रासायनिक ऊष्म निक्षेपण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
रासायनिक स्नान जमाव, जिसे रासायनिक समाधान जमाव<ref name=":0">{{Cite journal|last=Hodes|first=Gary|date=2007-05-09|title=सेमीकंडक्टर और सिरेमिक नैनोकण फिल्म रासायनिक स्नान जमाव द्वारा जमा की जाती हैं|url=https://pubs.rsc.org/en/content/articlelanding/2007/cp/b616684a|journal=Physical Chemistry Chemical Physics|language=en|volume=9|issue=18|pages=2181–2196|doi=10.1039/B616684A|pmid=17487315 |bibcode=2007PCCP....9.2181H |issn=1463-9084}}</ref> और सीबीडी भी कहा जाता है, एक जलीय अग्रदूत समाधान का उपयोग करके पतली-फिल्म जमाव (एक समाधान या गैस से बनने वाले ठोस) की एक विधि है।<ref name=":0" /> रासायनिक स्नान जमाव आमतौर पर विषम न्यूक्लिएशन (एक ठोस [[सब्सट्रेट (सामग्री विज्ञान)|सब्सट्रेट]] पर जलीय आयनों का जमाव या सोखना) का उपयोग करके फिल्में बनाता है, [2] धातु चॉकोजेनाइड्स (ज्यादातर [[ऑक्साइड]], [[सल्फाइड]], और [[सेलेनाइड]])<ref name=":0" /> और कई कम आम आयनिक की सजातीय पतली फिल्मों का निर्माण करता है। यौगिक।<ref name=":0" /><ref>{{Cite journal|last1=Nair|first1=P. K|last2=Nair|first2=M. T. S|last3=Garcı́a|first3=V. M|last4=Arenas|first4=O. L|last5=Peña|first5=A. Castillo, Y|last6=Ayala|first6=I. T|last7=Gomezdaza|first7=O|last8=Sánchez|first8=A|last9=Campos|first9=J|last10=Hu|first10=H|last11=Suárez|first11=R|date=1998-04-30|title=सौर ऊर्जा से संबंधित अनुप्रयोगों के लिए रासायनिक स्नान निक्षेपण द्वारा सेमीकंडक्टर पतली फिल्म|url=https://www.sciencedirect.com/science/article/pii/S0927024897002377|journal=Solar Energy Materials and Solar Cells|language=en|volume=52|issue=3|pages=313–344|doi=10.1016/S0927-0248(97)00237-7|s2cid=97624287 |issn=0927-0248}}</ref> कम बुनियादी ढांचे के साथ, कम तापमान (<100˚C), और कम लागत पर एक सरल प्रक्रिया का उपयोग करते हुए, रासायनिक स्नान जमाव से फिल्मों का निर्माण मज़बूती से होता है।<ref name=":0" /> इसके अलावा, रासायनिक स्नान जमाव को बड़े क्षेत्र के बैच प्रसंस्करण या निरंतर जमाव के लिए नियोजित किया जा सकता है। सीबीडी द्वारा निर्मित फिल्मों का उपयोग अक्सर अर्धचालकों, [[फोटोवोल्टिक कोशिकाओं]] और सुपरकैपेसिटर में किया जाता है, और नैनो सामग्री बनाने के लिए रासायनिक स्नान जमाव का उपयोग करने में रुचि बढ़ रही है।<ref name=":0" /><ref name=":4">{{Cite journal|last1=Switzer|first1=Jay A.|last2=Hodes|first2=Gary|date=2010-10-01|title=क्रियात्मक नैनो सामग्री का विद्युत निक्षेपण और रासायनिक स्नान निक्षेपण|url=https://doi.org/10.1557/S0883769400051253|journal=MRS Bulletin|language=en|volume=35|issue=10|pages=743–750|doi=10.1557/S0883769400051253|bibcode=2010MRSBu..35..743S |issn=1938-1425}}</ref>
