आव्यूह अपघटन: Difference between revisions
m (Abhishek moved page मैट्रिक्स अपघटन to आव्यूह अपघटन without leaving a redirect) |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 6: | Line 6: | ||
[[संख्यात्मक विश्लेषण]] में, कुशल आव्यूह [[कलन विधि]] को प्रयुक्त करने के लिए विभिन्न अपघटन का उपयोग किया जाता है। | [[संख्यात्मक विश्लेषण]] में, कुशल आव्यूह [[कलन विधि]] को प्रयुक्त करने के लिए विभिन्न अपघटन का उपयोग किया जाता है। | ||
उदाहरण के लिए, [[रैखिक समीकरणों की प्रणाली]] <math>A \mathbf{x} = \mathbf{b}</math> को हल करते समय, आव्यूह A को | उदाहरण के लिए, [[रैखिक समीकरणों की प्रणाली]] <math>A \mathbf{x} = \mathbf{b}</math> को हल करते समय, आव्यूह A को LU अपघटन के माध्यम से वियोजित किया जा सकता है। LU अपघटन एक आव्यूह को निम्न त्रिकोणीय आव्यूह L और एक [[ऊपरी त्रिकोणीय मैट्रिक्स|ऊपरी त्रिकोणीय आव्यूह]] U में गुणनखंड करता है। प्रणाली <math>L(U \mathbf{x}) = \mathbf{b}</math> तथा <math>U \mathbf{x} = L^{-1} \mathbf{b}</math> मूल प्रणाली <math>A \mathbf{x} = \mathbf{b}</math>, की तुलना में हल करने के लिए निम्न योग और गुणा की आवश्यकता होती है, यद्यपि अयथार्थ अंकगणित जैसे फ्लोटिंग पॉइंट में अर्थपूर्णता से अधिक अंकों की आवश्यकता हो सकती है । | ||
इसी तरह, [[क्यूआर अपघटन]] A को QR के रूप में Q [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]] और R ऊपरी त्रिकोणीय आव्यूह के रूप में व्यक्त करता है। प्रणाली ''Q''(''R'''''x''') = '''b''' को ''R'''''x''' = ''Q''<sup>T</sup>'''b''' = '''c''' द्वारा हल किया जाता है और प्रणाली ''R''x = c को 'पुनः प्रतिस्थापन' द्वारा हल किया जाता है। LU सॉल्वर (समाधानकर्ता) का उपयोग करने के लिए आवश्यक योग और गुणा की संख्या प्रायः दोगुनी है, किन्तु अयथार्थ अंकगणित में अधिक अंकों की आवश्यकता नहीं है क्योंकि | इसी तरह, [[क्यूआर अपघटन|QR अपघटन]] A को QR के रूप में Q [[ऑर्थोगोनल मैट्रिक्स|लांबिक आव्यूह]] और R ऊपरी त्रिकोणीय आव्यूह के रूप में व्यक्त करता है। प्रणाली ''Q''(''R'''''x''') = '''b''' को ''R'''''x''' = ''Q''<sup>T</sup>'''b''' = '''c''' द्वारा हल किया जाता है और प्रणाली ''R''x = c को 'पुनः प्रतिस्थापन' द्वारा हल किया जाता है। LU सॉल्वर (समाधानकर्ता) का उपयोग करने के लिए आवश्यक योग और गुणा की संख्या प्रायः दोगुनी है, किन्तु अयथार्थ अंकगणित में अधिक अंकों की आवश्यकता नहीं है क्योंकि QR अपघटन [[संख्यात्मक रूप से स्थिर]] है। | ||
== रैखिक समीकरणों की प्रणालियों के समाधान से संबंधित अपघटन == | == रैखिक समीकरणों की प्रणालियों के समाधान से संबंधित अपघटन == | ||
=== | === LU अपघटन === | ||
{{main|एलयू वियोजन}} | {{main|एलयू वियोजन}} | ||
*परंपरागत रूप से प्रयोज्य: [[स्क्वायर मैट्रिक्स|वर्ग]] आव्यूह A, यद्यपि आयताकार आव्यूह प्रयुक्त हो सकते हैं।<ref>{{Cite book|last=Lay|first=David C.|url=https://www.worldcat.org/oclc/920463015|title=रेखीय बीजगणित और इसके अनुप्रयोग|date=2016|others=Steven R. Lay, Judith McDonald|isbn=978-1-292-09223-2|edition=Fifth Global|location=Harlow|pages=142|oclc=920463015}}</ref><ref group="nb">If a non-square matrix is used, however, then the matrix ''U'' will also have the same rectangular shape as the original matrix ''A''. And so, calling the matrix ''U'' would be incorrect as the correct term would be that ''U'' is the 'row echelon form' of ''A''. Other than this, there are no differences in LU factorization for square and non-square matrices.</ref> | *परंपरागत रूप से प्रयोज्य: [[स्क्वायर मैट्रिक्स|वर्ग]] आव्यूह A, यद्यपि आयताकार आव्यूह प्रयुक्त हो सकते हैं।<ref>{{Cite book|last=Lay|first=David C.|url=https://www.worldcat.org/oclc/920463015|title=रेखीय बीजगणित और इसके अनुप्रयोग|date=2016|others=Steven R. Lay, Judith McDonald|isbn=978-1-292-09223-2|edition=Fifth Global|location=Harlow|pages=142|oclc=920463015}}</ref><ref group="nb">If a non-square matrix is used, however, then the matrix ''U'' will also have the same rectangular shape as the original matrix ''A''. And so, calling the matrix ''U'' would be incorrect as the correct term would be that ''U'' is the 'row echelon form' of ''A''. Other than this, there are no differences in LU factorization for square and non-square matrices.</ref> | ||
* अपघटन: <math>A=LU</math>, जहां L निम्नतर [[त्रिकोणीय मैट्रिक्स|त्रिकोणीय]] आव्यूह तथा U उच्चतर त्रिकोणीय आव्यूह है। | * अपघटन: <math>A=LU</math>, जहां L निम्नतर [[त्रिकोणीय मैट्रिक्स|त्रिकोणीय]] आव्यूह तथा U उच्चतर त्रिकोणीय आव्यूह है। | ||
*संबंधित: एलडीयू अपघटन <math>A=LDU</math> है, जहाँ L विकर्ण निम्नतर त्रिकोणीय आव्यूह हैं, U विकर्ण पर उच्चतर त्रिकोणीय आव्यूह और D एक विकर्ण आव्यूह है। | *संबंधित: एलडीयू अपघटन <math>A=LDU</math> है, जहाँ L विकर्ण निम्नतर त्रिकोणीय आव्यूह हैं, U विकर्ण पर उच्चतर त्रिकोणीय आव्यूह और D एक विकर्ण आव्यूह है। | ||
