान्यतः, एक खुले सेट को किसी दिए गए सेट के सबसेट के दिए गए संग्रह के सदस्यों के रूप में परिभाषित करता है, एक संग्रह जिसमें इसके सदस्यों के प्रत्येक समूह (सेट सिद्धांत), इसके सदस्यों के प्रत्येक परिमित चौराहे (सेट सिद्धांत), खाली सेट, और पूरा सेट को ही सम्मालित करने का गुण होता है। एक सेट जिसमें ऐसा संग्रह दिया जाता है उसे टोपोलॉजिकल स्पेस कहा जाता है, और संग्रह को टोपोलॉजी (संरचना) कहा जाता है। ये स्थितियाँ बहुत अव्यवस्थित हैं, और खुले सेटों के चुनाव में अत्यधिक लचीलेपन की अनुमति देती हैं। उदाहरण के लिए, प्रत्येक सबसेट खुला ([असतत टोपोलॉजी]) हो सकता है, केवल स्थान और खाली सेट (अविवेकी टोपोलॉजी) को छोड़कर, कोई भी सेट खुला नहीं हो सकता है।
व्यवहार में, चूंकि, खुले सेट सामान्यतः दूरी की धारणा के बिना, मीट्रिक रिक्त स्थान के समान निकटता की धारणा प्रदान करने के लिए चुने जाते हैं। विशेष रूप से, एक टोपोलॉजी निरंतर कार्य, जुड़ा हुआ स्थान और सघनता जैसे गुणों को परिभाषित करने की अनुमति देती है, जिन्हें मूल रूप से दूरी के माध्यम से परिभाषित किया गया था।
बिना किसी भी दूरी के एक टोपोलॉजी का सबसे साधारण स्थितिय विविध द्वारा दिया जाता है, जो टोपोलॉजिकल रिक्त स्थान हैं, जो प्रत्येक बिंदु के पास, यूक्लिडियन अंतरिक्ष के एक खुले सेट के समान होते हैं, लेकिन जिस पर कोई दूरी सामान्य रूप से परिभाषित नहीं है। गणित की अन्य शाखाओं में टोपोलॉजी का प्रयोग कम किया जाता है; उदाहरण के लिए, जरिस्की टोपोलॉजी, जो बीजगणितीय ज्यामिति और योजना सिद्धांत में मौलिक है।
प्रेरणा
सहजता से, एक खुला सेट दो बिंदु (ज्यामिति) को अलग करने के लिए एक विधि प्रदान करता है। उदाहरण के लिए, यदि एक टोपोलॉजिकल स्पेस में दो बिंदुओं में से एक के बारे में एक खुला सेट उपस्थित है जिसमें अन्य (अलग) बिंदु नहीं है, तो दो बिंदुओं को टोपोलॉजिकल रूप से अलग-अलग कहा जाता है। इस विधि से, कोई इस बारे में बात कर सकता है कि एक टोपोलॉजिकल स्पेस के दो बिंदु, या अधिक सामान्यतः दो सबसेट दूरी को स्पष्ट रूप से परिभाषित किए बिना "निकट" हैं, इसलिए, टोपोलॉजिकल स्पेस को दूरी की धारणा से लैस स्पेस के सामान्यीकरण के रूप में देखा जा सकता है, जिसे मेट्रिक स्पेस कहा जाता है।
सभी वास्तविक संख्याओ के सेट में, किसी के पास प्राकृतिक यूक्लिडियन मीट्रिक है; अर्थात, एक फलन जो दो वास्तविक संख्याओं के बीच की दूरी को मापता है: d(x, y) = |x − y|. इसलिए, एक वास्तविक संख्या x दी गई है, उस वास्तविक संख्या के निकट सभी बिंदुओं के सेट के बारे में बात की जा सकती है; अर्थात्, x के ε के भीतर। संक्षेप में, x के ε के भीतर बिंदु ε घात की उपयुक्त के करीब x का अनुमान लगाते