कल्टर काउंटर: Difference between revisions
m (22 revisions imported from alpha:कल्टर_काउंटर) |
No edit summary |
||
Line 80: | Line 80: | ||
{{Beckman Coulter}} | {{Beckman Coulter}} | ||
[[Category:Collapse templates]] | |||
[[Category:Commons category link is locally defined]] | |||
[[Category: | |||
[[Category:Created On 12/05/2023]] | [[Category:Created On 12/05/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with broken file links]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:गिनती के उपकरण]] | |||
[[Category:प्रयोगशाला के उपकरण]] | |||
[[Category:सेल कल्चर तकनीक]] |
Latest revision as of 15:47, 14 June 2023
कल्टर काउंटर[1][2] विद्युतअपघट्य में निलंबित कणों की गिनती और आकार देने के लिए उपकरण है। कल्टर काउंटर प्रतिरोधी स्पंद संवेदन या विद्युत क्षेत्र संवेदन के रूप में जानी जाने वाली प्रविधि के लिए व्यावसायिक शब्द है। यह उपकरण कल्टर सिद्धांत पर आधारित है जिसका नाम इसके आविष्कारक वालेस एच. कूल्टर के नाम पर रखा गया है।
विशिष्ट कल्टर काउंटर में या से अधिक सूक्ष्म चैनल (सूक्ष्मप्रौद्योगिकी) होते हैं जो विद्युतअपघट्य समाधान (रसायन विज्ञान) वाले दो कक्षों को अलग करते हैं। चूंकि तरल पदार्थ जिसमें कण या कोशिकाएं होती हैं, उन्हें सूक्ष्म चैनलों के माध्यम से खींचा जाता है, प्रत्येक कण तरल के विद्युत प्रतिरोध में संक्षिप्त परिवर्तन का कारण बनता है। काउंटर विद्युत प्रतिरोध में इन परिवर्तनों का पता लगाता है।
कल्टर सिद्धांत
कल्टर सिद्धांत कहता है कि छिद्र के माध्यम से खींचे गए कण, विद्युत प्रवाह के साथ समवर्ती, विद्युत प्रतिबाधा में परिवर्तन का उत्पादन करते हैं, जो छिद्र को पार करने वाले कण की मात्रा के अनुपात में होता है। प्रतिबाधा में यह स्पंद कण के कारण विद्युतअपघट्य के विस्थापन से उत्पन्न होता है। सिद्धांत को चिकित्सा उद्योग में व्यावसायिक सफलता मिली है, विशेष रूप से रुधिर में, जहां इसे पूरे रक्त बनाने वाली विभिन्न कोशिकाओं को गिनने और आकार देने के लिए लागू किया जा सकता है।
कोशिकाएं, खराब प्रवाहकीय कण होने के कारण, प्रवाहकीय सूक्ष्म चैनल के प्रभावी अनुप्रस्थ काट को बदल देती हैं। यदि ये कण आसपास के तरल माध्यम से कम प्रवाहकीय हैं, तो चैनल के पार विद्युत प्रतिरोध बढ़ जाता है, जिससे चैनल के माध्यम से निकलने वाली विद्युत धारा कुछ समय के लिए कम हो जाती है। विद्युत प्रवाह में ऐसे स्पंदों की देखरेख करके, द्रव के दिए गए आयतन के लिए कणों की संख्या की गणना की जा सकती है। विद्युत प्रवाह परिवर्तन का आकार कण के आकार से संबंधित होता है, जिससे कण आकार वितरण को मापा जा सकता है, जिसे गतिशीलता, सतह आवेश और कणों की सघनता से सहसंबद्ध किया जा सकता है।
कल्टर काउंटर आज की अस्पताल प्रयोगशाला का महत्वपूर्ण घटक है। इसका प्राथमिक कार्य पूर्ण रक्त गणनाओं (अधिकांशतः सीबीसी के रूप में जाना जाता है) का त्वरित और त्रुटिहीन विश्लेषण है। सीबीसी का उपयोग शरीर में सफेद और लाल रक्त कोशिकाओं की संख्या या अनुपात को निर्धारित करने के लिए किया जाता है। पहले, इस प्रक्रिया में परिधीय रक्त धब्बा तैयार करना और माइक्रोस्कोप के अनुसार प्रत्येक प्रकार की कोशिका को नियमावली रूप से गिनना सम्मलित था, अक्षम प्रक्रिया जिसमें औसतन आधे घंटे लगते थे।