*संबंधित: | *संबंधित: LUपी अपघटन <math>PA=LU</math> है, जहां L निम्नतर त्रिकोणीय, U ऊपरी त्रिकोणीय तथा P क्रमचय आव्यूह है। | ||
*अस्तित्व: किसी भी वर्ग आव्यूह A के लिए एक | *अस्तित्व: किसी भी वर्ग आव्यूह A के लिए एक LUP अपघटन उपस्थित है। जब P तत्समक आव्यूह है, तो LUP अपघटन में न्यूनीकृत हो जाता है। | ||
*टिप्पणियां: | *टिप्पणियां: LUP और LU अपघटन रैखिक समीकरणों <math>A \mathbf{x} = \mathbf{b}</math>. की एन-बाय-एन प्रणाली को हल करने में उपयोगी होते हैं। ये अपघटन आव्यूह के रूप में गाऊसी उन्मूलन की प्रक्रिया को संक्षेप में प्रस्तुत करते हैं। आव्यूह P गाऊसी उन्मूलन की प्रक्रिया में किए गए किसी भी पंक्ति विनिमय का प्रतिनिधित्व करता है। यदि गाऊसी उन्मूलन किसी भी पंक्ति विनिमय की आवश्यकता के बिना पंक्ति सोपानक रूप का उत्पादन करता है, तो P = I होता है, इसलिए LU अपघटन उपस्थित होती है। | ||
=== | === LU न्यूनीकरण === | ||
{{main| | {{main|LU न्यूनीकरण}} | ||
=== ब्लॉक | === ब्लॉक LU अपघटन === | ||
{{main|ब्लॉक | {{main|ब्लॉक LU वियोजन}} | ||
=== श्रेणी गुणनखंडन === | === श्रेणी गुणनखंडन === | ||
Line 40: | Line 40: | ||
*विशिष्टता: सकारात्मक निश्चित आव्यूहों के लिए चोल्स्की अपघटन अद्वितीय है। यद्यपि, घनात्मक अर्ध-निश्चित स्थितियों में यह अद्वितीय नहीं है। | *विशिष्टता: सकारात्मक निश्चित आव्यूहों के लिए चोल्स्की अपघटन अद्वितीय है। यद्यपि, घनात्मक अर्ध-निश्चित स्थितियों में यह अद्वितीय नहीं है। | ||
*टिप्पणी: यदि <math>A</math> वास्तविक और सममित है, <math>U</math> में सभी वास्तविक तत्व हैं। | *टिप्पणी: यदि <math>A</math> वास्तविक और सममित है, <math>U</math> में सभी वास्तविक तत्व हैं। | ||
*टिप्पणी: एक विकल्प [[एलडीएल अपघटन]] अपघटन है, जो वर्गमूल निष्कर्षण से परिवर्जन कर सकता है। | *टिप्पणी: एक विकल्प [[एलडीएल अपघटन|LDL अपघटन]] अपघटन है, जो वर्गमूल निष्कर्षण से परिवर्जन कर सकता है। | ||
=== | === QR अपघटन === | ||
{{main| | {{main|QR अपघटन}} | ||
*इसके लिए प्रयोज्य: रैखिक रूप से स्वतंत्र कॉलम के साथ एम-बाय-एन आव्यूह<math>A</math> | *इसके लिए प्रयोज्य: रैखिक रूप से स्वतंत्र कॉलम के साथ एम-बाय-एन आव्यूह<math>A</math> | ||
* अपघटन: <math>A=QR</math> जहाँ <math>Q</math> एम-बाय-एम आकार का एक [[एकात्मक मैट्रिक्स|एकात्मक]] आव्यूह है, और <math>R</math> एम-बाय-एन आकार का ऊपरी त्रिकोणीय आव्यूह है | * अपघटन: <math>A=QR</math> जहाँ <math>Q</math> एम-बाय-एम आकार का एक [[एकात्मक मैट्रिक्स|एकात्मक]] आव्यूह है, और <math>R</math> एम-बाय-एन आकार का ऊपरी त्रिकोणीय आव्यूह है | ||
*विशिष्टता: सामान्यतः यह अद्वितीय नहीं है, किन्तु यदि <math>A</math> पूर्ण [[मैट्रिक्स रैंक|आव्यूह श्रेणी]] का है, तो वहाँ एकल <math>R</math> उपस्थित है जिसमें सभी धनात्मक विकर्ण तत्व है। यदि <math>A</math> वर्गाकार है, तो <math>Q</math> भी अद्वितीय है। | *विशिष्टता: सामान्यतः यह अद्वितीय नहीं है, किन्तु यदि <math>A</math> पूर्ण [[मैट्रिक्स रैंक|आव्यूह श्रेणी]] का है, तो वहाँ एकल <math>R</math> उपस्थित है जिसमें सभी धनात्मक विकर्ण तत्व है। यदि <math>A</math> वर्गाकार है, तो <math>Q</math> भी अद्वितीय है। | ||
*टिप्पणी: | *टिप्पणी: QR अपघटन समीकरण <math>A \mathbf{x} = \mathbf{b}</math>. की प्रणाली को हल करने का एक प्रभावी तरीका प्रदान करता है। यह तथ्य कि <math>Q</math> लांबिक है इसका अर्थ है कि <math>Q^{\mathrm{T}}Q=I</math> है जिससे कि <math>A \mathbf{x} = \mathbf{b}</math>, <math>R \mathbf{x} = Q^{\mathsf{T}} \mathbf{b}</math>, के समान है, जिसे हल करना अधिक सरल है क्योंकि <math>R</math> त्रिकोणीय आव्यूह है। | ||
=== | === आरआरQR कारककरण === | ||
{{main|आरआरक्यूआर कारककरण}} | {{main|आरआरक्यूआर कारककरण}} | ||
Line 90: | Line 90: | ||
*टिप्पणी: इस अपघटन के जटिल और वास्तविक दो संस्करण हैं। | *टिप्पणी: इस अपघटन के जटिल और वास्तविक दो संस्करण हैं। | ||
* अपघटन (जटिल संस्करण): <math>A=QSZ^*</math> और <math>B=QTZ^*</math> जहाँ Q और Z एकात्मक मैट्रिसेस हैं, * सुपरस्क्रिप्ट संयुग्मी संक्रमण का प्रतिनिधित्व करता है और S और T ऊपरी त्रिकोणीय मैट्रिसेस हैं। | * अपघटन (जटिल संस्करण): <math>A=QSZ^*</math> और <math>B=QTZ^*</math> जहाँ Q और Z एकात्मक मैट्रिसेस हैं, * सुपरस्क्रिप्ट संयुग्मी संक्रमण का प्रतिनिधित्व करता है और S और T ऊपरी त्रिकोणीय मैट्रिसेस हैं। | ||
*टिप्पणी: जटिल | *टिप्पणी: जटिल QZ अपघटन में, S के विकर्ण तत्वों के <math>\lambda_i = S_{ii}/T_{ii}</math> के संगत विकर्ण तत्वों के अनुपात सामान्यीकृत ईजेनवेल्यू हैं जो सामान्यीकृत ईजेनवेल्यू समस्या <math>A \mathbf{v} = \lambda B \mathbf{v}</math> को हल करते हैं (जहां <math>\lambda</math> एक अज्ञात अदिश है और v एक अज्ञात अशून्य वेक्टर है)। | ||