हैं। ध्यान दें कि ε> 0 हमेशा लेकिन जैसे-जैसे ε छोटा और छोटा होता जाता है, वैसे-वैसे अंक प्राप्त होते हैं जो x को उपयुक्त के उच्च और उच्च स्तर तक ले जाते हैं। उदाहरण के लिए, यदि x = 0 और ε = 1, x के ε के भीतर के बिंदु अंतराल बिंदु ठीक अंतराल (−1, 1) के बिंदु हैं; अर्थात, -1 और 1 के बीच सभी वास्तविक संख्याओं का सेट है। चूंकि, ε = 0.5 के साथ, x के ε के भीतर बिंदु ठीक (-0.5, 0.5) के बिंदु हैं। स्पष्ट रूप से, ये बिंदु ε = 1 की तुलना में उपयुक्त की एक बड़ी घात के करीब x का अनुमान लगाते हैं।
पिछले उल्लेख से पता चलता है, केस x = 0 के लिए, कि ε को छोटा और छोटा परिभाषित करके x को उपयुक्त के उच्च और उच्च घात तक अनुमानित किया जा सकता है। विशेष रूप से, फॉर्म के सेट (−ε, ε) हमें x = 0 के करीब बिंदुओं के बारे में बहुत सारी जानकारी देते हैं। इस प्रकार, ठोस यूक्लिडियन मीट्रिक के बारे में बात करने के अतिरिक्त, x के निकटतम बिंदुओं का वर्णन करने के लिए सेट का प्रयोग किया जा सकता है। इस अभिनव विचार के दूरगामी परिणाम होते हैं; विशेष रूप से, 0 वाले सेटो के विभिन्न संग्रहों को परिभाषित करके ( सेटो (−ε, ε) से अलग), कोई 0 और अन्य वास्तविक संख्याओं के बीच की दूरी के संबंध में भिन्न परिणाम प्राप्त कर सकता है। उदाहरण के लिए, यदि हम दूरी को मापने के लिए 'R' को एकमात्र ऐसे सेट के रूप में परिभाषित करते हैं, तो सभी बिंदु 0 के करीब हैं क्योंकि उपयुक्त की केवल एक ही संभावित घात है जिसे कोई 0 का 'R' का सदस्य होने के नाते अनुमान लगाने में प्राप्त कर सकता है। इस प्रकार, हम पाते हैं कि एक मायने में, प्रत्येक वास्तविक संख्या 0 से 0 की दूरी पर है। इस स्थितिय में माप को एक द्विआधारी स्थिति के रूप में सोचने में सहायता मिल सकती है: 'R' में सभी चीजें समान रूप से 0 के करीब हैं, जबकि कोई भी वस्तु जो R में नहीं है वह 0 के करीब भी नहीं है।
सामान्यतः, एक 'निकट के आधार' के रूप में 0 वाले सेट के परिवार को संदर्भित करता है, जिसका प्रयोग लगभग 0 के लिए किया जाता है; इस निकट के आधार के एक सदस्य को ' खुला सेट' के रूप में संदर्भित किया जाता है। यथार्थ, कोई इन धारणाओं को एक मनमाना सेट (X ) के लिए सामान्यीकृत कर सकता है; केवल वास्तविक संख्या के अतिरिक्त। इस स्थितिय में, उस सेट का एक बिंदु (x) दिया गया है, कोई सेट के संग्रह को परिभाषित कर सकता है (अर्थात, युक्त) x, अनुमानित x के लिए प्रयोग किया जाता है। निःसंदेह, इस संग्रह को कुछ गुणों (जिन्हें 'स्वयंसिद्ध' के रूप में जाना जाता है) को पूरा करना होगा, अन्यथा हमारे पास दूरी मापने के लिए एक अच्छी तरह से परिभाषित विधि नहीं हो सकती है। उदाहरण के लिए, X के प्रत्येक बिंदु को कुछ हद तक उपयुक्त के साथ x का अनुमान लगाना चाहिए। इस प्रकार X को इस परिवार में होना चाहिए। एक बार जब हम x वाले छोटे सेट को परिभाषित करना प्रारंभ करते हैं, तो हम x को अधिक उपयुक्त के साथ अनुमानित करते हैं। इसे ध्यान में रखते हुए, शेष स्वतः सिद्ध को परिभाषित किया जा सकता है जिसे संतुष्ट करने के लिए x के बारे में सेटो के परिवार की आवश्यकता होती है।