'''रासायनिक ऊष्म निक्षेपण''', जिसे रासायनिक समाधान निक्षेपण<ref name=":0">{{Cite journal|last=Hodes|first=Gary|date=2007-05-09|title=सेमीकंडक्टर और सिरेमिक नैनोकण फिल्म रासायनिक स्नान जमाव द्वारा जमा की जाती हैं|url=https://pubs.rsc.org/en/content/articlelanding/2007/cp/b616684a|journal=Physical Chemistry Chemical Physics|language=en|volume=9|issue=18|pages=2181–2196|doi=10.1039/B616684A|pmid=17487315 |bibcode=2007PCCP....9.2181H |issn=1463-9084}}</ref> और सीबीडी भी कहा जाता है, यह जलीय समाधान का उपयोग करके पतली-चलचित्र निक्षेपण की एक विधि होती है।<ref name=":0" /> रासायनिक ऊष्म निक्षेपण सामान्यतः विषम केंद्रक (एक शुद्ध [[सब्सट्रेट (सामग्री विज्ञान)|सब्सट्रेट]] पर जलीय आयनों का निक्षेपण) का उपयोग करके चलचित्र बनाता है,<ref name=":1" /> धातु चॉकोजेनाइड्स (ज्यादातर [[ऑक्साइड]], [[सल्फाइड]], और [[सेलेनाइड]])<ref name=":0" /> और कई कम सजातीय पतली चलचित्रों का निर्माण करता है। यौगिक<ref name=":0" /><ref name=":1">{{Cite journal|last1=Nair|first1=P. K|last2=Nair|first2=M. T. S|last3=Garcı́a|first3=V. M|last4=Arenas|first4=O. L|last5=Peña|first5=A. Castillo, Y|last6=Ayala|first6=I. T|last7=Gomezdaza|first7=O|last8=Sánchez|first8=A|last9=Campos|first9=J|last10=Hu|first10=H|last11=Suárez|first11=R|date=1998-04-30|title=सौर ऊर्जा से संबंधित अनुप्रयोगों के लिए रासायनिक स्नान निक्षेपण द्वारा सेमीकंडक्टर पतली फिल्म|url=https://www.sciencedirect.com/science/article/pii/S0927024897002377|journal=Solar Energy Materials and Solar Cells|language=en|volume=52|issue=3|pages=313–344|doi=10.1016/S0927-0248(97)00237-7|s2cid=97624287 |issn=0927-0248}}</ref> कम तापमान (<100˚C), और कम लागत पर एक सरल प्रक्रिया का उपयोग करते हुए, रासायनिक ऊष्म निक्षेपण से चलचित्रों का निर्माण मज़बूती से होता है।<ref name=":0" /> इसके अतिरिक्त, रासायनिक ऊष्म निक्षेपण को बड़े क्षेत्र के प्रसंस्करण या निरंतर निक्षेपण के लिए नियोजित किया जा सकता है। सीबीडी द्वारा निर्मित चलचित्रों का उपयोग अधिकांशतः अर्धचालकों, [[फोटोवोल्टिक कोशिकाओं]] और संधारित्र में किया जाता है, और नैनो सामग्री बनाने के लिए रासायनिक ऊष्म निक्षेपण का उपयोग करने में रुचि बढ़ाता है।<ref name=":0" /><ref name=":4">{{Cite journal|last1=Switzer|first1=Jay A.|last2=Hodes|first2=Gary|date=2010-10-01|title=क्रियात्मक नैनो सामग्री का विद्युत निक्षेपण और रासायनिक स्नान निक्षेपण|url=https://doi.org/10.1557/S0883769400051253|journal=MRS Bulletin|language=en|volume=35|issue=10|pages=743–750|doi=10.1557/S0883769400051253|bibcode=2010MRSBu..35..743S |issn=1938-1425}}</ref>
== उपयोग ==