कल्टर काउंटर का उपयोग पेंट, चीनी मिट्टी की चीज़ें, कांच, पिघली हुई धातु और खाद्य निर्माण के लिए किया जा सकता है। वे गुणवत्ता नियंत्रण के लिए भी नियमित रूप से कार्यरत हैं।
कल्टर काउंटर ने पहली बार सेल छँटाई विधियों के विकास में महत्वपूर्ण भूमिका निभाई और प्रवाह साइटॉमेट्री के विकास के प्रारंभिक दिनों में सम्मलित था। आज भी, कुछ प्रवाह प्रवाह साइटोमेट्री सेल आकार और गिनती के बारे में अत्यधिक त्रुटिहीन जानकारी प्रदान करने के लिए कल्टर सिद्धांत का उपयोग करते हैं।
कई अन्वेषकों ने कल्टर सिद्धांत के आधार पर विभिन्न उपकरणों को डिजाइन किया है और इन उपकरणों से डेटा की विशेषता वाले सहकर्मी-समीक्षित प्रकाशनों को तैयार किया है। इनमें से कुछ उपकरणों का व्यावसायीकरण भी किया गया है। कल्टर सिद्धांत के सभी कार्यान्वयन संवेदनशीलता, शोर परिरक्षण, विलायक संगतता, गति की माप , नमूना मात्रा, गतिशील श्रेणी और उपकरण निर्माण की विश्वसनीयता के बीच व्यापार बंद करते हैं।
विकास
वालेस एच. कूल्टर ने 1940 के अंत में कल्टर सिद्धांत की खोज की, चूंकि 20 अक्टूबर, 1953 तक पेटेंट नहीं दिया गया था। कूल्टर हिरोशिमा और नागासाकी के परमाणु बम विस्फोटों से प्रभावित थे। परमाणु युद्ध की स्थिति में आवश्यक होने पर बड़े पैमाने पर स्क्रीनिंग में उपयोग के लिए प्रेरित कल्टर को सुधारने और सुव्यवस्थित करने के लिए प्रेरित किया।[3] परियोजना का आंशिक वित्त पोषण नौसेना अनुसंधान कार्यालय से अनुदान पुरस्कार से आया था।[4][5]
कूल्टर को यूएस पेटेंट 2,656,508, एक द्रव में निलंबित कणों की गिनती के लिए साधन से सम्मानित किया गया था। कल्टर सिद्धांत को सामान्यतः कॉल्टर काउंटर में नियोजित किया जाता है, जो विशिष्ट कार्य के लिए डिज़ाइन किया गया विश्लेषणात्मक उपकरण है जैसे कि कोशिकाओं की गिनती। चूँकि, कल्टर सिद्धांत को लागू करने के कई अन्य विधियाँ हैं। इनमें से कई का प्रयास किया गया है, कुछ व्यावसायिक सफलता के साथ और कुछ विशुद्ध रूप से वैज्ञानिक शोध के लिए है। तिथि करने के लिए, कल्टर सिद्धांत का सबसे व्यावसायिक रूप से सफल अनुप्रयोग हेमेटोलॉजी में है, जहां इसका उपयोग रोगियों के रक्त कोशिकाओं के बारे में जानकारी प्राप्त करने के लिए किया जाता है।
कल्टर सिद्धांत इस तथ्य पर निर्भर करता है कि विद्युत क्षेत्र में चलने वाले कण उस क्षेत्र में औसत क्रम की अशांति उत्पन्न करते हैं। इन विक्षोभों का परिमाण क्षेत्र में कणों के आकार के समानुपाती होता है। कल्टर ने इस घटना के व्यावहारिक अनुप्रयोग के लिए आवश्यक कई आवश्यकताओं की पहचान की। सबसे पहले, कणों को संवाहक तरल में निलंबित किया जाना चाहिए। अगला, विद्युत क्षेत्र को शारीरिक रूप से संकुचित होना चाहिए जिससे कि क्षेत्र में कणों की गति से वर्तमान में पता लगाने योग्य परिवर्तन हो। अंत में, कणों को पर्याप्त रूप से पतला होना चाहिए जिससे कि समय में केवल ही शारीरिक संकुचन से निकले, संयोग के रूप में ज्ञात विरूपण साक्ष्य (त्रुटि) को रोका जा सके।