* अपघटन (वास्तविक संस्करण): <math>A=QSZ^\mathsf{T}</math> और <math>B=QTZ^\mathsf{T}</math> जहाँ A, B, Q, Z, S और T केवल वास्तविक संख्या वाले आव्यूह हैं। इस स्थिति में Q और Z लाम्बिक मेट्रिसेस हैं तथा T सुपरस्क्रिप्ट स्थानान्तरण का प्रतिनिधित्व करता है और S और T ब्लॉक उच्चतर त्रिकोणीय मैट्रिसेस हैं। S और T के विकर्ण पर ब्लॉक आकार 1×1 या 2×2 हैं। | * अपघटन (वास्तविक संस्करण): <math>A=QSZ^\mathsf{T}</math> और <math>B=QTZ^\mathsf{T}</math> जहाँ A, B, Q, Z, S और T केवल वास्तविक संख्या वाले आव्यूह हैं। इस स्थिति में Q और Z लाम्बिक मेट्रिसेस हैं तथा T सुपरस्क्रिप्ट स्थानान्तरण का प्रतिनिधित्व करता है और S और T ब्लॉक उच्चतर त्रिकोणीय मैट्रिसेस हैं। S और T के विकर्ण पर ब्लॉक आकार 1×1 या 2×2 हैं। | ||
Line 114: | Line 114: | ||
*इसके लिए प्रयोज्य: एम-बाय-एन आव्यूह A। | *इसके लिए प्रयोज्य: एम-बाय-एन आव्यूह A। | ||
*ईकाई-माप-अचर एकल-मान अपघटन: <math>A=DUSV^*E</math>, जहां S स्केल-इनवेरिएंट एकल मानों का एक अद्वितीय गैर-ऋणात्मक विकर्ण आव्यूह है, U और V एकात्मक मैट्रिसेस हैं, <math>V^*</math> V का संयुग्मित स्थानांतरण तथा धनात्मक विकर्ण मैट्रिसेस D और E है। | *ईकाई-माप-अचर एकल-मान अपघटन: <math>A=DUSV^*E</math>, जहां S स्केल-इनवेरिएंट एकल मानों का एक अद्वितीय गैर-ऋणात्मक विकर्ण आव्यूह है, U और V एकात्मक मैट्रिसेस हैं, <math>V^*</math> V का संयुग्मित स्थानांतरण तथा धनात्मक विकर्ण मैट्रिसेस D और E है। | ||
*टिप्पणी: एसवीडी के अनुरूप है, इसके अतिरिक्त S के विकर्ण तत्व मानक एसवीडी के विपरीत यादृच्छिक ढंग से व्युत्क्रमणीय विकर्ण मैट्रिसेस द्वारा | *टिप्पणी: एसवीडी के अनुरूप है, इसके अतिरिक्त S के विकर्ण तत्व मानक एसवीडी के विपरीत यादृच्छिक ढंग से व्युत्क्रमणीय विकर्ण मैट्रिसेस द्वारा A के बाएं और/या दाएं गुणा के संबंध में अपरिवर्तनीय हैं, जिसके लिए एकल मान बाएं और/या यादृच्छिक एकात्मक आव्यूहों द्वारा A का सही गुणन के संबंध में अपरिवर्तनीय हैं। | ||
*टिप्पणी: मानक एसवीडी का एक विकल्प है जब A के एकात्मक परिवर्तनों के स्थान पर विकर्ण के संबंध में व्युत्क्रम की आवश्यकता होती है। | *टिप्पणी: मानक एसवीडी का एक विकल्प है जब A के एकात्मक परिवर्तनों के स्थान पर विकर्ण के संबंध में व्युत्क्रम की आवश्यकता होती है। | ||
*विशिष्टता: <math>A</math> के स्केल-इनवेरिएंट एकल मान (एस के विकर्ण तत्वों द्वारा दिए गए) सदैव विशिष्ट रूप से निर्धारित होते हैं। विकर्ण मैट्रिसेस D और E और एकात्मक ''U'' और ''V'' सामान्य रूप से अद्वितीय नहीं हैं। | *विशिष्टता: <math>A</math> के स्केल-इनवेरिएंट एकल मान (एस के विकर्ण तत्वों द्वारा दिए गए) सदैव विशिष्ट रूप से निर्धारित होते हैं। विकर्ण मैट्रिसेस D और E और एकात्मक ''U'' और ''V'' सामान्य रूप से अद्वितीय नहीं हैं। | ||
*टिप्पणी: ''U'' और ''V'' आव्यूह | *टिप्पणी: ''U'' और ''V'' आव्यूह SVD के समान नहीं हैं। | ||
अनुरूप स्केल-इनवेरिएंट अपघटन अन्य आव्यूह अपघटनों से प्राप्त किए जा सकते हैं; उदाहरण के लिए, स्केल-इनवेरिएंट आइगेनवैल्यू प्राप्त करने के लिए।<ref>{{citation|last=Uhlmann |first=J.K. |title=A Generalized Matrix Inverse that is Consistent with Respect to Diagonal Transformations |journal=SIAM Journal on Matrix Analysis and Applications |year=2018 |volume=239 |issue=2 |pages=781–800 |doi=10.1137/17M113890X }}</ref><ref>{{citation|last=Uhlmann |first=J.K. |title=A Rank-Preserving Generalized Matrix Inverse for Consistency with Respect to Similarity |journal=IEEE Control Systems Letters |issn=2475-1456 |year=2018 |volume=3 |pages=91–95 |doi=10.1109/LCSYS.2018.2854240 |arxiv=1804.07334 |s2cid=5031440 }}</ref> | अनुरूप स्केल-इनवेरिएंट अपघटन अन्य आव्यूह अपघटनों से प्राप्त किए जा सकते हैं; उदाहरण के लिए, स्केल-इनवेरिएंट आइगेनवैल्यू प्राप्त करने के लिए।<ref>{{citation|last=Uhlmann |first=J.K. |title=A Generalized Matrix Inverse that is Consistent with Respect to Diagonal Transformations |journal=SIAM Journal on Matrix Analysis and Applications |year=2018 |volume=239 |issue=2 |pages=781–800 |doi=10.1137/17M113890X }}</ref><ref>{{citation|last=Uhlmann |first=J.K. |title=A Rank-Preserving Generalized Matrix Inverse for Consistency with Respect to Similarity |journal=IEEE Control Systems Letters |issn=2475-1456 |year=2018 |volume=3 |pages=91–95 |doi=10.1109/LCSYS.2018.2854240 |arxiv=1804.07334 |s2cid=5031440 }}</ref> | ||
Line 124: | Line 124: | ||
=== ध्रुवीय अपघटन === | === ध्रुवीय अपघटन === | ||
{{main|ध्रुवीय अपघटन}} | {{main|ध्रुवीय अपघटन}} | ||
*इसके लिए प्रयोज्य: कोई जटिल वर्ग आव्यूह | *इसके लिए प्रयोज्य: कोई जटिल वर्ग आव्यूह A। | ||