== उपयोग ==
रासायनिक स्नान जमाव औद्योगिक अनुप्रयोगों में उपयोगी है क्योंकि यह पतली-फिल्म जमाव के अन्य तरीकों की तुलना में बेहद सस्ता, सरल और विश्वसनीय है, जिसके लिए (अपेक्षाकृत) कम तापमान और न्यूनतम बुनियादी ढांचे पर केवल जलीय घोल की आवश्यकता होती है।<ref name=":0" />रासायनिक स्नान जमाव प्रक्रिया को बड़े क्षेत्र के बैच प्रसंस्करण या निरंतर जमाव तक आसानी से बढ़ाया जा सकता है।
रासायनिक ऊष्म निक्षेपण औद्योगिक अनुप्रयोगों में उपयोगी है क्योंकि यह पतली-चलचित्र निक्षेपण के अन्य विधियों की तुलना में बेहद सस्ता, सरल और विश्वसनीय होती है, जिसके लिए (अपेक्षाकृत) कम तापमान और न्यूनतम केवल जलीय घोल की आवश्यकता होती है।<ref name=":0" /> रासायनिक ऊष्म निक्षेपण प्रक्रिया को बड़े क्षेत्र के प्रसंस्करण या निरंतर निक्षेपण तक आसानी से बढ़ाया जा सकता है।


रासायनिक स्नान जमाव छोटे क्रिस्टल बनाता है, जो अर्धचालकों के लिए पतली-फिल्म जमाव के अन्य तरीकों द्वारा बनाए गए बड़े क्रिस्टल की तुलना में कम उपयोगी होते हैं लेकिन नैनो सामग्री के लिए अधिक उपयोगी होते हैं। हालांकि, केमिकल बाथ डिपोजिशन द्वारा बनाई गई फिल्मों में अक्सर अन्य तरीकों से बनने वाले समान पदार्थ की फिल्मों की तुलना में बेहतर फोटोवोल्टिक गुण (बैंड इलेक्ट्रॉन गैप) होते हैं।<ref name=":0" />
रासायनिक ऊष्म निक्षेपण छोटे क्रिस्टल बनाता है, जो अर्धचालकों के लिए पतली-चलचित्र निक्षेपण के अन्य विधियों द्वारा बनाए गए बड़े क्रिस्टल की तुलना में कम उपयोगी होते है लेकिन नैनो सामग्री के लिए अधिक उपयोगी होते है। चूंकि, रासायनिक ऊष्म निक्षेपण द्वारा बनाई गई चलचित्रों में अधिकांशतः अन्य विधियों से बनने वाले समान पदार्थ की चलचत्रों की तुलना में बेहतर फोटोवोल्टिक गुण होते है।<ref name=":0" />
=== ऐतिहासिक उपयोग ===
=== ऐतिहासिक उपयोग ===
रासायनिक स्नान निक्षेपण का एक लंबा इतिहास रहा है लेकिन हाल तक यह पतली-फिल्म निक्षेपण की एक असामान्य विधि थी।<ref name=":0" />
रासायनिक ऊष्म निक्षेपण का एक उच्च इतिहास रहा है लेकिन यह पतली-चलचित्र निक्षेपण की एक असामान्य विधि होती थी।<ref name=":0" />


1865 में, [[जस्टस वॉन लिबिग]] ने एक लेख प्रकाशित किया जिसमें [[सिल्वरिंग]] के लिए केमिकल बाथ डिपोजिशन के उपयोग का वर्णन किया गया था (एक दर्पण बनाने के लिए कांच के पीछे चांदी की एक परावर्तक परत चिपकाने के लिए),<ref>{{Cite journal|last=Liebig|first=Justus|date=1856-01-01|title=कांच की सिल्वरिंग और गिल्डिंग के बारे में|journal=Annalen der Chemie und Pharmacie |url=https://zenodo.org/record/1427076| volume=98 |pages=132–139 | doi=10.1002/jlac.18560980112}}</ref> हालांकि आधुनिक समय में विद्युत लेपन और निर्वात निक्षेपण अधिक सामान्य हैं।