जबकि कल्टर सिद्धांत को विभिन्न प्रकार के डिजाइनों में लागू किया जा सकता है, दो ऐसे हैं जो व्यावसायिक रूप से सबसे अधिक प्रासंगिक हो गए हैं। इनमें एपर्चर प्रारूप और प्रवाह सेल प्रारूप सम्मलित हैं। ऊपर दिया गया आंकड़ा कई अन्य ज्यामिति दिखाता है जो कॉल्टर ने पेटेंट कराया था।
एपर्चर प्रारूप
अधिकांश वाणिज्यिक कल्टर काउंटरों में एपर्चर प्रारूप का उपयोग किया जाता है। इस अवस्था में, ज्वेल डिस्क में परिभाषित आकार का छेद बनाया जाता है (घड़ियों में गहना धारक के समान सामग्री से बना है)[4]विशेष निर्माण प्रक्रियाओं का उपयोग करना। परिणामी एपर्चर को फिर काँच की नली की दीवार में लागू किया जाता है, जिसे सामान्यतः एपर्चर नली के रूप में संदर्भित किया जाता है। उपयोग के पर्यन्त , अपर्चर नली को तरल में रखा जाता है जिससे कि गहना डिस्क पूरी प्रकार से जलमग्न हो जाए और नली तरल से भर सके। इलेक्ट्रोड एपर्चर नली के अंदर और बाहर दोनों जगह स्थित होते हैं, जो धारा को एपर्चर के माध्यम से प्रवाहित करने की अनुमति देता है। नली के शीर्ष पर निर्वात बनाने के लिए पंप का उपयोग किया जाता है, जो छिद्र के माध्यम से तरल को खींचता है। विश्लेषण किए जाने वाले नमूनों को धीरे-धीरे एपर्चर नली के आसपास के प्रवाहकीय तरल में जोड़ा जाता है। प्रयोग की प्रारंभिक में, विद्युत क्षेत्र चालू होता है और पंप छिद्र के माध्यम से पतला निलंबन खींचना प्रारंभ कर देता है। परिणामी डेटा उत्पन्न विद्युत दालों को रिकॉर्ड करके एकत्र किया जाता है क्योंकि कण एपर्चर को पार करते हैं।
जबकि एपर्चर प्रारूप का मूल भौतिक अवस्था प्रत्येक कल्टर काउंटर में सुसंगत है, डेटा की मात्रा और गुणवत्ता कार्यान्वित संकेत आगे बढ़ाना परिपथ के कार्य के रूप में बहुत भिन्न होती है। उदाहरण के लिए, कम शोर सीमा और अधिक गतिशील श्रेणी वाले एम्पलीफायर प्रणाली की संवेदनशीलता को बढ़ा सकते हैं। इसी प्रकार, चर बिन चौड़ाई वाले डिजिटल स्पंद ऊंचाई विश्लेषक निश्चित बिन वाले एनालॉग विश्लेषक के विपरीत बहुत अधिक संकल्प डेटा प्रदान करते हैं। इसके अतिरिक्त, डिजिटल कंप्यूटर के साथ कल्टर काउंटर के संयोजन से कई विद्युत स्पंद विशेषताओं को अधिकृत करने की अनुमति मिलती है, जबकि एनालॉग काउंटर सामान्यतः प्रत्येक स्पंद के बारे में अधिक सीमित मात्रा में जानकारी संग्रहीत करते हैं।
प्रवाह सेल प्रारूप
फ्लो सेल प्रारूप को सामान्यतः हेमेटोलॉजी उपकरणों में लागू किया जाता है, और कभी-कभी फ्लो साइटोमीटर। इस प्रारूप में, प्रवाह चैनल के दोनों छोर पर इलेक्ट्रोड एम्बेडेड होते हैं और चैनल के माध्यम से विद्युत क्षेत्र लागू होता है। अपर्चर फॉर्मेट की तुलना में इस फॉर्मेट के कई फायदे हैं। यह व्यवस्था निरंतर नमूना विश्लेषण की अनुमति देती है जबकि एपर्चर प्रारूप एकल-बैच प्रारूप है। इसके अतिरिक्त, प्रवाह सेल का उपयोग म्यान प्रवाह को जोड़ने के लिए उधार देता है, जो कणों को प्रवाह चैनल के बीच में केंद्रित रखता है। यह माप को साथ करने की अनुमति देता है, जैसे कि लेजर के साथ वस्तु की जांच करना। प्रवाह सेल प्रारूप का प्रमुख नुकसान यह है कि यह निर्माण के लिए बहुत अधिक महंगा है और सामान्यतः चैनल की चौड़ाई के लिए तय किया जाता है, जबकि एपर्चर प्रारूप एपर्चर आकार की विस्तृत विविधता प्रदान करता है।