* अपघटन: <math>A=UP</math> (दायां ध्रुवीय अपघटन) या <math>A=P'U</math> (बायां ध्रुवीय अपघटन), जहां U एक एकल आव्यूह है और P और P' [[सकारात्मक अर्ध निश्चित मैट्रिक्स|सकारात्मक अर्ध निश्चित]] आव्यूह [[हर्मिटियन मेट्रिसेस]] हैं। | * अपघटन: <math>A=UP</math> (दायां ध्रुवीय अपघटन) या <math>A=P'U</math> (बायां ध्रुवीय अपघटन), जहां U एक एकल आव्यूह है और P और P' [[सकारात्मक अर्ध निश्चित मैट्रिक्स|सकारात्मक अर्ध निश्चित]] आव्यूह [[हर्मिटियन मेट्रिसेस]] हैं। | ||
*विशिष्टता: <math>P</math> सदैव विशिष्ट और <math>\sqrt{A^*A}</math> के समान होता है (जो सदैव हेर्मिटियन और सकारात्मक अर्ध निश्चित होता है)। अगर <math>A</math> व्युत्क्रमणीय है, तो <math>U</math> विशिष्ट है। | *विशिष्टता: <math>P</math> सदैव विशिष्ट और <math>\sqrt{A^*A}</math> के समान होता है (जो सदैव हेर्मिटियन और सकारात्मक अर्ध निश्चित होता है)। अगर <math>A</math> व्युत्क्रमणीय है, तो <math>U</math> विशिष्ट है। | ||
Line 142: | Line 142: | ||
{{main|सिंकहॉर्न प्रमेय}} | {{main|सिंकहॉर्न प्रमेय}} | ||
*इसके लिए प्रयोज्य: '''सख्ती से सकारात्मक तत्वों के साथ वर्ग वास्तविक आव्यूह A।''' | *इसके लिए प्रयोज्य: '''सख्ती से सकारात्मक तत्वों के साथ वर्ग वास्तविक आव्यूह A।''' | ||
* अपघटन: <math>A=D_{1}SD_{2}</math>, जहां S [[दोगुना स्टोकेस्टिक मैट्रिक्स|दोगुना प्रसंभाव्यता]] आव्यूह है तथा D<sub>1</sub> और | * अपघटन: <math>A=D_{1}SD_{2}</math>, जहां S [[दोगुना स्टोकेस्टिक मैट्रिक्स|दोगुना प्रसंभाव्यता]] आव्यूह है तथा D<sub>1</sub> और D<sub>2</sub> सख्ती से सकारात्मक तत्वों के साथ वास्तविक विकर्ण मैट्रिसेस हैं। | ||
=== क्षेत्रीय अपघटन === | === क्षेत्रीय अपघटन === | ||
*इसके लिए प्रयोज्य: वर्ग, जटिल आव्यूह A | *इसके लिए प्रयोज्य: वर्ग, जटिल आव्यूह A [[संख्यात्मक सीमा|संख्यात्मक श्रेणी]] के साथ क्षेत्र <math>S_\alpha = \left\{r e^{i \theta} \in \mathbb{C} \mid r> 0, |\theta| \le \alpha < \frac{\pi}{2}\right\}</math> में समाहित है। | ||
* अपघटन: <math>A = CZC^*</math>, जहां C एक व्युत्क्रमणीय जटिल आव्यूह है और <math>Z = \operatorname{diag}\left(e^{i\theta_1},\ldots,e^{i\theta_n}\right)</math> सभी <math>\left|\theta_j\right| \le \alpha </math>. के साथ है।<ref name=Zhang2014>{{cite journal|last1=Zhang|first1=Fuzhen|title=एक मैट्रिक्स अपघटन और इसके अनुप्रयोग|journal=Linear and Multilinear Algebra|volume=63|issue=10|date=30 June 2014|pages=2033–2042|doi=10.1080/03081087.2014.933219|s2cid=19437967 |url=https://zenodo.org/record/851661}}</ref><ref>{{cite journal|last1=Drury|first1=S.W.|title=Fischer determinantal inequalities and Highamʼs Conjecture|journal=Linear Algebra and Its Applications|date=November 2013|volume=439|issue=10|pages=3129–3133|doi=10.1016/j.laa.2013.08.031|doi-access=free}}</ref> | * अपघटन: <math>A = CZC^*</math>, जहां C एक व्युत्क्रमणीय जटिल आव्यूह है और <math>Z = \operatorname{diag}\left(e^{i\theta_1},\ldots,e^{i\theta_n}\right)</math> सभी <math>\left|\theta_j\right| \le \alpha </math>. के साथ है।<ref name=Zhang2014>{{cite journal|last1=Zhang|first1=Fuzhen|title=एक मैट्रिक्स अपघटन और इसके अनुप्रयोग|journal=Linear and Multilinear Algebra|volume=63|issue=10|date=30 June 2014|pages=2033–2042|doi=10.1080/03081087.2014.933219|s2cid=19437967 |url=https://zenodo.org/record/851661}}</ref><ref>{{cite journal|last1=Drury|first1=S.W.|title=Fischer determinantal inequalities and Highamʼs Conjecture|journal=Linear Algebra and Its Applications|date=November 2013|volume=439|issue=10|pages=3129–3133|doi=10.1016/j.laa.2013.08.031|doi-access=free}}</ref> | ||
Line 159: | Line 159: | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
{{Expand section|1=examples and additional citations|date=December 2014}} | {{Expand section|1=examples and additional citations|date=December 2014}} | ||
SVD, QR, LU और चॉल्स्की गुणनखंडों के एनालॉग उपस्थित हैं जो क्वासिमेट्रिक्स और सेमीमैट्रिसेस या सतत मैट्रिसेस के लिए हैं।<ref>{{harvnb|Townsend|Trefethen|2015}}</ref> एक 'क्वासिआव्यूह' एक आव्यूह की तरह एक आयताकार योजना है जिसके तत्व अनुक्रमित होते हैं किन्तु एक असतत सूचकांक को निरंतर सूचकांक द्वारा प्रतिस्थापित किया जाता है। इसी प्रकार से एक 'से आव्यूह', दोनों सूचकांकों में सतत है। एक सेमेट्रिक्स के उदाहरण के रूप में एक अभिन्न ऑपरेटर के कर्नेल के विषय में सोच सकते हैं। | |||
ये कारककरण {{harvtxt|फ्रेडहोम|1903}}, {{harvtxt|हिल्बर्ट|1904}} और {{harvtxt|श्मिट|1907}} द्वारा प्रारंभिक कार्य पर आधारित हैं। एक स्पष्टीकरण और मौलिक पत्रों के अंग्रेजी में अनुवाद के लिए, {{harvtxt|स्टीवर्ट|2011}} देखें। | ये कारककरण {{harvtxt|फ्रेडहोम|1903}}, {{harvtxt|हिल्बर्ट|1904}} और {{harvtxt|श्मिट|1907}} द्वारा प्रारंभिक कार्य पर आधारित हैं। एक स्पष्टीकरण और मौलिक पत्रों के अंग्रेजी में अनुवाद के लिए, {{harvtxt|स्टीवर्ट|2011}} देखें। | ||