1865 में, [[जस्टस वॉन लिबिग|जस्टस वॉन लिबिंग]] ने एक लेख प्रकाशित किया जिसमें रासायनिक ऊष्म निक्षेपण के उपयोग का वर्णन किया गया था,<ref>{{Cite journal|last=Liebig|first=Justus|date=1856-01-01|title=कांच की सिल्वरिंग और गिल्डिंग के बारे में|journal=Annalen der Chemie und Pharmacie |url=https://zenodo.org/record/1427076| volume=98 |pages=132–139 | doi=10.1002/jlac.18560980112}}</ref> चूंकि आधुनिक समय में विद्युत और निर्वात निक्षेपण अधिक सामान्य होते है।


WWII के आसपास, लेड सल्फाइड (PbS) और लेड सेलेनाइड (PbSe) CBD फिल्मों का उपयोग इन्फ्रारेड डिटेक्टरों में किया जाता है।<ref name=":0" /> केमिकल बाथ डिपोजिशन द्वारा बनने पर ये फिल्में फोटोकंडक्टिव होती हैं।<ref name=":0" />
WWII के आसपास, लेड सल्फाइड (PbS) और लेड सेलेनाइड (PbSe) CBD चलचित्रों का उपयोग अवरक्त अधिनायक में किया जाता है।<ref name=":0" /> रासायनिक ऊष्म निक्षेपण द्वारा बनने पर यह चलचित्रें प्रवाहकीय होती है।<ref name=":0" />


सेमीकंडक्टर्स में भी इस्तेमाल होने वाली पतली फिल्मों को बनाने में केमिकल बाथ डिपोजिशन का एक लंबा इतिहास रहा है। हालाँकि जमा क्रिस्टल का छोटा आकार अर्धचालकों के लिए आदर्श नहीं है और आधुनिक समय में अर्धचालकों के निर्माण के लिए रासायनिक स्नान जमाव का उपयोग शायद ही कभी किया जाता है।<ref name=":0" />
अर्द्धसुचालक में भी उपयोग होने वाली पतली चलचित्रों को बनाने में रासायनिक ऊष्म निक्षेपण का एक उच्च इतिहास रहा है। चूँकि जमे क्रिस्टल का छोटा आकार अर्धचालकों के लिए आदर्श नहीं होता है और आधुनिक समय में अर्धचालकों के निर्माण के लिए रासायनिक ऊष्म निक्षेपण का उपयोग संभवतः ही कभी किया जाता है।<ref name=":0" />
=== फोटोवोल्टिक्स ===
=== फोटोवोल्टिक्स ===
फोटोवोल्टिक सेल केमिकल बाथ डिपोजिशन द्वारा जमा की गई फिल्मों का सबसे आम उपयोग है क्योंकि कई फिल्मों में अन्य तरीकों से जमा होने की तुलना में सीबीडी के माध्यम से जमा होने पर बेहतर फोटोवोल्टिक गुण होते हैं।<ref name=":0" />ऐसा इसलिए है क्योंकि केमिकल बाथ डिपोजिशन द्वारा बनाई गई पतली फिल्में अन्य तरीकों से बनने वाली पतली फिल्मों की तुलना में अधिक आकार की मात्रा का प्रदर्शन करती हैं, और इसलिए छोटे क्रिस्टल और अधिक ऑप्टिकल बैंड गैप होता है।<ref name=":0" />इन बेहतर फोटोवोल्टिक गुणों के कारण कैडमियम सल्फाइड (सीडीएस), फोटोवोल्टिक कोशिकाओं में एक पतली फिल्म है, जो सीबीडी द्वारा सबसे अधिक जमा किया जाने वाला पदार्थ है और पदार्थ की सीबीडी शोध पत्रों में सबसे अधिक जांच की जाती है।<ref name=":0" /><ref name=":5">{{Citation|last1=Guire|first1=Mark R. De|title=Chemical Bath Deposition|date=2013|url=https://doi.org/10.1007/978-3-211-99311-8_14|work=Chemical Solution Deposition of Functional Oxide Thin Films|pages=319–339|editor-last=Schneller|editor-first=Theodor|place=Vienna|publisher=Springer|language=en|doi=10.1007/978-3-211-99311-8_14|isbn=978-3-211-99311-8|access-date=2021-11-18|last2=Bauermann|first2=Luciana Pitta|last3=Parikh|first3=Harshil|last4=Bill|first4=Joachim|editor2-last=Waser|editor2-first=Rainer|editor3-last=Kosec|editor3-first=Marija|editor4-last=Payne|editor4-first=David}}</ref>
