आव्यूह अपघटन: Difference between revisions

From Vigyanwiki
Line 19: Line 19:
*संबंधित: एलयूपी वियोजन <math>PA=LU</math> है, जहां L निम्नतर त्रिकोणीय, U ऊपरी त्रिकोणीय तथा P क्रमचय आव्यूह है।
*संबंधित: एलयूपी वियोजन <math>PA=LU</math> है, जहां L निम्नतर त्रिकोणीय, U ऊपरी त्रिकोणीय तथा P क्रमचय आव्यूह है।
*अस्तित्व: किसी भी वर्ग आव्यूह A के लिए एक एलयूपी वियोजन उपस्थित है। जब P तत्समक आव्यूह है, तो एलयूपी वियोजन एलयू वियोजन में न्यूनीकृत हो जाता है।
*अस्तित्व: किसी भी वर्ग आव्यूह A के लिए एक एलयूपी वियोजन उपस्थित है। जब P तत्समक आव्यूह है, तो एलयूपी वियोजन एलयू वियोजन में न्यूनीकृत हो जाता है।
*टिप्पणियां:एलयूपी और एलयू वियोजन रैखिक समीकरणों <math>A \mathbf{x} = \mathbf{b}</math>. की n-by-n प्रणाली को हल करने में उपयोगी होते हैं। ये वियोजन आव्यूह के रूप में गाऊसी उन्मूलन की प्रक्रिया को संक्षेप में प्रस्तुत करते हैं। आव्यूह पी गाऊसी उन्मूलन की प्रक्रिया में किए गए किसी भी पंक्ति विनिमय का प्रतिनिधित्व करता है। यदि गाऊसी उन्मूलन किसी भी पंक्ति विनिमय की आवश्यकता के बिना पंक्ति सोपानक रूप का उत्पादन करता है, तो P  =  I होता है, इसलिए एलयू वियोजन उपस्थित होती है।
*टिप्पणियां:एलयूपी और एलयू वियोजन रैखिक समीकरणों <math>A \mathbf{x} = \mathbf{b}</math>. की n-by-n प्रणाली को हल करने में उपयोगी होते हैं। ये वियोजन आव्यूह के रूप में गाऊसी उन्मूलन की प्रक्रिया को संक्षेप में प्रस्तुत करते हैं। आव्यूह पी गाऊसी उन्मूलन की प्रक्रिया में किए गए किसी भी पंक्ति विनिमय का प्रतिनिधित्व करता है। यदि गाऊसी उन्मूलन किसी भी पंक्ति विनिमय की आवश्यकता के बिना पंक्ति सोपानक रूप का उत्पादन करता है, तो P  =  I होता है, इसलिए LU वियोजन उपस्थित होती है।


=== एस कमी ===
=== एलयू न्यूनीकरण ===
{{main|LU reduction}}
{{main|एलयू न्यूनीकरण}}


=== ब्लॉक लू अपघटन ===
=== ब्लॉक एलयू वियोजन ===
{{main|Block LU decomposition}}
{{main|ब्लॉक एलयू वियोजन}}


=== रैंक गुणनखंड ===
=== श्रेणी गुणनखंडन ===
{{main|Rank factorization}}
{{main|श्रेणी गुणनखंडन}}
*के लिए लागू: रैंक r का m-by-n मैट्रिक्स A
*इसके लिए प्रयोज्य: श्रेणी r के एम-बाय-एन आव्यूह A पर प्रयुक्त
* अपघटन: <math>A=CF</math> जहाँ C एक m-by-r फुल कॉलम रैंक मैट्रिक्स है और F एक r-by-n फुल रो रैंक मैट्रिक्स है
* वियोजन: <math>A=CF</math> है जहां C  m-by-r पूर्ण स्तंभ श्रेणी आव्यूह और r-by-n पूर्ण पंक्ति श्रेणी आव्यूह है
*टिप्पणी: रैंक गुणनखंडन का उपयोग मूर-पेनरोज़ स्यूडोइनवर्स#रैंक अपघटन के लिए किया जा सकता है। ए के मूर-पेनरोज़ स्यूडोइनवर्स की गणना करें,<ref>{{cite journal|last1=Piziak|first1=R.|last2=Odell|first2=P. L.|title=मैट्रिसेस का फुल रैंक फैक्टराइजेशन|journal=Mathematics Magazine|date=1 June 1999|volume=72|issue=3|pages=193|doi=10.2307/2690882|jstor=2690882}}</ref> जो मूर-पेनरोज़ स्यूडोइनवर्स # एक रेखीय प्रणाली के सभी समाधानों को प्राप्त करने के लिए लागू हो सकता है <math>A \mathbf{x} = \mathbf{b}</math>.
*टिप्पणी: श्रेणी गुणनखंडन का उपयोग A के मूर-पेनरोज़ छद्मविपरीत की गणना करने के लिए किया जा सकता है,<ref>{{cite journal|last1=Piziak|first1=R.|last2=Odell|first2=P. L.|title=मैट्रिसेस का फुल रैंक फैक्टराइजेशन|journal=Mathematics Magazine|date=1 June 1999|volume=72|issue=3|pages=193|doi=10.2307/2690882|jstor=2690882}}</ref> जो रैखिक प्रणाली <math>A \mathbf{x} = \mathbf{b}</math> के सभी समाधानों को प्राप्त करने के लिए प्रयुक्त किया जा सकता है।