Line 200: | Line 200: | ||
{{linear algebra}} | {{linear algebra}} | ||
[[Category:All articles to be expanded]] | |||
[[Category:Articles to be expanded from December 2014]] | |||
[[Category: | [[Category:Articles using small message boxes]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:CS1 Deutsch-language sources (de)]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:CS1 français-language sources (fr)]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 23/05/2023]] | [[Category:Created On 23/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:गुणन]] | |||
[[Category:मैट्रिक्स अपघटन| मैट्रिक्स अपघटन ]] | |||
[[Category:मैट्रिक्स सिद्धांत]] |
Latest revision as of 14:03, 14 June 2023
रेखीय बीजगणित के गणितीय विद्याशाखा में, आव्यूह अपघटन या आव्यूह गुणनखंड आव्यूह के गुणनफल में एक आव्यूह का गुणनखंडन है। समस्याओं के एक विशेष वर्ग के मध्य अनेक भिन्न-भिन्न आव्यूह अपघटन होते हैं, जिनमें से प्रत्येक का उपयोग होता है।
उदाहरण
संख्यात्मक विश्लेषण में, कुशल आव्यूह कलन विधि को प्रयुक्त करने के लिए विभिन्न अपघटन का उपयोग किया जाता है।
उदाहरण के लिए, रैखिक समीकरणों की प्रणाली को हल करते समय, आव्यूह A को LU अपघटन के माध्यम से वियोजित किया जा सकता है। LU अपघटन एक आव्यूह को निम्न त्रिकोणीय आव्यूह L और एक ऊपरी त्रिकोणीय आव्यूह U में गुणनखंड करता है। प्रणाली तथा मूल प्रणाली , की तुलना में हल करने के लिए निम्न योग और गुणा की आवश्यकता होती है, यद्यपि अयथार्थ अंकगणित जैसे फ्लोटिंग पॉइंट में अर्थपूर्णता से अधिक अंकों की आवश्यकता हो सकती है ।
इसी तरह, QR अपघटन A को QR के रूप में Q लांबिक आव्यूह और R ऊपरी त्रिकोणीय आव्यूह के रूप में व्यक्त करता है। प्रणाली Q(Rx) = b को Rx = QTb = c द्वारा हल किया जाता है और प्रणाली Rx = c को 'पुनः प्रतिस्थापन' द्वारा हल किया जाता है। LU सॉल्वर (समाधानकर्ता) का उपयोग करने के लिए आवश्यक योग और गुणा की संख्या प्रायः दोगुनी है, किन्तु अयथार्थ अंकगणित में अधिक अंकों की आवश्यकता नहीं है क्योंकि QR अपघटन संख्यात्मक रूप से स्थिर है।
रैखिक समीकरणों की प्रणालियों के समाधान से संबंधित अपघटन
LU अपघटन
- परंपरागत रूप से प्रयोज्य: वर्ग आव्यूह A, यद्यपि आयताकार आव्यूह प्रयुक्त हो सकते हैं।[1][nb 1]
- अपघटन: , जहां L निम्नतर त्रिकोणीय आव्यूह तथा U उच्चतर त्रिकोणीय आव्यूह है।
- संबंधित: एलडीयू अपघटन है, जहाँ L विकर्ण निम्नतर त्रिकोणीय आव्यूह हैं, U विकर्ण पर उच्चतर त्रिकोणीय आव्यूह और D एक विकर्ण आव्यूह है।
- संबंधित: LUपी अपघटन है, जहां L निम्नतर त्रिकोणीय, U ऊपरी त्रिकोणीय तथा P क्रमचय आव्यूह है।
- अस्तित्व: किसी भी वर्ग आव्यूह A के लिए एक LUP अपघटन उपस्थित है। जब P तत्समक आव्यूह है, तो LUP अपघटन में न्यूनीकृत हो जाता है।
- टिप्पणियां: LUP और LU अपघटन रैखिक समीकरणों . की एन-बाय-एन प्रणाली को हल करने में उपयोगी होते हैं। ये अपघटन आव्यूह के रूप में गाऊसी उन्मूलन की प्रक्रिया को संक्षेप में प्रस्तुत करते हैं। आव्यूह P गाऊसी उन्मूलन की प्रक्रिया में किए गए किसी भी पंक्ति विनिमय का प्रतिनिधित्व करता है। यदि गाऊसी उन्मूलन किसी भी पंक्ति विनिमय की आवश्यकता के बिना पंक्ति सोपानक रूप का उत्पादन करता है, तो P = I होता है, इसलिए LU अपघटन उपस्थित होती है।
LU न्यूनीकरण
ब्लॉक LU अपघटन
श्रेणी गुणनखंडन
- इसके लिए प्रयोज्य: श्रेणी r के एम-बाय-एन आव्यूह A पर प्रयुक्त
- अपघटन: है जहां C एम-बाय-आर पूर्ण स्तंभ श्रेणी आव्यूह और F आर-बाय-एन पूर्ण पंक्ति श्रेणी आव्यूह है
- टिप्पणी: श्रेणी गुणनखंडन का उपयोग A के मूर-पेनरोज़ छद्मविपरीत की गणना करने के लिए किया जा सकता है,[2] जो रैखिक प्रणाली के सभी समाधानों को प्राप्त करने के लिए प्रयुक्त किया जा सकता है।
चोल्स्की अपघटन
- इसके लिए प्रयोज्य: वर्ग आव्यूह, सममित आव्यूह, सकारात्मक-निश्चित आव्यूह
- अपघटन: , जहाँ वास्तविक सकारात्मक विकर्ण प्रविष्टियों के साथ ऊपरी त्रिकोणीय है
- टिप्पणी: यदि आव्यूह हर्मिटियन और सकारात्मक अर्ध-निश्चित है, तो इसमें के रूप में अपघटन होता है यदि की विकर्ण प्रविष्टियों को शून्य होने की अनुमति है
- विशिष्टता: सकारात्मक निश्चित आव्यूहों के लिए चोल्स्की अपघटन अद्वितीय है। यद्यपि, घनात्मक अर्ध-निश्चित स्थितियों में यह अद्वितीय नहीं है।
- टिप्पणी: यदि वास्तविक और सममित है, में सभी वास्तविक तत्व हैं।
- टिप्पणी: एक विकल्प LDL अपघटन अपघटन है, जो वर्गमूल निष्कर्षण से परिवर्जन कर सकता है।
QR अपघटन
- इसके लिए प्रयोज्य: रैखिक रूप से स्वतंत्र कॉलम के साथ एम-बाय-एन आव्यूह
- अपघटन: जहाँ एम-बाय-एम आकार का एक एकात्मक आव्यूह है, और एम-बाय-एन आकार का ऊपरी त्रिकोणीय आव्यूह है
- विशिष्टता: सामान्यतः यह अद्वितीय नहीं है, किन्तु यदि पूर्ण आव्यूह श्रेणी का है, तो वहाँ एकल उपस्थित है जिसमें सभी धनात्मक विकर्ण तत्व है। यदि वर्गाकार है, तो भी अद्वितीय है।