फोटोवोल्टिक सेल रासायनिक ऊष्म निक्षेपण द्वारा जमा की गई चलचित्रों का सबसे आसान उपयोग होता है क्योंकि कई चलचित्रों में अन्य विधियों से जमा होने की तुलना में सीबीडी के माध्यम से जमा होने पर बेहतर फोटोवोल्टिक गुण होते है।<ref name=":0" /> ऐसा इसलिए है क्योंकि रासायनिक ऊष्म निक्षेपण द्वारा बनाई गई पतली चलचित्रें अन्य विधियों से बनने वाली पतली चलचित्रों की तुलना में अधिक आकार की मात्रा का प्रदर्शन करती है, और इसलिए छोटे क्रिस्टल और अधिक प्रकाशिक बन्धन अंतराल होता है।<ref name=":0" /> इन बेहतर फोटोवोल्टिक गुणों के कारण कैडमियम सल्फाइड (सीडीएस), फोटोवोल्टिक कोशिकाओं में एक पतली चलचित्र होती है, जो सीबीडी द्वारा सबसे अधिक जमा किया जाने वाला पदार्थ होता है और पदार्थ की सीबीडी शोध पत्रों में सबसे अधिक जांच की जाती है।<ref name=":0" /><ref name=":5">{{Citation|last1=Guire|first1=Mark R. De|title=Chemical Bath Deposition|date=2013|url=https://doi.org/10.1007/978-3-211-99311-8_14|work=Chemical Solution Deposition of Functional Oxide Thin Films|pages=319–339|editor-last=Schneller|editor-first=Theodor|place=Vienna|publisher=Springer|language=en|doi=10.1007/978-3-211-99311-8_14|isbn=978-3-211-99311-8|access-date=2021-11-18|last2=Bauermann|first2=Luciana Pitta|last3=Parikh|first3=Harshil|last4=Bill|first4=Joachim|editor2-last=Waser|editor2-first=Rainer|editor3-last=Kosec|editor3-first=Marija|editor4-last=Payne|editor4-first=David}}</ref>


फोटोवोल्टिक कोशिकाओं में बफर परतों को जमा करने के लिए रासायनिक स्नान जमाव का भी उपयोग किया जाता है क्योंकि सीबीडी सब्सट्रेट को नुकसान नहीं पहुंचाता है।
फोटोवोल्टिक कोशिकाओं में परतों को जमा करने के लिए रासायनिक ऊष्म निक्षेपण का भी उपयोग किया जाता है क्योंकि सीबीडी सब्सट्रेट को नुकसान नहीं पहुंचाता है।


=== प्रकाशिकी ===
=== प्रकाशिकी ===
रासायनिक स्नान जमाव फिल्मों को कुछ तरंग दैर्ध्य को अवशोषित करने और वांछित के रूप में दूसरों को प्रतिबिंबित या प्रसारित करने के लिए बनाया जा सकता है। ऐसा इसलिए है क्योंकि केमिकल बाथ डिपोजिशन द्वारा बनाई गई फिल्मों में एक [[ऊर्जा अंतराल]] होता है जिसे ठीक से नियंत्रित किया जा सकता है। इस चयनात्मक संचरण का उपयोग [[परावर्तक - विरोधी लेप]] | एंटी-रिफ्लेक्टिव और एंटी-डैज़लिंग कोटिंग्स, सौर तापीय अनुप्रयोगों, [[ऑप्टिकल फिल्टर]], रिफ्लेक्टर आदि के लिए किया जा सकता है।<ref name=":0" />केमिकल बाथ डिपोजिशन द्वारा जमा की गई फिल्मों में एंटी-रिफ्लेक्शन, एंटी-डैजलिंग, थर्मल कंट्रोल विडो कोटिंग्स, ऑप्टिकल फिल्टर, टोटल रिफ्लेक्टर, पोल्ट्री प्रोटेक्शन और वार्मिंग कोटिंग्स, [[ प्रकाश उत्सर्जक डायोड | प्रकाश उत्सर्जक डायोड]] , [[ सौर सेल ]] फैब्रिकेशन और [[वैरिस्टर]] में संभावित अनुप्रयोग हैं।