=== चोल्स्की अपघटन ===
=== चोल्स्की वियोजन ===
{{main|चोल्स्की अपघटन}}
{{main|चोल्स्की वियोजन}}
*इसके लिए लागू: वर्ग मैट्रिक्स, [[सममित मैट्रिक्स]], [[सकारात्मक-निश्चित मैट्रिक्स]] मैट्रिक्स <math>A</math>
*इसके लिए प्रयोज्य: वर्ग मैट्रिक्स, [[सममित मैट्रिक्स]], [[सकारात्मक-निश्चित मैट्रिक्स]] मैट्रिक्स <math>A</math>
* अपघटन: <math>A=U^*U</math>, कहाँ <math>U</math> वास्तविक सकारात्मक विकर्ण प्रविष्टियों के साथ ऊपरी त्रिकोणीय है
* अपघटन: <math>A=U^*U</math>, कहाँ <math>U</math> वास्तविक सकारात्मक विकर्ण प्रविष्टियों के साथ ऊपरी त्रिकोणीय है
*टिप्पणी: यदि मैट्रिक्स <math>A</math> हर्मिटियन और सकारात्मक अर्ध-निश्चित है, तो इसमें फॉर्म का अपघटन होता है <math>A=U^*U</math> यदि की विकर्ण प्रविष्टियाँ <math>U</math> शून्य होने की अनुमति है
*टिप्पणी: यदि मैट्रिक्स <math>A</math> हर्मिटियन और सकारात्मक अर्ध-निश्चित है, तो इसमें फॉर्म का अपघटन होता है <math>A=U^*U</math> यदि की विकर्ण प्रविष्टियाँ <math>U</math> शून्य होने की अनुमति है

Revision as of 22:52, 4 June 2023

रेखीय बीजगणित के गणितीय विद्याशाखा में, आव्यूह वियोजन या आव्यूह गुणनखंड आव्यूह के गुणनफल में एक आव्यूह का गुणनखंडन है। समस्याओं के एक विशेष वर्ग के मध्य अनेक भिन्न-भिन्न मैट्रिक्स अपघटन होते हैं, जिनमें से प्रत्येक का उपयोग होता है।

उदाहरण

संख्यात्मक विश्लेषण में, कुशल आव्यूह कलन विधि को प्रयुक्त करने के लिए विभिन्न वियोजन का उपयोग किया जाता है।

उदाहरण के लिए, रैखिक समीकरणों की प्रणाली को हल करते समय, आव्यूह A को एलयू वियोजन के माध्यम से वियोजित किया जा सकता है। एलयू वियोजन एक आव्यूह को निम्न त्रिकोणीय आव्यूह L और एक ऊपरी त्रिकोणीय आव्यूह U में गुणनखंड करता है। प्रणाली तथा मूल प्रणाली , की तुलना में हल करने के लिए निम्न योग और गुणा की आवश्यकता होती है, यद्यपि अयथार्थ अंकगणित जैसे फ्लोटिंग पॉइंट में अर्थपूर्णता से अधिक अंकों की आवश्यकता हो सकती है ।