- टिप्पणी: QR अपघटन समीकरण . की प्रणाली को हल करने का एक प्रभावी तरीका प्रदान करता है। यह तथ्य कि लांबिक है इसका अर्थ है कि है जिससे कि , , के समान है, जिसे हल करना अधिक सरल है क्योंकि त्रिकोणीय आव्यूह है।
आरआरQR कारककरण
इंटरपोलेटिव अपघटन
ईगेनवैल्यू और संबंधित अवधारणाओं के आधार पर अपघटन
ईगेन अपघटन
- मानावलीय अपघटन भी कहा जाता है।
- इसके लिए प्रयोज्य: रैखिक रूप से स्वतंत्र ईगेनवेक्टर (अनिवार्य रूप से नहीं कि पृथक ईगेनवैल्यू हो) के साथ वर्ग आव्यूह A ।
- अपघटन: , जहां D, A के eigenvalues से बना एक विकर्ण आव्यूह है, और V के कॉलम A के संगत ईगेनवेक्टर हैं।
- अस्तित्व: एन-बाय-एन आव्यूह A में सदैव n (सम्मिश्र) ईगेनवैल्यू होते हैं, जिन्हें एन-बाय-एन विकर्ण आव्यूह D बनाने के लिए (एक से अधिक तरीकों से) आदेश दिया जा सकता है और शून्यहीन क्रमभंग V का समरूपी आव्यूह जो ईगेनवैल्यू समीकरण . को संतुष्ट करता है जो कि व्युत्क्रमणीय है यदि केवल n ईगेनवेक्टर रैखिक रूप से स्वतंत्र हैं(अर्थात, प्रत्येक ईजेनवेल्यू में इसकी बीजगणितीय बहुलता के समान ज्यामितीय बहुलता है)। इसके लिए एक पर्याप्त (लेकिन आवश्यक नहीं) स्थिति यह है कि सभी ईगेनवैल्यू विभिन्न हैं (इस स्थिति में ज्यामितीय और बीजगणितीय बहुलता 1 के समान हैं)।
- टिप्पणी: ईगेनवेक्टरों को एकल में लंबाई होने के लिए सदैव सामान्य किया जा सकता है (ईगेनवैल्यू समीकरण की परिभाषा देखें)
- टिप्पणी: प्रत्येक सामान्य आव्यूह A (अर्थात, आव्यूह जिसके लिए , जहाँ एक संयुग्मी पारगमन है) ईगेन वियोजित हो सकता है। एक सामान्य आव्यूह A (और केवल एक सामान्य आव्यूह के लिए) के लिए, ईगेनवेक्टरों को ऑर्थोनॉर्मल () भी बनाया जा सकता है और ईगेनवियोजन को के रूप में पढ़ सकते है। विशेष रूप से सभी एकात्मक, हर्मिटियन या विषम-हर्मिटियन (वास्तविक-मूल्य स्थिति में, क्रमशः सभी ऑर्थोगोनल, सममित या विषम सममित) आव्यूह सामान्य हैं और इसलिए इस गुणधर्म के अधिकारी हैं।
- टिप्पणी: किसी वास्तविक सममित आव्यूह A के लिए, ईगेनवियोजन सदैव उपस्थित होता है और इसे के रूप में लिखा जा सकता है, जहां D और V दोनों वास्तविक-मान हैं।
- टिप्पणी: रेखीय साधारण अवकल समीकरणों या रेखीय अंतर समीकरणों की प्रणाली के समाधान को समझने के लिए ईगेनवियोजन उपयोगी है। उदाहरण के लिए, अंतर समीकरण प्रारंभिक स्थिति से प्रारंभ करके , द्वारा हल किया जाता है, जो , के समान है, के ईगेनवेक्टर और ईगेनवैल्यू से बने आव्यूह हैं। चूँकि D विकर्ण है, इसे घात में बढ़ाने के लिए, केवल विकर्ण पर प्रत्येक तत्व को घात t तक बढ़ाना होता है। A को घात t तक बढ़ाने की तुलना में यह करना और समझना अधिक सरल है, क्योंकि A सामान्यतः विकर्ण नहीं होता है।
जॉर्डन अपघटन
जॉर्डन सामान्य रूप और जॉर्डन-शेवेली अपघटन
- इसके लिए प्रयोज्य: वर्ग आव्यूह A
- टिप्पणी: जॉर्डन सामान्य रूप उन स्थितियों के लिए ईगेन अपघटन को सामान्यीकृत करता है जहां बार-बार ईजेनवेल्यू होते हैं तथा विकर्ण नहीं किया जा सकता है, जॉर्डन-शेवेली अपघटन एक आधार का चयन किये बिना ऐसा करता है।
शूर अपघटन
- इसके लिए प्रयोज्य: वर्ग आव्यूह A
- अपघटन (जटिल संस्करण): , जहां U एकात्मक आव्यूह है, U का संयुग्मी स्थानान्तरण है, और T एक उच्चतर त्रिकोणीय आव्यूह है जिसे जटिल शूर रूप कहा जाता है जिसके विकर्ण के साथ A का ईगेन मान होता है।
- टिप्पणी: यदि A एक सामान्य आव्यूह है तो T विकर्ण है और शूर अपघटन वर्णक्रमीय अपघटन के साथ मेल खाता है।
वास्तविक शूर अपघटन
- इसके लिए प्रयोज्य: वर्ग आव्यूह A
- अपघटन: यह शूर अपघटन का एक संस्करण है जहाँ और केवल वास्तविक संख्याएँ होती हैं। कोई हमेशा लिख सकता है जहां वास्तविक लाम्बिक आव्यूह है, V का आव्यूह स्थानान्तरण है, और S एक उच्चतर ब्लॉक आव्यूह है जिसे वास्तविक शूर फॉर्म कहा जाता है। के विकर्ण पर ब्लॉक आकार 1×1 (जिस स्थिति में वे वास्तविक ईजेनवेल्यू का प्रतिनिधित्व करते हैं) या 2×2 (जिस स्थिति में वे जटिल संयुग्म ईजेनवेल्यू जोड़े से प्राप्त होते हैं) के होते हैं।
क्यूजेड अपघटन
- इसे सामान्यीकृत शूर अपघटन भी कहा जाता है
- इसके लिए प्रयोज्य: वर्ग आव्यूह A और B
- टिप्पणी: इस अपघटन के जटिल और वास्तविक दो संस्करण हैं।
- अपघटन (जटिल संस्करण): और जहाँ Q और Z एकात्मक मैट्रिसेस हैं, * सुपरस्क्रिप्ट संयुग्मी संक्रमण का प्रतिनिधित्व करता है और S और T ऊपरी त्रिकोणीय मैट्रिसेस हैं।
- टिप्पणी: जटिल QZ अपघटन में, S के विकर्ण तत्वों के के संगत विकर्ण तत्वों के अनुपात सामान्यीकृत ईजेनवेल्यू हैं जो सामान्यीकृत ईजेनवेल्यू समस्या को हल करते हैं (जहां एक अज्ञात अदिश है और v एक अज्ञात अशून्य वेक्टर है)।
- अपघटन (वास्तविक संस्करण): और जहाँ A, B, Q, Z, S और T केवल वास्तविक संख्या वाले आव्यूह हैं। इस स्थिति में Q और Z लाम्बिक मेट्रिसेस हैं तथा T सुपरस्क्रिप्ट स्थानान्तरण का प्रतिनिधित्व करता है और S और T ब्लॉक उच्चतर त्रिकोणीय मैट्रिसेस हैं। S और T के विकर्ण पर ब्लॉक आकार 1×1 या 2×2 हैं।
ताकगी का गुणनखंड
- इसके लिए प्रयोज्य: वर्ग, जटिल, सममित आव्यूह A।
- अपघटन: , जहां D वास्तविक गैर-ऋणात्मक विकर्ण आव्यूह तथा V एकात्मक आव्यूह है। V के आव्यूह स्थानान्तरण को दर्शाता है।