माइक्रोफ्लुइडिक संस्करण
कल्टर सिद्धांत को कण का पता लगाने के लिए प्रयोगशाला-ऑन-अ-चिप दृष्टिकोणों पर लागू किया गया है, मइक्रोफ्लूइडिक्स दृष्टिकोणों का उपयोग करके जो पारंपरिक कल्टर काउंटरों को बनाने के लिए उपयोग किए जाने वाले थोक विधियों का उपयोग करके सरलता से प्राप्त किए जा सकने वाले बहुत छोटे छिद्रों को बनाने की अनुमति देता है। माइक्रोफ्लूइडिक प्रतिरोधी स्पंद संवेदन के सामान्य वाक्यांश द्वारा ज्ञात इन दृष्टिकोणों ने कूल्टर सिद्धांत को गहरी उप-माइक्रोन श्रेणी तक विस्तारित करने की अनुमति दी है, उदाहरण के लिए, तरल पदार्थ में वायरस कणों का प्रत्यक्ष पता लगाने की अनुमति है।[6] [7] [8]
प्रायोगिक विचार
संयोग
यदि नमूने की सघनता इतनी अधिक है कि साथ कई कण एपर्चर में प्रवेश करते हैं तो विषम विद्युत दालों को उत्पन्न किया जा सकता है। इस स्थिति को संयोग कहते हैं। ऐसा इसलिए होता है क्योंकि यह सुनिश्चित करने का कोई विधि नहीं है कि बड़ी स्पंद बड़े कण या कई छोटे कणों के साथ छिद्र में प्रवेश करने का परिणाम है। इस स्थिति को रोकने के लिए, नमूने अधिक पतला होना चाहिए।
कण पथ
उत्पन्न विद्युत स्पंद का आकार छिद्र के माध्यम से कण पथ के साथ बदलता रहता है। कंधे और अन्य कलाकृतियाँ हो सकती हैं क्योंकि विद्युत क्षेत्र घनत्व एपर्चर के व्यास में भिन्न होता है। यह विचरण विद्युत क्षेत्र के भौतिक संकुचन दोनों का परिणाम है और यह तथ्य भी है कि तरल वेग एपर्चर में रेडियल स्थान के कार्य के रूप में भिन्न होता है। प्रवाह सेल प्रारूप में, इस प्रभाव को कम किया जाता है क्योंकि म्यान प्रवाह सुनिश्चित करता है कि प्रत्येक कण प्रवाह सेल के माध्यम से लगभग समान पथ की यात्रा करता है। एपर्चर प्रारूप में, कण पथ से उत्पन्न कलाकृतियों के लिए सही करने के लिए सिग्नल प्रोसेसिंग एल्गोरिदम का उपयोग किया जा सकता है।
प्रवाहकीय कण
प्रवाहकीय कण कल्टर सिद्धांत पर विचार करने वाले व्यक्तियों के लिए सामान्य चिंता है। जबकि यह विषय कुछ वैज्ञानिक प्रश्न उठाता है, व्यावहारिक रूप से, यह संभवतः ही कभी किसी प्रयोग के परिणामों को प्रभावित करता है। ऐसा इसलिए है क्योंकि तरल में अधिकांश प्रवाहकीय सामग्रियों और आयनों (डिस्चार्ज क्षमता के रूप में संदर्भित) के बीच चालकता का अंतर इतना अधिक है कि अधिकांश प्रवाहकीय सामग्री कल्टर काउंटर में इन्सुलेटर के रूप में कार्य करती हैं। इस संभावित अवरोध को तोड़ने के लिए आवश्यक वोल्टेज को कार्यभंग वोल्टेज कहा जाता है। उन अत्यधिक प्रवाहकीय सामग्रियों के लिए जो समस्या प्रस्तुत करते हैं, कल्टर प्रयोग के पर्यन्त उपयोग किए जाने वाले वोल्टेज को कार्यभंग क्षमता से कम किया जाना चाहिए (जो अनुभवजन्य रूप से निर्धारित किया जा सकता है)।
झरझरा कण