इसी तरह, क्यूआर वियोजन A को QR के रूप में Q लांबिक आव्यूह और R ऊपरी त्रिकोणीय आव्यूह के रूप में व्यक्त करता है। प्रणाली Q(Rx) = b को Rx = QTb = c द्वारा हल किया जाता है और प्रणाली Rx = c को 'पुनः प्रतिस्थापन' द्वारा हल किया जाता है। LU सॉल्वर (समाधानकर्ता) का उपयोग करने के लिए आवश्यक योग और गुणा की संख्या प्रायः दोगुनी है, किन्तु अयथार्थ अंकगणित में अधिक अंकों की आवश्यकता नहीं है क्योंकि क्यूआर वियोजन संख्यात्मक रूप से स्थिर है।

रैखिक समीकरणों की प्रणालियों के समाधान से संबंधित वियोजन

एलयू वियोजन

  • परंपरागत रूप से प्रयोज्य: वर्ग मैट्रिक्स A, यद्यपि आयताकार मैट्रिक्स प्रयुक्त हो सकते हैं।[1][nb 1]
  • वियोजन: , जहां L निम्नतर त्रिकोणीय मैट्रिक्स तथा U उच्चतर त्रिकोणीय मैट्रिक्स है
  • संबंधित: एलडीयू वियोजन है, जहाँ L विकर्ण निम्नतर त्रिकोणीय मैट्रिक्स हैं, U विकर्ण पर उच्चतर त्रिकोणीय मैट्रिक्स और D एक विकर्ण मैट्रिक्स है।
  • संबंधित: एलयूपी वियोजन है, जहां L निम्नतर त्रिकोणीय, U ऊपरी त्रिकोणीय तथा P क्रमचय आव्यूह है।
  • अस्तित्व: किसी भी वर्ग आव्यूह A के लिए एक एलयूपी वियोजन उपस्थित है। जब P तत्समक आव्यूह है, तो एलयूपी वियोजन एलयू वियोजन में न्यूनीकृत हो जाता है।
  • टिप्पणियां:एलयूपी और एलयू वियोजन रैखिक समीकरणों . की n-by-n प्रणाली को हल करने में उपयोगी होते हैं। ये वियोजन आव्यूह के रूप में गाऊसी उन्मूलन की प्रक्रिया को संक्षेप में प्रस्तुत करते हैं। आव्यूह पी गाऊसी उन्मूलन की प्रक्रिया में किए गए किसी भी पंक्ति विनिमय का प्रतिनिधित्व करता है। यदि गाऊसी उन्मूलन किसी भी पंक्ति विनिमय की आवश्यकता के बिना पंक्ति सोपानक रूप का उत्पादन करता है, तो P  =  I होता है, इसलिए LU वियोजन उपस्थित होती है।

एलयू न्यूनीकरण

ब्लॉक एलयू वियोजन

श्रेणी गुणनखंडन

  • इसके लिए प्रयोज्य: श्रेणी r के एम-बाय-एन आव्यूह A पर प्रयुक्त
  • वियोजन: है जहां C  m-by-r पूर्ण स्तंभ श्रेणी आव्यूह और F  r-by-n पूर्ण पंक्ति श्रेणी आव्यूह है
  • टिप्पणी: श्रेणी गुणनखंडन का उपयोग A के मूर-पेनरोज़ छद्मविपरीत की गणना करने के लिए किया जा सकता है,[2] जो रैखिक प्रणाली के सभी समाधानों को प्राप्त करने के लिए प्रयुक्त किया जा सकता है।

चोल्स्की वियोजन

  • इसके लिए प्रयोज्य: वर्ग मैट्रिक्स, सममित मैट्रिक्स, सकारात्मक-निश्चित मैट्रिक्स मैट्रिक्स
  • अपघटन: , कहाँ वास्तविक सकारात्मक विकर्ण प्रविष्टियों के साथ ऊपरी त्रिकोणीय है
  • टिप्पणी: यदि मैट्रिक्स हर्मिटियन और सकारात्मक अर्ध-निश्चित है, तो इसमें फॉर्म का अपघटन होता है यदि की विकर्ण प्रविष्टियाँ शून्य होने की अनुमति है
  • विशिष्टता: सकारात्मक निश्चित आव्यूहों के लिए चोलस्की अपघटन अद्वितीय है। हालांकि, सकारात्मक अर्ध-निश्चित मामले में यह अद्वितीय नहीं है।
  • टिप्पणी: अगर वास्तविक और सममित है, सभी वास्तविक तत्व हैं
  • टिप्पणी: एक विकल्प एलडीएल अपघटन है, जो वर्गमूल निकालने से बच सकता है।