- टिप्पणी: D के विकर्ण तत्व के ईजेनवेल्यू के गैर-नकारात्मक वर्गमूल हैं।
- टिप्पणी: A वास्तविक होने पर भी V जटिल हो सकता है।
- टिप्पणी: यह ईगेन अपघटन (ऊपर देखें) की कोई विशेष स्थिति नहीं है, जो के स्थान पर का उपयोग करता है। इसके अतिरिक्त यदि A वास्तविक नहीं है तो यह हर्मिटियन नहीं है और का उपयोग करने वाला फॉर्म भी प्रयुक्त नहीं होता है।
एकल मान अपघटन
- इसके लिए प्रयोज्य: एम-बाय-एन आव्यूह A।
- अपघटन: , जहां D एक गैर-नकारात्मक विकर्ण आव्यूह है और U और V, को संतुष्ट करते हैं। यहाँ V का संयुग्मी स्थानान्तरण है (या केवल आव्यूह स्थानान्तरण, यदि V में केवल वास्तविक संख्याएँ हैं) तथा I तत्समक आव्यूह (कुछ आयाम का) को दर्शाता है।
- टिप्पणी: D के विकर्ण तत्वों को A का एकल मान कहा जाता है।
- टिप्पणी: एकल मान अपघटन के ऊपर ईगेन अपघटन की तरह आधार दिशाओं को खोजना सम्मिलित है जिसके साथ आव्यूह गुणन स्केलर गुणन के समान है किन्तु इसमें अधिक व्यापकता है क्योंकि विचाराधीन आव्यूह को वर्गाकार नहीं होना चाहिए।
- अद्वितीयता: के एकल मान हमेशा विशिष्ट रूप से निर्धारित होते हैं। और सामान्य रूप से अद्वितीय होने की आवश्यकता नहीं है।
स्केल-इनवेरिएंट अपघटन
एसवीडी जैसे उपस्थित आव्यूह अपघटन के परिवर्त्य को संदर्भित करता है जो विकर्ण मापन के संबंध में अपरिवर्तनीय हैं।
- इसके लिए प्रयोज्य: एम-बाय-एन आव्यूह A।
- ईकाई-माप-अचर एकल-मान अपघटन: , जहां S स्केल-इनवेरिएंट एकल मानों का एक अद्वितीय गैर-ऋणात्मक विकर्ण आव्यूह है, U और V एकात्मक मैट्रिसेस हैं, V का संयुग्मित स्थानांतरण तथा धनात्मक विकर्ण मैट्रिसेस D और E है।
- टिप्पणी: एसवीडी के अनुरूप है, इसके अतिरिक्त S के विकर्ण तत्व मानक एसवीडी के विपरीत यादृच्छिक ढंग से व्युत्क्रमणीय विकर्ण मैट्रिसेस द्वारा A के बाएं और/या दाएं गुणा के संबंध में अपरिवर्तनीय हैं, जिसके लिए एकल मान बाएं और/या यादृच्छिक एकात्मक आव्यूहों द्वारा A का सही गुणन के संबंध में अपरिवर्तनीय हैं।
- टिप्पणी: मानक एसवीडी का एक विकल्प है जब A के एकात्मक परिवर्तनों के स्थान पर विकर्ण के संबंध में व्युत्क्रम की आवश्यकता होती है।
- विशिष्टता: के स्केल-इनवेरिएंट एकल मान (एस के विकर्ण तत्वों द्वारा दिए गए) सदैव विशिष्ट रूप से निर्धारित होते हैं। विकर्ण मैट्रिसेस D और E और एकात्मक U और V सामान्य रूप से अद्वितीय नहीं हैं।
- टिप्पणी: U और V आव्यूह SVD के समान नहीं हैं।
अनुरूप स्केल-इनवेरिएंट अपघटन अन्य आव्यूह अपघटनों से प्राप्त किए जा सकते हैं; उदाहरण के लिए, स्केल-इनवेरिएंट आइगेनवैल्यू प्राप्त करने के लिए।[3][4]
अन्य अपघटन
ध्रुवीय अपघटन
- इसके लिए प्रयोज्य: कोई जटिल वर्ग आव्यूह A।
- अपघटन: (दायां ध्रुवीय अपघटन) या (बायां ध्रुवीय अपघटन), जहां U एक एकल आव्यूह है और P और P' सकारात्मक अर्ध निश्चित आव्यूह हर्मिटियन मेट्रिसेस हैं।
- विशिष्टता: सदैव विशिष्ट और के समान होता है (जो सदैव हेर्मिटियन और सकारात्मक अर्ध निश्चित होता है)। अगर व्युत्क्रमणीय है, तो विशिष्ट है।
- टिप्पणी: चूँकि कोई भी हर्मिटियन आव्यूह एकात्मक आव्यूह के साथ वर्णक्रमीय अपघटन को स्वीकार करता है, जिसे के रूप में लिखा जा सकता है। चूँकि सकारात्मक अर्ध निश्चित है, तब में सभी तत्व गैर-ऋणात्मक हैं। चूँकि दो एकात्मक आव्यूहों का गुणनफल एकात्मक होता है, इसलिए से कोई लिख सकता है जो एकल मान अपघटन है। इसलिए, ध्रुवीय अपघटन का अस्तित्व एकल मान अपघटन के अस्तित्व के समान है।
बीजगणितीय ध्रुवीय अपघटन
- इसके लिए प्रयोज्य: वर्ग, जटिल, व्युत्क्रमणीय आव्यूह A।[5]
- अपघटन: , जहां Q एक जटिल लाम्बिक आव्यूह तथा S जटिल सममित आव्यूह है।
- विशिष्टता: यदि का कोई ऋणात्मक वास्तविक आइगेनमान नहीं है तो अपघटन विशिष्ट होता है।[6]
- टिप्पणी: इस अपघटन का अस्तित्व के समान है जो के समान है।[7]
- टिप्पणी: इस अपघटन का एक रूप , जहाँ R एक वास्तविक आव्यूह तथा C एक वृत्ताकार आव्यूह है।[6]
मोस्टो का अपघटन
- इसके लिए लागू: वर्ग, जटिल, व्युत्क्रमणीय आव्यूह A।[8][9]
- अपघटन: , जहां U एकल है, M वास्तविक प्रतिसममित है तथा S वास्तविक सममित है।
- टिप्पणी: आव्यूह A को के रूप में भी विघटित किया जा सकता है, जहां U2 एकात्मक और M2 वास्तविक प्रतिसममित तथा S2 वास्तविक सममित है।[6]
सिंकहॉर्न सामान्य रूप
- इसके लिए प्रयोज्य: सख्ती से सकारात्मक तत्वों के साथ वर्ग वास्तविक आव्यूह A।
- अपघटन: , जहां S दोगुना प्रसंभाव्यता आव्यूह है तथा D1 और D2 सख्ती से सकारात्मक तत्वों के साथ वास्तविक विकर्ण मैट्रिसेस हैं।
क्षेत्रीय अपघटन
- इसके लिए प्रयोज्य: वर्ग, जटिल आव्यूह A संख्यात्मक श्रेणी के साथ क्षेत्र में समाहित है।
- अपघटन: , जहां C एक व्युत्क्रमणीय जटिल आव्यूह है और सभी . के साथ है।[10][11]
विलियमसन का सामान्य रूप
- इसके लिए प्रयोज्य: सकारात्मक-निश्चित वास्तविक आव्यूह A क्रम 2n×2n के साथ।
- अपघटन: , कहाँ एक सैम्पलेक्टिक आव्यूह है और D एक गैर-नकारात्मक एन-बाय-एन विकर्ण आव्यूह है।[12]
आव्यूह वर्गमूल
- अपघटन: , सामान्य रूप से अद्वितीय नहीं है।
- सकारात्मक अर्ध निश्चित की स्थिति में एक अद्वितीय सकारात्मक अर्धनिश्चित ऐसा है कि .