कल्टर सिद्धांत किसी वस्तु के आयतन को मापता है, क्योंकि विद्युत क्षेत्र में अशांति एपर्चर से विस्थापित विद्युतअपघट्य की मात्रा के समानुपाती होती है। यह उन लोगों के बीच कुछ भ्रम उत्पन्न करता है जो सूक्ष्मदर्शी या अन्य प्रणालियों से ऑप्टिकल माप के लिए उपयोग किए जाते हैं जो केवल दो आयामों को देखते हैं और किसी वस्तु की सीमाओं को भी दिखाते हैं। दूसरी ओर, कल्टर सिद्धांत, तीन आयामों और किसी वस्तु द्वारा विस्थापित आयतन को मापता है। स्पंज के बारे में सोचना सबसे उपयोगी है; यदि गीला स्पंज बहुत बड़ा दिखाई दे, यह समान आयामों की ठोस ईंट की तुलना में अधिक कम तरल विस्थापित करेगा।
एकदिश धारा और प्रत्यावर्ती धारा
वालेस कल्टर द्वारा आविष्कृत कल्टर काउंटर कणों (कोशिकाओं) की गणना करने के लिए प्रत्यक्ष धारा (डीसी) लागू करता है और कोशिकाओं के आकार पर निर्भर आयाम के विद्युत स्पंदन उत्पन्न करता है। कोशिकाओं को प्रवाहकीय तरल से घिरे विद्युत इन्सुलेटर के रूप में तैयार किया जा सकता है जो विद्युत पथ के भागों को अवरुद्ध करता है जिससे मापा विद्युत प्रतिरोध क्षण भर में बढ़ जाता है। यह कल्टर सिद्धांत का उपयोग करने वाली सबसे साधारण माप प्रणाली है।
इसके बाद के आविष्कार जटिल संख्या विद्युत प्रतिबाधा कोशिकाओं के जटिल प्रतिबाधा की जांच करने के लिए प्रत्यावर्ती धारा (AC) का उपयोग करके प्राप्त जानकारी का विस्तार करने में सक्षम थे, न कि केवल उनके आकार के।[9] तब कोशिका को कोशिका के कोशिका द्रव्य के चारों ओर इन्सुलेटिंग कोशिका झिल्ली के रूप में लगभग प्रतिरूपित किया जा सकता है, जो प्रवाहकीय है। कोशिका झिल्ली का पतलापन साइटोप्लाज्म और कोशिका के आसपास के विद्युतअपघट्य के बीच विद्युत समाई बनाता है। तब विद्युत प्रतिबाधा को या दूसरी एसी आवृत्ति पर मापा जा सकता है। कम आवृत्तियों (1 मेगाहर्ट्ज से अधिक नीचे) पर प्रतिबाधा डीसी प्रतिरोध के समान होती है। चूंकि , मेगाहर्ट्ज श्रेणी में उच्च आवृत्तियां, कोशिका झिल्ली की मोटाई की जांच करती हैं (जो इसकी समाई निर्धारित करती है)। बहुत अधिक आवृत्तियों पर (10 मेगाहर्ट्ज से ऊपर) चूंकि , झिल्ली समाई का प्रतिबाधा उस बिंदु तक गिर जाता है जहां मापा प्रतिबाधा में बड़ा योगदान साइटोप्लाज्म से ही होता है (झिल्ली अनिवार्य रूप से छोटी होती है)। विभिन्न आवृत्तियों का उपयोग करते हुए तंत्र कोशिकाओं के काउंटर से कहीं अधिक हो जाता है, साथ ही कोशिकाओं की आंतरिक संरचना और संरचना के प्रति संवेदनशील होता है।
प्रमुख अनुप्रयोग
हेमेटोलॉजी
कल्टर सिद्धांत का सबसे सफल और महत्वपूर्ण अनुप्रयोग मानव रक्त कोशिकाओं के लक्षण वर्णन में है। प्रविधि का उपयोग विभिन्न प्रकार की बीमारियों के निदान के लिए किया गया है और यह लाल रक्त कोशिका की गिनती (आरबीसी) और सफेद रक्त कोशिका की गिनती (डब्ल्यूबीसी) के साथ-साथ कई अन्य सामान्य पैरामीटर प्राप्त करने के लिए मानक विधि है। प्रतिदीप्ति टैगिंग और प्रकाश बिखरने जैसी अन्य तकनीकों के साथ संयुक्त होने पर, कल्टर सिद्धांत रोगियों की रक्त कोशिकाओं की विस्तृत प्रोफ़ाइल बनाने में सहायता कर सकता है।
सेल गिनती और आकार
रक्त कोशिकाओं (कोशिका व्यास सामान्यतः 6-10 माइक्रोमीटर) की नैदानिक गिनती के अतिरिक्त, कल्टर सिद्धांत ने खुद को बैक्टीरिया (<1 माइक्रोमीटर आकार में), वसा से लेकर विभिन्न प्रकार की कोशिकाओं की गिनती के लिए सबसे विश्वसनीय प्रयोगशाला पद्धति के रूप में स्थापित किया है। सेल (लगभग 400 माइक्रोमीटर), प्लांट सेल एग्रीगेट (>1200 माइक्रोमीटर), और मूल कोशिका भ्रूण शरीर (लगभग 900 माइक्रोमीटर)।