क्यूआर अपघटन

  • इसके लिए लागू: रैखिक रूप से स्वतंत्र कॉलम के साथ एम-बाय-एन मैट्रिक्स ए
  • अपघटन: कहाँ एम-बाय-एम आकार का एक एकात्मक मैट्रिक्स है, और आकार m-by-n का त्रिकोणीय मैट्रिक्स मैट्रिक्स है
  • विशिष्टता: सामान्य तौर पर यह अद्वितीय नहीं है, लेकिन यदि पूर्ण मैट्रिक्स रैंक का है, तो एकल मौजूद है जिसमें सभी धनात्मक विकर्ण तत्व हों। अगर वर्गाकार भी है निराला है।
  • टिप्पणी: क्यूआर अपघटन समीकरणों की प्रणाली को हल करने का एक प्रभावी तरीका प्रदान करता है . यह तथ्य कि ऑर्थोगोनल मैट्रिक्स का मतलब है , ताकि के बराबर है , जिसे हल करना बहुत आसान है त्रिकोणीय मैट्रिक्स है।

आरआरक्यूआर कारककरण

इंटरपोलेटिव अपघटन

eigenvalues ​​​​और संबंधित अवधारणाओं के आधार पर अपघटन

आइगेनडीकंपोजीशन

  • स्पेक्ट्रल अपघटन (मैट्रिक्स) भी कहा जाता है।
  • इसके लिए लागू: रैखिक रूप से स्वतंत्र ईजेनवेक्टरों के साथ वर्ग मैट्रिक्स ए (जरूरी नहीं कि अलग-अलग ईजेनवेल्यूज)।
  • अपघटन: , जहां D, A के eigenvalues ​​​​से बना एक विकर्ण मैट्रिक्स है, और V के कॉलम A के संगत eigenvectors हैं।
  • अस्तित्व: एक n-by-n मैट्रिक्स A में हमेशा n (जटिल) eigenvalues ​​​​होते हैं, जिन्हें n-by-n विकर्ण मैट्रिक्स D और गैर-स्तंभ V के संगत मैट्रिक्स बनाने के लिए (एक से अधिक तरीकों से) आदेश दिया जा सकता है। आइगेनवैल्यू समीकरण को संतुष्ट करता है . व्युत्क्रमणीय है अगर और केवल अगर एन ईजेनवेक्टर रैखिक स्वतंत्रता हैं (अर्थात, प्रत्येक ईजेनवेल्यू में इसकी बीजीय बहुलता के बराबर ज्यामितीय बहुलता है)। ऐसा होने के लिए एक पर्याप्त (लेकिन आवश्यक नहीं) शर्त यह है कि सभी ईगेनवैल्यू अलग-अलग हैं (इस मामले में ज्यामितीय और बीजगणितीय बहुलता 1 के बराबर हैं)
  • टिप्पणी: लंबाई एक होने के लिए हमेशा ईजेनवेक्टरों को सामान्य किया जा सकता है (ईजेनवेल्यू समीकरण की परिभाषा देखें)
  • टिप्पणी: प्रत्येक सामान्य मैट्रिक्स ए (यानी, मैट्रिक्स जिसके लिए , कहाँ एक संयुग्मी पारगमन है) को eigendecompose किया जा सकता है। एक सामान्य मैट्रिक्स A (और केवल एक सामान्य मैट्रिक्स के लिए) के लिए, eigenvectors को ऑर्थोनॉर्मल भी बनाया जा सकता है () और eigendecomposition के रूप में पढ़ता है . विशेष रूप से सभी एकात्मक मैट्रिक्स, हर्मिटियन मैट्रिक्स, या तिरछा-हर्मिटियन मैट्रिक्स | स्क्यू-हर्मिटियन (वास्तविक-मूल्य वाले मामले में, सभी ऑर्थोगोनल मैट्रिक्स, सममित मैट्रिक्स, या तिरछा-सममित मैट्रिक्स | तिरछा-सममित, क्रमशः) मैट्रिक्स सामान्य हैं और इसलिए इस संपत्ति के अधिकारी।
  • टिप्पणी: किसी भी वास्तविक सममित मैट्रिक्स A के लिए, eigendecomposition हमेशा मौजूद होता है और इसे इस रूप में लिखा जा सकता है , जहां D और V दोनों वास्तविक-मूल्यवान हैं।
  • टिप्पणी: रैखिक साधारण अंतर समीकरणों या रैखिक अंतर समीकरणों की एक प्रणाली के समाधान को समझने के लिए ईजेनडीकंपोजीशन उपयोगी है। उदाहरण के लिए, अंतर समीकरण प्रारंभिक स्थिति से शुरू द्वारा हल किया जाता है , जो बराबर है , जहां V और D, A के eigenvectors और eigenvalues ​​​​से बने मैट्रिसेस हैं। चूंकि D विकर्ण है, इसे शक्ति तक बढ़ा रहा है , केवल विकर्ण पर प्रत्येक तत्व को घात t तक उठाना शामिल है। ए को पावर टी तक बढ़ाने की तुलना में यह करना और समझना बहुत आसान है, क्योंकि ए आमतौर पर विकर्ण नहीं होता है।