सामान्यीकरण
This section needs expansion with: examples and additional citations. You can help by adding to it. (December 2014) |
SVD, QR, LU और चॉल्स्की गुणनखंडों के एनालॉग उपस्थित हैं जो क्वासिमेट्रिक्स और सेमीमैट्रिसेस या सतत मैट्रिसेस के लिए हैं।[13] एक 'क्वासिआव्यूह' एक आव्यूह की तरह एक आयताकार योजना है जिसके तत्व अनुक्रमित होते हैं किन्तु एक असतत सूचकांक को निरंतर सूचकांक द्वारा प्रतिस्थापित किया जाता है। इसी प्रकार से एक 'से आव्यूह', दोनों सूचकांकों में सतत है। एक सेमेट्रिक्स के उदाहरण के रूप में एक अभिन्न ऑपरेटर के कर्नेल के विषय में सोच सकते हैं।
ये कारककरण फ्रेडहोम (1903) , हिल्बर्ट (1904) और श्मिट (1907) द्वारा प्रारंभिक कार्य पर आधारित हैं। एक स्पष्टीकरण और मौलिक पत्रों के अंग्रेजी में अनुवाद के लिए, स्टीवर्ट (2011) देखें।
यह भी देखें
- आव्यूह विभाजन
- गैर-नकारात्मक आव्यूह गुणनखंड
- प्रमुख घटक विश्लेषण
संदर्भ
टिप्पणियाँ
- ↑ If a non-square matrix is used, however, then the matrix U will also have the same rectangular shape as the original matrix A. And so, calling the matrix U would be incorrect as the correct term would be that U is the 'row echelon form' of A. Other than this, there are no differences in LU factorization for square and non-square matrices.
उद्धरण
- ↑ Lay, David C. (2016). रेखीय बीजगणित और इसके अनुप्रयोग. Steven R. Lay, Judith McDonald (Fifth Global ed.). Harlow. p. 142. ISBN 978-1-292-09223-2. OCLC 920463015.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ Piziak, R.; Odell, P. L. (1 June 1999). "मैट्रिसेस का फुल रैंक फैक्टराइजेशन". Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882. JSTOR 2690882.
- ↑ Uhlmann, J.K. (2018), "A Generalized Matrix Inverse that is Consistent with Respect to Diagonal Transformations", SIAM Journal on Matrix Analysis and Applications, 239 (2): 781–800, doi:10.1137/17M113890X
- ↑ Uhlmann, J.K. (2018), "A Rank-Preserving Generalized Matrix Inverse for Consistency with Respect to Similarity", IEEE Control Systems Letters, 3: 91–95, arXiv:1804.07334, doi:10.1109/LCSYS.2018.2854240, ISSN 2475-1456, S2CID 5031440
- ↑ Choudhury & Horn 1987, pp. 219–225
- ↑ 6.0 6.1 6.2 Bhatia, Rajendra (2013-11-15). "द्विध्रुवीय अपघटन". Linear Algebra and Its Applications. 439 (10): 3031–3037. doi:10.1016/j.laa.2013.09.006.
- ↑ Horn & Merino 1995, pp. 43–92
- ↑ Mostow, G. D. (1955), Some new decomposition theorems for semi-simple groups, Mem. Amer. Math. Soc., vol. 14, American Mathematical Society, pp. 31–54
- ↑ Nielsen, Frank; Bhatia, Rajendra (2012). मैट्रिक्स सूचना ज्यामिति (in English). Springer. p. 224. arXiv:1007.4402. doi:10.1007/978-3-642-30232-9. ISBN 9783642302329. S2CID 118466496.
- ↑ Zhang, Fuzhen (30 June 2014). "एक मैट्रिक्स अपघटन और इसके अनुप्रयोग". Linear and Multilinear Algebra. 63 (10): 2033–2042. doi:10.1080/03081087.2014.933219. S2CID 19437967.
- ↑ Drury, S.W. (November 2013). "Fischer determinantal inequalities and Highamʼs Conjecture". Linear Algebra and Its Applications. 439 (10): 3129–3133. doi:10.1016/j.laa.2013.08.031.
- ↑ Idel, Martin; Soto Gaona, Sebastián; Wolf, Michael M. (2017-07-15). "विलियमसन के सहानुभूतिपूर्ण सामान्य रूप के लिए परेशानी की सीमा". Linear Algebra and Its Applications. 525: 45–58. arXiv:1609.01338. doi:10.1016/j.laa.2017.03.013. S2CID 119578994.
- ↑ Townsend & Trefethen 2015
ग्रन्थसूची
- Choudhury, Dipa; Horn, Roger A. (April 1987). "A Complex Orthogonal-Symmetric Analog of the Polar Decomposition". SIAM Journal on Algebraic and Discrete Methods. 8 (2): 219–225. doi:10.1137/0608019.
- Fredholm, I. (1903), "Sur une classe d'´equations fonctionnelles", Acta Mathematica (in français), 27: 365–390, doi:10.1007/bf02421317
- Hilbert, D. (1904), "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen", Nachr. Königl. Ges. Gött (in Deutsch), 1904: 49–91
- Horn, Roger A.; Merino, Dennis I. (January 1995). "Contragredient equivalence: A canonical form and some applications". Linear Algebra and Its Applications. 214: 43–92. doi:10.1016/0024-3795(93)00056-6.
- Meyer, C. D. (2000), Matrix Analysis and Applied Linear Algebra, SIAM, ISBN 978-0-89871-454-8
- Schmidt, E. (1907), "Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil. Entwicklung willkürlichen Funktionen nach System vorgeschriebener", Mathematische Annalen (in Deutsch), 63 (4): 433–476, doi:10.1007/bf01449770
- Simon, C.; Blume, L. (1994). Mathematics for Economists. Norton. ISBN 978-0-393-95733-4.
- Stewart, G. W. (2011), Fredholm, Hilbert, Schmidt: three fundamental papers on integral equations (PDF), retrieved 2015-01-06
- Townsend, A.; Trefethen, L. N. (2015), "Continuous analogues of matrix factorizations", Proc. R. Soc. A, 471 (2173): 20140585, Bibcode:2014RSPSA.47140585T, doi:10.1098/rspa.2014.0585, PMC 4277194, PMID 25568618
- Jun, Lu (2021), Numerical matrix decomposition and its modern applications: A rigorous first course, arXiv:2107.02579
बाहरी संबंध
- Online Matrix Calculator
- Wolfram Alpha Matrix Decomposition Computation » LU and QR Decomposition
- Springer Encyclopaedia of Mathematics » Matrix factorization
- GraphLab GraphLab collaborative filtering library, large scale parallel implementation of matrix decomposition methods (in C++) for multicore.