परिभाषाएँ
तकनीकीता के बढ़ते क्रम में, यहाँ कई परिभाषाएँ दी गई हैं। सभी एक अगले का एक विशेष स्थितिय है।
यूक्लिडियन स्थान
यूक्लिडियन n-अंतरिक्ष Rn का एक सबसेट खुला है यदि,U में प्रत्येक बिन्दु x के लिए एक धनात्मक वास्तविक संख्या ε (इस पर निर्भर करते हुए x) उपस्थित है जैसे की Rn में कोई बिन्दु जिसका x से यूक्लिडियन दूरी ε से कम है समान रूप से Rn का सबसेट खुला होता है यदि का प्रत्येक बिंदु में निहित एक खुली गेंद का केंद्र है।[1]
R के एक सबसेट का उदाहरण जो खुला नहीं है वह बंद अंतराल [0,1] है, क्योकि न तो 0 - ε न 1 + ε किसी भी ε > 0 के लिए [0,1] से संबंधित है, इससे कोई फर्क नहीं सम्मालित़ता, कि कितना छोटा है।
मीट्रिक स्थान
मीट्रिक स्पेस का एक सबसेट U (M, d) खुला कहा जाता है, यदि U में किसी भी बिंदु X के लिए, वास्तविक संख्या ε> 0 उपस्थित है जैसे कि कोई बिंदु संतुष्टि देने वाला d(x, y) < ε U से संबंधित है। समान रूप से, U खुला है यदि U में प्रत्येक बिंदु U में निहित निकट है।
यह यूक्लिडियन अंतरिक्ष उदाहरण का सामान्यीकरण करता है, क्योंकि यूक्लिडियन दूरी के साथ यूक्लिडियन स्थान एक मीट्रिक स्थान है।
टोपोलॉजिकल स्पेस
सेट X पर एक टोपोलॉजी (संरचना) नीचे के गुणों के साथ X के सबसेट का सेट है। के प्रत्येक सदस्य को एक खुला सेट कहा जाता है।
- तथा
- में सेट का कोई भी समूह से संबंधित है: यदि फिर
- में सेट का कोई भी परिमित चौराहा से संबंधित है: यदि फिर
X और को टोपोलॉजिकल स्पेस कहा जाता है।
खुला सेट के परिमित इंटरसेक्शन को खुला होने की जरूरत नहीं है। उदाहरण के लिए, फॉर्म के सभी अंतरालों का प्रतिच्छेदन जहाँ एक धनात्मक पूर्णांक है, सेट है जो वास्तविक रेखा में नहीं खुलता है।
एक मेट्रिक स्पेस एक टोपोलॉजिकल स्पेस है, जिसकी टोपोलॉजी में सभी सबसेट का संग्रह होता है जो खुला बॉल्स के समूह होते हैं। चूँकि, ऐसे टोपोलॉजिकल स्पेस हैं जो मेट्रिक स्पेस नहीं हैं।
विशेष प्रकार के खुले सेट
क्लोपेन सेट और नॉन- खुला और/या नॉन-बंद सेट
एक सेट खुला, बंद, दोनों या दोनों में से कोई भी हो सकता है। विशेष रूप से, खुले और बंद सेट पारस्परिक रूप से अनन्य नहीं होते हैं, जिसका अर्थ है कि यह सामान्य रूप से एक टोपोलॉजिकल स्पेस के सबसेट के लिए एक साथ एक खुला सबसेट और एक बंद सबसेट दोनों के लिए संभव है।। ऐसे सबसेट क्लोपेन सेट्स कहलाते हैं. स्पष्ट रूप से, एक टोपोलॉजिकल स्पेस के एक सबसेट को क्लोपेन कहा जाता है यदि दोनों और इसका पूरक के खुले सबसेट हैं; या समकक्ष, यदि तथा