जॉर्डन अपघटन

जॉर्डन सामान्य रूप और जॉर्डन-शेवेली अपघटन

  • इसके लिए लागू: स्क्वायर मैट्रिक्स ए
  • टिप्पणी: जॉर्डन सामान्य रूप उन मामलों के लिए ईजेंडेकम्पोज़िशन को सामान्यीकृत करता है जहां बार-बार ईजेनवेल्यू होते हैं और विकर्ण नहीं किया जा सकता है, जॉर्डन-शेवेली अपघटन बिना किसी आधार को चुने ऐसा करता है।

शूर अपघटन

  • इसके लिए लागू: स्क्वायर मैट्रिक्स ए
  • अपघटन (जटिल संस्करण): , जहां यू एकात्मक मैट्रिक्स है, U का संयुग्मी स्थानान्तरण है, और T एक ऊपरी त्रिकोणीय मैट्रिक्स है जिसे जटिल शूर रूप कहा जाता है जिसके विकर्ण के साथ A का प्रतिजन मान होता है।
  • टिप्पणी: यदि A एक सामान्य मैट्रिक्स है, तो T विकर्ण है और शूर अपघटन वर्णक्रमीय अपघटन के साथ मेल खाता है।

रियल शूर अपघटन

  • इसके लिए लागू: स्क्वायर मैट्रिक्स ए
  • अपघटन: यह शूर अपघटन का एक संस्करण है जहाँ और केवल वास्तविक संख्याएँ होती हैं। कोई हमेशा लिख ​​सकता है जहां वी वास्तविक ऑर्थोगोनल मैट्रिक्स है, V का मैट्रिक्स स्थानान्तरण है, और S एक ब्लॉक मैट्रिक्स मैट्रिक्स है जिसे वास्तविक शूर फॉर्म कहा जाता है। एस के विकर्ण पर ब्लॉक आकार 1×1 (जिस स्थिति में वे वास्तविक eigenvalues ​​​​का प्रतिनिधित्व करते हैं) या 2×2 (जिस स्थिति में वे जटिल संयुग्म eigenvalue जोड़े से प्राप्त होते हैं) के होते हैं।

QZ अपघटन

  • यह भी कहा जाता है: सामान्यीकृत शूर अपघटन
  • इसके लिए लागू: स्क्वायर मैट्रिक्स ए और बी
  • टिप्पणी: इस अपघटन के दो संस्करण हैं: जटिल और वास्तविक।
  • अपघटन (जटिल संस्करण): और जहाँ Q और Z एकात्मक मैट्रिक्स हैं, * सुपरस्क्रिप्ट संयुग्मित पारगमन का प्रतिनिधित्व करता है, और S और T ऊपरी त्रिकोणीय मैट्रिक्स हैं।
  • टिप्पणी: जटिल क्यूजेड अपघटन में, एस के विकर्ण तत्वों के अनुपात टी के संबंधित विकर्ण तत्वों के लिए, , सामान्यीकृत eigenvalues ​​​​हैं जो एक मैट्रिक्स के Eigendecomposition#अतिरिक्त विषयों को हल करते हैं (कहाँ एक अज्ञात अदिश है और v एक अज्ञात अशून्य सदिश है)।
  • अपघटन (वास्तविक संस्करण): और जहाँ A, B, Q, Z, S और T केवल वास्तविक संख्या वाले आव्यूह हैं। इस मामले में क्यू और जेड ऑर्थोगोनल मैट्रिक्स हैं, टी सुपरस्क्रिप्ट मैट्रिक्स ट्रांज़ोज़ का प्रतिनिधित्व करता है, और एस और टी ब्लॉक मैट्रिक्स मैट्रिक्स हैं। S और T के विकर्ण पर ब्लॉक आकार 1×1 या 2×2 हैं।

