विडोम स्केलिंग: Difference between revisions
(Work done) |
m (added Category:Vigyan Ready using HotCat) |
||
Line 79: | Line 79: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 23/05/2023]] | [[Category:Created On 23/05/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 09:10, 13 June 2023
विडोम स्केलिंग (बेंजामिन विडोम के बाद) सांख्यिकीय यांत्रिकी में एक ऐसी (परिकल्पना) हाइपोथेसिस है जिसमे क्रांतिक बिन्दु के समीप चुंबकीय निकाय की मुक्त ऊर्जा का परिचय है जो क्रांतिक घातांको को अब स्वतंत्र न होने की ओर ले जाती है, ताकि उन्हें दो मानों के माध्यम से पैरामिट्रीकृत किया जा सके। यह सन्निकटन को ब्लॉक-स्पिन संक्षेपण प्रक्रिया के प्राकृतिक परिणाम के रूप में प्रकट होता है, जब ब्लॉक आकार को सहसंबंध लंबाई के समान आकार का चयनित किया जाता है।[1]
विडोम स्केलिंग सार्वभौमिकता का एक उदाहरण है।
परिभाषाएँ
क्रांतिक घातांक और को संक्रिया बिंदु के पास अनुक्रम पैरामीटर और प्रतिक्रिया फलन की क्रियाविधि के माध्यम से निर्धारित किया जाता है, जैसा कि निम्नवत रूप में है:
- के लिए,
- के लिए,
जहाँ
- क्रांतिक बिन्दु के सापेक्ष तापमान को मापता है।
क्रांतिक बिंदु के पास, विडोम का स्केलिंग संबंध निम्नलिखित रूप में व्यक्त होता है:
- .
जहाँ का प्रसार है
- ,
जहां स्केलिंग के दृष्टिकोण का नियंत्रण करने वाला वेगनर का घातांक होता है।
व्युत्पत्ति
स्केलिंग की परिकल्पना यह है कि क्रांतिक बिंदु के पास, विमाओं में मुक्त ऊर्जा को मंद गति से परिवर्तित होते सामान्य भाग और एक विशिष्ट भाग के रूप में लिखा जा सकता है, जहां विशिष्ट भाग स्केलिंग फलन होता है, अर्थात एक समग्र फलन होता है, ताकि
तब H के संबंध में आंशिक अवकलज लेने पर M(t,H) रूप निम्नलिखित प्रदान करता है
पूर्ववर्ती समीकरण में और सेट करने पर प्राप्त होता है
- के लिए
इसे की परिभाषा के साथ तुलना करने से इसका मान प्राप्त होता है।
इसी तरह, M के लिए स्केलिंग संबंध में और को उपयुक्त रूप से दर्शाने से प्राप्त होता है।
अतः
M के माध्यम से समतापीय सुग्राहिता के लिए व्यंजक को स्केलिंग संबंध में लागू करने से प्राप्त होता है।
H=0 और के लिए को सेट करने पर (उत्तरदायीता के लिए ) निम्नलिखित प्राप्त होता है:
M के माध्यम से विशिष्ट ऊष्मा के लिए व्यंजक को स्केलिंग संबंध में लागू करने से प्राप्त होता है।
H=0 और को के लिए रखने पर (या के लिए ) प्राप्त होता है:
विदोम स्केलिंग के परिणामस्वरूप, सभी क्रांतिक घातांक स्वतंत्र नहीं होते हैं बल्कि उन्हें दो संख्याओं के माध्यम से पैरामिट्रीकृत किया जा सकता है, जहां संबंध निम्न रूप में व्यक्त होते हैं:
यह संबंध चुंबकीय निकायों और तरल पदार्थों के लिए प्रयोगशालात्मक रूप से सत्यापित हैं।
संदर्भ
- H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena
- H. Kleinert and V. Schulte-Frohlinde, Critical Properties of φ4-Theories, World Scientific (Singapore, 2001); Paperback ISBN 981-02-4658-7 (also available online)
- ↑ Kerson Huang, Statistical Mechanics. John Wiley and Sons, 1987