किसी भी टोपोलॉजिकल स्पेस में खाली सेट और सेट खुद हमेशा क्लोपेन होते हैं। ये दो सेट क्लोपेन सबसेट के सबसे प्रसिद्ध उदाहरण हैं और वे दिखाते हैं कि क्लोपेन सबसेट सभी टोपोलॉजिकल स्पेस में उपस्थित हैं। यह देखने के लिए कि क्लोपेन क्यों है,यह याद करते हुए प्रारंभ करें कि सेट तथा परिभाषा के अनुसार, हमेशा खुले सबसेट ( के) होते है. साथ ही परिभाषा के अनुसार, एक सबसेट को बंद कहा जाता है यदि पूरे सेट का पूरक खाली सेट है (अर्थात् ) जो एक खुला सबसेट है। इसका मतलब है कि का बंद सबसेट है (बंद सबसेट की परिभाषा के अनुसार)। इसलिए, कोई फर्क नहीं पड़ता कि पर कोई टोपोलॉजी रखी गई है, सम्पूर्ण स्पेस एक साथ एक खुला सबसेट भी है और एक बंद सबसेट भी है ; दूसरे शब्दों में कहा गया है हमेशा का एक क्लोपेन सबसेट होता है क्योंकि खाली सेट का पूरक है जो एक खुला सबसेट है, इसी तर्क का प्रयोग करके यह निष्कर्ष निकालने के लिए किया जा सकता है कि भी का एक क्लोपेन सबसेट है वास्तविक रेखा पर विचार करें अपने सामान्य यूक्लिडियन टोपोलॉजी से संपन्न है, जिसके खुले सेट निम्नानुसार परिभाषित किए गए हैं: प्रत्येक अंतराल वास्तविक संख्याओं का संबंध टोपोलॉजी से है, ऐसे अंतरालों का प्रत्येक समूह, उदा टोपोलॉजी से संबंधित है, और हमेशा की तरह, दोनों तथा टोपोलॉजी से संबंधित हैं।
- अंतराल में खुला है क्योंकि यह यूक्लिडियन टोपोलॉजी से संबंधित है। यदि एक खुला पूरक होना था, परिभाषा के अनुसार इसका अर्थ होगा कि हमने बंद कर दिया। परंतु एक खुला पूरक नहीं है; इसका पूरक है जो यूक्लिडियन टोपोलॉजी से संबंधित नहीं हैं क्योंकि यह के रूप के खुले अंतराल (गणित) का एक समूह नहीं है अत, एक ऐसे सेट का उदाहरण है जो खुला है लेकिन बंद नहीं है।
- इसी तरह के तर्क से, अंतराल एक बंद सबसेट है लेकिन एक खुला सबसेट नहीं है।
- अंत में, न तो न ही इसका पूरक यूक्लिडियन टोपोलॉजी से संबंधित है (क्योंकि इसे फॉर्म के अंतराल के समूह के रूप में नहीं लिखा जा सकता है ), इस का मतलब है कि न तो खुला है और न ही बंद है।
यदि एक टोपोलॉजिकल स्पेस असतत टोपोलॉजी के साथ संपन्न है (ताकि परिभाषा के अनुसार, प्रत्येक सबसेट खुला है) तो का सभी सबसेट एक क्लोपेन सबसेट है।
असतत टोपोलॉजी की याद दिलाने वाले अधिक उन्नत उदाहरण के लिए, मान लीजिए गैर-खाली सेट पर एक अल्ट्राफ़िल्टर है फिर समूह है गुण के साथ पर एक टोपोलॉजी है का प्रत्येक गैर-खाली उचित सबसेट या तो एक खुला सबसेट या फिर एक बंद सबसेट, लेकिन दोनों कभी नहीं, अर्थात् यदि (जहाँ ) तो यथार्थ एक निम्नलिखित दो कथनों में से सत्य है: या तो (1) या फिर, (2) दुसरे शब्दों में कहा जाये, प्रत्येक सबसेट खुला या बंद है लेकिन केवल तथा सबसेट जो दोनों (अर्थात जो क्लोपेन हैं) हैं|