ताकगी का गुणनखंड

  • के लिए लागू: वर्ग, जटिल, सममित मैट्रिक्स ए।
  • अपघटन: , जहां डी वास्तविक गैर-ऋणात्मक विकर्ण मैट्रिक्स है, और वी एकात्मक मैट्रिक्स है। V के मैट्रिक्स स्थानान्तरण को दर्शाता है।
  • टिप्पणी: डी के विकर्ण तत्व के eigenvalues ​​​​के गैर-नकारात्मक वर्गमूल हैं .
  • टिप्पणी: A वास्तविक होने पर भी V जटिल हो सकता है।
  • टिप्पणी: यह eigendecomposition (ऊपर देखें) का एक विशेष मामला नहीं है, जो उपयोग करता है के बजाय . इसके अलावा, यदि A वास्तविक नहीं है, तो यह हर्मिटियन और उपयोग करने वाला रूप नहीं है भी लागू नहीं होता।

एकवचन मूल्य अपघटन

  • इसके लिए लागू: एम-बाय-एन मैट्रिक्स ए।
  • अपघटन: , जहां डी एक गैर-नकारात्मक विकर्ण मैट्रिक्स है, और यू और वी संतुष्ट हैं . यहाँ V का संयुग्मी स्थानान्तरण है (या केवल मैट्रिक्स स्थानान्तरण, यदि V में केवल वास्तविक संख्याएँ हैं), और I पहचान मैट्रिक्स (कुछ आयाम का) को दर्शाता है।
  • टिप्पणी: D के विकर्ण तत्वों को A का एकवचन मान कहा जाता है।
  • टिप्पणी: ऊपर दिए गए eigendecomposition की तरह, एकवचन मूल्य अपघटन में आधार दिशाओं को खोजना शामिल है जिसके साथ मैट्रिक्स गुणन स्केलर गुणन के बराबर है, लेकिन इसमें अधिक व्यापकता है क्योंकि विचाराधीन मैट्रिक्स को वर्गाकार नहीं होना चाहिए।
  • अद्वितीयता: के विलक्षण मूल्य हमेशा विशिष्ट रूप से निर्धारित होते हैं। और सामान्य तौर पर अद्वितीय होने की आवश्यकता नहीं है।

स्केल-इनवेरिएंट अपघटन

एसवीडी जैसे उपस्थित मैट्रिक्स अपघटन के परिवर्त्य को संदर्भित करता है जो विकर्ण मापन के संबंध में अपरिवर्तनीय हैं।

  • इसके लिए प्रयोज्य: एम-बाय-एन मैट्रिक्स A।
  • ईकाई-माप-अचर एकल-मान अपघटन: , जहां S स्केल-इनवेरिएंट एकल मानों का एक अद्वितीय गैर-ऋणात्मक विकर्ण मैट्रिक्स है, U और V एकात्मक मैट्रिसेस हैं, V का संयुग्मित स्थानांतरण तथा धनात्मक विकर्ण मैट्रिसेस D और E है।
  • टिप्पणी: एसवीडी के अनुरूप है, सिवाय इसके कि एस के विकर्ण तत्व मानक एसवीडी के विपरीत मनमाने ढंग से गैर-एकवचन विकर्ण मैट्रिसेस द्वारा ए के बाएं और/या दाएं गुणा के संबंध में अपरिवर्तनीय हैं, जिसके लिए एकवचन मान अपरिवर्तनीय हैं। मनमाना एकात्मक आव्यूहों द्वारा A का बायाँ और/या दायाँ गुणन।
  • टिप्पणी: मानक एसवीडी का एक विकल्प है जब A के एकात्मक परिवर्तनों के स्थान पर विकर्ण के संबंध में व्युत्क्रम की आवश्यकता होती है।
  • विशिष्टता: के स्केल-इनवेरिएंट एकल मान (एस के विकर्ण तत्वों द्वारा दिए गए) सदैव विशिष्ट रूप से निर्धारित होते हैं। विकर्ण मैट्रिसेस D और E और एकात्मक U और V सामान्य रूप से अद्वितीय नहीं हैं।
  • टिप्पणी: U और V मैट्रिक्स एसवीडी के समान नहीं हैं।