कण लक्षण वर्णन
सेलुलर अध्ययन से परे अनुप्रयोगों के लिए कल्टर सिद्धांत उपयोगी सिद्ध हुआ है। तथ्य यह है कि यह व्यक्तिगत रूप से कणों को मापता है, किसी भी ऑप्टिकल गुणों से स्वतंत्र है, विशालता संवेदनशील है और बहुत पुनरुत्पादित है, यह विभिन्न प्रकार के क्षेत्रों में अपील करता है। परिणाम स्वरुप , कल्टर सिद्धांत को माइक्रोफ्लुइडिक प्रतिरोधक स्पंद सेंसिंग के साथ-साथ व्यावसायिक उपक्रम के रूप में जाना जाने वाला नैनोपार्टिकल लक्षण वर्णन तकनीकों का उत्पादन करने के लिए नैनोस्केल के लिए अनुकूलित किया गया है जो ऐसी प्रविधि बेचता है जिसे तान करने योग्य प्रतिरोधक स्पंद सेंसिंग या टीआरपीएस कहा जाता है। टीआरपीएस कार्यात्मक नैनो दवा , वायरस जैसे कण (वीएलपी), लाइपोसोम , एक्सोसोम (पुटिका) , बहुलक, और सूक्ष्मबुद्बुद सहित नैनोकणों के विविध सेट के उच्च-निष्ठा विश्लेषण को सक्षम बनाता है।
यह भी देखें
- हेमोसाइटो मीटर
- प्रवाह साइटॉमेट्री
- हेमटोलॉजी विश्लेषक
संदर्भ
- ↑ W. R. Hogg, W. Coulter; Apparatus and method for measuring a dividing particle size of a particulate system; United States Patent 3557352
- ↑ U.S. Patent 7,397,232 Coulter counter
- ↑ Graham, Marshall (2020-01-01). "THE COULTER PRINCIPLE: FOR THE GOOD OF HUMANKIND". Theses and Dissertations--History. doi:10.13023/etd.2020.495.
- ↑ 4.0 4.1 Marshall Don. Graham (2003). "The Coulter Principle: Foundation of an Industry". Journal of Laboratory Automation. 8 (6): 72–81. doi:10.1016/S1535-5535-03-00023-6.
- ↑ Cytometry volume 10, a DVD series produced by the Purdue University Cytometry Labs http://www.cyto.purdue.edu/cdroms/cyto10a/seminalcontributions/coulter.html
- ↑ J. J. Kasianowicz et al.. "Characterization of individual polynucleotide molecules using a membrane channel", P. Natl. Acad. Sci. USA 93,13770–13773 (1996)
- ↑ O. Saleh and L. L. Sohn, "An artificial nanopore for molecular sensing", Nano Lett. 3, 37–38 (2003)
- ↑ J.-L. Fraikin, T. Teesalu, C. M. McKenney, E. Ruoslahti and A. N. Cleland, "A high-throughput label-free nanoparticle analyzer," Nature Nanotechnology 6, 308–313 (2011)
- ↑ Youchun Xu; XinwuXie; Yong Duan; Lei Wang; Zhen Cheng; Jing Cheng (15 March 2016). "संपूर्ण कोशिकाओं के प्रतिबाधा माप की समीक्षा". Biosensors and Bioelectronics. 77: 824–836. doi:10.1016/j.bios.2015.10.027. PMID 26513290.
बाहरी संबंध
- https://web.archive.org/web/20080424022037/http://web.mit.edu/invent/iow/coulter.html
- US 2656508 Means for counting particles suspended in a fluid, October 20, 1953, Wallace H. Coulter
- "Dynamically resizable nanometre-scale apertures for molecular sensing"; Stephen J. Sowerby, Murray F. Broom, George B. Petersen; Sensors and Actuators B: Chemical Volume 123, Issue 1 (2007), pages 325–330