नियमित खुले सेट
टोपोलॉजिकल स्पेस का एक सबसेट एक नियमित खुले सेट कहलाता है | यदि या समकक्ष, यदि जहाँ पे (प्रति. ) में की सीमा (टोपोलॉजी) (प्रतिक्रिया आंतरिक (टोपोलॉजी), क्लोजर (टोपोलॉजी)) को दर्शाता हैएक टोपोलॉजिकल स्पेस जिसके लिए नियमित रूप से खुले सेटों से युक्त एक आधार उपस्थित होता है, उसे सेमिरेगुलर स्पेस अर्द्ध नियमित स्पेस.कहा जाता है का एक उप सेट एक नियमित खुला सेट है यदि और केवल यदि इसका पूरक एक नियमित बंद सेट है, जहां परिभाषा के अनुसार का नियमित बंद सेट कहलाता है यदि या समकक्ष, यदि प्रत्येक नियमित खुला सेट (प्रति. नियमित बंद सेट) एक खुला सबसेट है (प्रति. एक बंद सबसेट है) चूंकि सामान्यतः,[note 1] बातचीत सच नही है।
गुण
खुले सेटों की किसी भी संख्या का समूह, या असीम रूप से कई खुले सेट, खुले हैं।[2] खुले सेटों की परिमित संख्या का प्रतिच्छेदन खुला है।[2]
एक खुले सेट का एक पूरक (सेट सिद्धांत) (उस स्थान के सापेक्ष जिस पर टोपोलॉजी परिभाषित है) को एक बंद सेट कहा जाता है। एक सेट खुला और बंद दोनों हो सकता है (क्लोपेन सेट)। खाली सेट और पूरा स्थान ऐसे सेट के उदाहरण हैं जो खुले और बंद दोनों हैं।[3]
प्रयोग
टोपोलॉजी में खुला सेट का मौलिक महत्व है। अवधारणा को टोपोलॉजिकल स्पेस और अन्य टोपोलॉजिकल संरचनाओं को परिभाषित करने और समझने की आवश्यकता है जो मीट्रिक रिक्त स्थान और समान रिक्त स्थान जैसे रिक्त स्थान के लिए निकटता और अभिसरण की धारणाओं से निपटते हैं।
टोपोलॉजिकल स्पेस X केसभीसबसेट A में एक (संभवतः खाली) खुला सेट होता है; अधिकतम ( सम्मालित किए जाने के तहत आदेशित) इस तरह के खुले सेट को ए के टोपोलॉजिकल इंटीरियर कहा जाता है।
इसका निर्माण A में निहित सभी खुले सेटों का समूह लेकर किया जा सकता है।
दो टोपोलॉजिकल स्पेस तथा के बीच एक फलन (गणित) निरंतर होता है यदि को खुला कहा जाता है यदि में सभी ओपन सेट की छवि (गणित) में खुला है
वास्तविक रेखा पर एक खुले सेट की विशेषता गुण है कि यह खुले अंतरालों को अलग करने का एक गणनीय समूह है।
टिप्पणियाँ और चेतावनियाँ
" खुला " को एक विशेष टोपोलॉजी के सापेक्ष परिभाषित किया गया है