अनुरूप स्केल-इनवेरिएंट अपघटन अन्य मैट्रिक्स अपघटनों से प्राप्त किए जा सकते हैं; उदाहरण के लिए, स्केल-इनवेरिएंट आइगेनवैल्यू प्राप्त करने के लिए।[3][4]

अन्य अपघटन

ध्रुवीय अपघटन

  • इसके लिए प्रयोज्य: कोई जटिल वर्ग मैट्रिक्स ए।
  • अपघटन: (दायां ध्रुवीय अपघटन) या (बायां ध्रुवीय अपघटन), जहां U एक एकल मैट्रिक्स है और P और P' सकारात्मक अर्ध निश्चित मैट्रिक्स हर्मिटियन मेट्रिसेस हैं।
  • विशिष्टता: सदैव विशिष्ट और के समान होता है (जो सदैव हेर्मिटियन और सकारात्मक अर्ध निश्चित होता है)। अगर व्युत्क्रमणीय है, तो विशिष्ट है।
  • टिप्पणी: चूँकि कोई भी हर्मिटियन मैट्रिक्स एकात्मक मैट्रिक्स के साथ वर्णक्रमीय अपघटन को स्वीकार करता है, जिसे के रूप में लिखा जा सकता है। चूँकि सकारात्मक अर्ध निश्चित है, तब में सभी तत्व गैर-ऋणात्मक हैं। चूँकि दो एकात्मक आव्यूहों का गुणनफल एकात्मक होता है, इसलिए से कोई लिख सकता है जो एकल मान अपघटन है। इसलिए, ध्रुवीय अपघटन का अस्तित्व एकल मान अपघटन के अस्तित्व के समान है।

बीजगणितीय ध्रुवीय अपघटन

  • इसके लिए प्रयोज्य: वर्ग, जटिल, व्‍युत्‍क्रमणीय मैट्रिक्स A।[5]
  • अपघटन: , जहां Q एक जटिल लाम्बिक मैट्रिक्स तथा S जटिल सममित मैट्रिक्स है।
  • विशिष्टता: यदि का कोई ऋणात्मक वास्तविक आइगेनमान नहीं है तो अपघटन विशिष्ट होता है।[6]
  • टिप्पणी: इस अपघटन का अस्तित्व के समान है जो के समान है।[7]
  • टिप्पणी: इस अपघटन का एक रूप , जहाँ R एक वास्तविक मैट्रिक्स तथा C एक वृत्ताकार मैट्रिक्स है।[6]

मोस्टो का अपघटन

  • इसके लिए लागू: वर्ग, जटिल, व्‍युत्‍क्रमणीय मैट्रिक्स A।[8][9]
  • अपघटन: , जहां U एकल है, M वास्तविक प्रतिसममित है तथा S वास्तविक सममित है।
  • टिप्पणी: मैट्रिक्स A को के रूप में भी विघटित किया जा सकता है, जहां U2 एकात्मक और M2 वास्तविक प्रतिसममित तथा S2 वास्तविक सममित है।[6]

सिंकहॉर्न सामान्य रूप

  • इसके लिए प्रयोज्य: सख्ती से सकारात्मक तत्वों के साथ वर्ग वास्तविक मैट्रिक्स A।
  • अपघटन: , जहां S दोगुना प्रसंभाव्यता मैट्रिक्स है तथा D1 और D2 सख्ती से सकारात्मक तत्वों के साथ वास्तविक विकर्ण मैट्रिसेस हैं।

क्षेत्रीय अपघटन

  • इसके लिए प्रयोज्य: वर्ग, जटिल मैट्रिक्स A संख्यात्मक श्रेणी के साथ क्षेत्र में समाहित है।
  • अपघटन: , जहां C एक व्युत्क्रमणीय जटिल मैट्रिक्स है और सभी . के साथ है।[10][11]

विलियमसन का सामान्य रूप

  • इसके लिए प्रयोज्य: सकारात्मक-निश्चित वास्तविक मैट्रिक्स A, 2n×2n क्रम के साथ।
  • वियोजन: , कहाँ एक सैम्पलेक्टिक मैट्रिक्स है और D एक गैर-नकारात्मक एन-बाय-एन विकर्ण मैट्रिक्स है।[12]

मैट्रिक्स वर्गमूल

  • वियोजन: , सामान्य रूप से अद्वितीय नहीं है।
  • सकारात्मक अर्ध निश्चित की स्थिति में एक अद्वितीय सकारात्मक अर्धनिश्चित ऐसा है कि .

सामान्यीकरण

एसवीडी, क्यूआर, एलयू और चॉल्स्की गुणनखंडों के एनालॉग उपस्थित हैं जो क्वासिमेट्रिक्स और सेमीमैट्रिसेस या सतत मैट्रिसेस के लिए हैं।[13] एक 'क्वासिमैट्रिक्स' एक मैट्रिक्स की तरह एक आयताकार योजना है जिसके तत्व अनुक्रमित होते हैं किन्तु एक असतत सूचकांक को निरंतर सूचकांक द्वारा प्रतिस्थापित किया जाता है। इसी प्रकार से एक 'सेमैट्रिक्स', दोनों सूचकांकों में सतत है। एक सेमेट्रिक्स के उदाहरण के रूप में एक अभिन्न ऑपरेटर के कर्नेल के विषय में सोच सकते हैं।

ये कारककरण फ्रेडहोम (1903), हिल्बर्ट (1904) और श्मिट (1907) द्वारा प्रारंभिक कार्य पर आधारित हैं। एक स्पष्टीकरण और मौलिक पत्रों के अंग्रेजी में अनुवाद के लिए, स्टीवर्ट (2011) देखें।

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. If a non-square matrix is used, however, then the matrix U will also have the same rectangular shape as the original matrix A. And so, calling the matrix U would be incorrect as the correct term would be that U is the 'row echelon form' of A. Other than this, there are no differences in LU factorization for square and non-square matrices.


उद्धरण

  1. Lay, David C. (2016). रेखीय बीजगणित और इसके अनुप्रयोग. Steven R. Lay, Judith McDonald (Fifth Global ed.). Harlow. p. 142. ISBN 978-1-292-09223-2. OCLC 920463015.{{cite book}}: CS1 maint: location missing publisher (link)
  2. Piziak, R.; Odell, P. L. (1 June 1999). "मैट्रिसेस का फुल रैंक फैक्टराइजेशन". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882. JSTOR 2690882.
  3. Uhlmann, J.K. (2018), "A Generalized Matrix Inverse that is Consistent with Respect to Diagonal Transformations", SIAM Journal on Matrix Analysis and Applications, 239 (2): 781–800, doi:10.1137/17M113890X
  4. Uhlmann, J.K. (2018), "A Rank-Preserving Generalized Matrix Inverse for Consistency with Respect to Similarity", IEEE Control Systems Letters, 3: 91–95, arXiv:1804.07334, doi:10.1109/LCSYS.2018.2854240, ISSN 2475-1456, S2CID 5031440
  5. Choudhury & Horn 1987, pp. 219–225
  6. 6.0 6.1 6.2 Bhatia, Rajendra (2013-11-15). "द्विध्रुवीय अपघटन". Linear Algebra and Its Applications. 439 (10): 3031–3037. doi:10.1016/j.laa.2013.09.006.
  7. Horn & Merino 1995, pp. 43–92
  8. Mostow, G. D. (1955), Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc., vol. 14, American Mathematical Society, pp. 31–54
  9. Nielsen, Frank; Bhatia, Rajendra (2012). मैट्रिक्स सूचना ज्यामिति (in English). Springer. p. 224. arXiv:1007.4402. doi:10.1007/978-3-642-30232-9. ISBN 9783642302329. S2CID 118466496.
  10. Zhang, Fuzhen (30 June 2014). "एक मैट्रिक्स अपघटन और इसके अनुप्रयोग". Linear and Multilinear Algebra. 63 (10): 2033–2042. doi:10.1080/03081087.2014.933219. S2CID 19437967.
  11. Drury, S.W. (November 2013). "Fischer determinantal inequalities and Highamʼs Conjecture". Linear Algebra and Its Applications. 439 (10): 3129–3133. doi:10.1016/j.laa.2013.08.031.
  12. Idel, Martin; Soto Gaona, Sebastián; Wolf, Michael M. (2017-07-15). "विलियमसन के सहानुभूतिपूर्ण सामान्य रूप के लिए परेशानी की सीमा". Linear Algebra and Its Applications. 525: 45–58. arXiv:1609.01338. doi:10.1016/j.laa.2017.03.013. S2CID 119578994.
  13. Townsend & Trefethen 2015


ग्रन्थसूची


बाहरी संबंध