एक सेट खुला है या नहीं यह विचाराधीन टोपोलॉजी पर निर्भर करता है। संकेतन के दुरुपयोग का विकल्प चुनने के बाद, हम एक टोपोलॉजी के साथ संपन्न एक सेट X का उल्लेख करते हैं टोपोलॉजिकल स्पेस के अतिरिक्त टोपोलॉजिकल स्पेस X के रूप में , इस साक्ष्य के बावजूद कि सभी टोपोलॉजिकल डेटा में समाहित है यदि एक ही सेट पर दो टोपोलॉजी हैं, तो एक सेट U जो पहली टोपोलॉजी में खुला है, दूसरी टोपोलॉजी में खुलने में विफल हो सकता है। उदाहरण के लिए, यदि X कोई टोपोलॉजिकल स्पेस है और Y, X का कोई सबसेट है, तो सेट Y को अपना स्वयं का टोपोलॉजी दिया जा सकता है (जिसे 'सबस्पेस टोपोलॉजी' कहा जाता है) एक सेट U द्वारा परिभाषित किया गया है, जो Y पर सबस्पेस टोपोलॉजी में खुला है और केवल यदि UX पर मूल टोपोलॉजी से खुले सेट के साथ वाई का चौराहे है। यह संभावित रूप से नए खुले सेट पेश करता है: यदि वी X पर मूल टोपोलॉजी में खुला है, लेकिन X पर मूल टोपोलॉजी में खुला नहीं है वाई पर सबस्पेस टोपोलॉजी में खुला है।
इसका एक ठोस उदाहरण के रूप में, यदि U को अंतराल में परिमेय संख्याओं के सेट के रूप में परिभाषित किया गया है तब U परिमेय संख्याओं का एक खुला सबसेट है, लेकिन वास्तविक संख्याओं का नहीं। ऐसा इसलिए है क्योंकि जब नजदीक का स्थान परिमेय संख्या है, U में प्रत्येक बिंदु x के लिए, एक धनात्मक संख्या उपस्थित होती है जैसे कि x की दूरी a के अन्दर सभी परिमेय बिंदु भी U में हैं। दूसरी ओर, जब नजदीक का स्थान वास्तविक है, तो U में प्रत्येक बिंदु x के लिए कोई धनात्मक a ऐसा नहीं है कि x की दूरी के भीतर सभी वास्तविक बिंदु हैं यू में (क्योंकि यू में कोई गैर-तर्कसंगत संख्या नहीं है)।)।
खुले सेटों का सामान्यीकरण
सभी जगह, एक टोपोलॉजिकल स्पेस होगा।
टोपोलॉजिकल स्पेस का एक सबसेट कहा जाता है:
α-ओपन यदि , और ऐसे सेट के पूरक को α-बंद कहा जाता है.[4]
प्रीओपेन,करीब-करीब खुला, या स्थानीय रूप से सघन यदि यह निम्नलिखित समतुल्य स्थितियों में से किसी को भी संतुष्ट करता है
1. [5]
2. सबसेट ऐसे उपस्थित हैं कि ऐसा में खुला है और का सघन सबसेट है [5]
3.एक खुला उपस्थित है (में ) सबसेट ऐसा है कि का सघन सबसेट है [5]
पूर्वखुला सेट के पूरक को प्रिक्लोसड कहा जाता है।
b-ओपन यदि . बी- खुला सेट के पूरक को b-क्लोज्ड कहा जाता है.[4] ashif
β-ओपन याअर्ध-प्रीओपन यदि यह निम्नलिखित समतुल्य शर्तों में से किसी को भी संतुष्ट करता है:
1.[4]
2. का एक नियमित बंद सबसेट है [5]
3. का एक पूर्व खुला सबसेट उपस्थित है जैसा कि [5]
- सबसेट कहा जाता है कि प्रत्येक सबसेट के लिए प्रतिबंधित अर्थों में बायर गुण है यदि के प्रत्येक सबसेट के लिए प्रतिच्छेदन में के सापेक्ष बायर गुण है .[7]
- तथा
जब भी दो सबसेट संतुष्ट करना निम्नलिखित निष्कर्ष निकाला जा सकता है:
- सभी α-खुला सबसेट अर्द्ध- खुला , अर्द्ध-पूर्वखुला , पूर्वखुला और बी- खुला होता है।
- सभी बी-खुला सेट अर्द्ध-पूर्व खुला (अर्थात् β- खुला ) है।
- सभी पूर्वखुला सेट बी- खुला और अर्द्ध-पूर्व खुला है।
- सभी अर्द्ध-खुला सेट बी-खुला और अर्द्ध-पूर्व खुला है।
इसके अतिरिक्त, एक सबसेट एक नियमित खुला सेट है यदि और केवल यदि यह पूर्व खुला और अर्द्ध-बंद है।[5] एक α- खुला सेट और अर्द्ध-पूर्व खुला (रेस्प। अर्द्ध- खुला , पूर्व खुला , बी- खुला ) सेट का इंटरसेक्शन एक अर्द्ध-पूर्व खुला (रेस्प. अर्द्ध- खुला , पूर्व खुला , बी- खुला ) सेट है।[5] पूर्व खुला सेट को अर्द्ध- खुला होने की आवश्यकता नहीं है और अर्द्ध- खुला सेट को पूर्व खुला होने की आवश्यकता नहीं है।[5] पूर्व खुला (प्रति. α- खुला , बी- खुला , अर्द्ध- पूर्व खुला ) सेट के मनमाना समूह एक बार फिर से पूर्व खुला (प्रति. α- खुला , बी- खुला , अर्द्ध- पूर्व खुला ) हैं।[5] चूँकि, पूर्व खुला सेट के परिमित प्रतिच्छेदो को पूर्व खुला होने की आवश्यकता नहीं है।[8] किसी स्थान के सभी α-खुले सबसेट का सेट पर एक टोपोलॉजी बनाता है जो टोपोलॉजी की तुलना में बेहतर है [4]
यह भी देखें
टिप्पणियाँ
- ↑ One exception if the if is endowed with the discrete topology, in which case every subset of is both a regular open subset and a regular closed subset of
संदर्भ
- ↑ Ueno, Kenji; et al. (2005). "The birth of manifolds". एक गणितीय उपहार: टोपोलॉजी, फ़ंक्शंस, ज्यामिति और बीजगणित के बीच परस्पर क्रिया. Vol. 3. American Mathematical Society. p. 38. ISBN 9780821832844.
- ↑ Jump up to: 2.0 2.1 Taylor, Joseph L. (2011). "Analytic functions". जटिल चर. The Sally Series. American Mathematical Society. p. 29. ISBN 9780821869017.
- ↑ Krantz, Steven G. (2009). "Fundamentals". अनुप्रयोगों के साथ टोपोलॉजी की अनिवार्यता. CRC Press. pp. 3–4. ISBN 9781420089745.
- ↑ Jump up to: 4.0 4.1 4.2 4.3 4.4 Hart 2004, p. 9.
- ↑ Jump up to: 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Hart 2004, pp. 8–9.
- ↑ Oxtoby, John C. (1980), "4. The Property of Baire", Measure and Category, Graduate Texts in Mathematics, vol. 2 (2nd ed.), Springer-Verlag, pp. 19–21, ISBN 978-0-387-90508-2.
- ↑ Kuratowski, Kazimierz (1966), Topology. Vol. 1, Academic Press and Polish Scientific Publishers.
- ↑ Jump up to: 8.0 8.1 8.2 8.3 8.4 8.5 Hart 2004, p. 8.
ग्रन्थसूची
- Hart, Klaas (2004). Encyclopedia of general topology. Amsterdam Boston: Elsevier/North-Holland. ISBN 0-444-50355-2. OCLC 162131277.
- Hart, Klaas Pieter; Nagata, Jun-iti; Vaughan, Jerry E. (2004). Encyclopedia of general topology. Elsevier. ISBN 978-0-444-50355-8.
बाअर्द्धी संबंध
- "Open set", Encyclopedia of Mathematics, EMS Press, 2001 [1994]