रासायनिक ऊष्म निक्षेपण चलचित्रों को कुछ तरंग दैर्ध्य को अवशोषित करने और वांछित के रूप में दूसरों को प्रतिबिंबित या प्रसारित करने के लिए बनाया जा सकता है। ऐसा इसलिए है क्योंकि रासायनिक ऊष्म निक्षेपण द्वारा बनाई गई चलचित्रों में एक [[ऊर्जा अंतराल]] होता है जिसे ठीक से नियंत्रित किया जा सकता है। इस चयनात्मक संचरण का उपयोग [[परावर्तक - विरोधी लेप|परावर्तक]], सौर तापीय अनुप्रयोगों, [[ऑप्टिकल फिल्टर|प्रकाशिक फिल्टर]], प्रतिक्षेपक आदि के लिए किया जा सकता है।<ref name=":0" /> रासायनिक ऊष्म निक्षेपण द्वारा जमा की गई चलचित्रों में एंटी-प्रतिबिंब, थर्मल नियंत्रक कोटिंग्स, प्रकाशिक फिल्टर, संपूर्ण प्रतिक्षेपक, पोल्ट्री संरक्षण और ऊष्म कोटिंग्स, [[ प्रकाश उत्सर्जक डायोड |प्रकाश उत्सर्जक डायोड]], [[ सौर सेल |सौर सेल]] निर्माण और [[वैरिस्टर]] में संभावित अनुप्रयोग होते है।


=== नैनो सामग्री ===
=== नैनो सामग्री ===
केमिकल बाथ डिपोजिशन या [[इलेक्ट्रोलेस डिपोजिशन]] में नैनोमैटेरियल्स के क्षेत्र में शानदार अनुप्रयोग हैं,<ref name=":0" />क्योंकि छोटा क्रिस्टल आकार नैनोमीटर पैमाने पर गठन को सक्षम बनाता है, क्योंकि रासायनिक स्नान जमाव फिल्मों के गुणों और नैनोस्ट्रक्चर को सटीक रूप से नियंत्रित किया जा सकता है, और क्योंकि रासायनिक स्नान जमाव द्वारा जमा की गई फिल्मों की एक समान मोटाई, संरचना और ज्यामिति फिल्म को बनाए रखने की अनुमति देती है। सब्सट्रेट की संरचना।<ref name=":0" />नैनोमीटर पैमाने पर भी रासायनिक स्नान जमाव की कम लागत और उच्च विश्वसनीयता किसी भी अन्य पतली-फिल्म जमाव तकनीक के विपरीत है। रासायनिक स्नान जमाव का उपयोग पॉलीक्रिस्टलाइन और [[ एपिटाक्सी ]] फिल्मों, झरझरा नेटवर्क, [[ के nanorod- ]], [[सुपरलैटिस]] और कंपोजिट के उत्पादन के लिए किया जा सकता है।<ref name=":4" />
रासायनिक ऊष्म निक्षेपण या [[इलेक्ट्रोलेस डिपोजिशन|इलेक्ट्रोलेस निक्षेपण]] में नैनोमैटेरियल्स के क्षेत्र में शानदार अनुप्रयोग होते है,<ref name=":0" /> क्योंकि छोटा क्रिस्टल आकार नैनोमीटर पर गठन को सक्षम बनाता है, क्योंकि रासायनिक ऊष्म निक्षेपण चलचित्रों के गुणों और नैनोसंरचना को त्रुटिहीन रूप से नियंत्रित किया जा सकता है, और क्योंकि रासायनिक ऊष्म निक्षेपण द्वारा जमा की गई चलचित्रों की एक समान मोटाई, संरचना और ज्यामिति चलचित्र को बनाए रखने की अनुमति देती है।<ref name=":0" /> नैनोमीटर पर भी रासायनिक ऊष्म निक्षेपण की कम लागत और उच्च विश्वसनीयता किसी भी अन्य पतली-चलचित्र निक्षेपण तकनीक के विपरीत होते है। रासायनिक ऊष्म निक्षेपण का उपयोग पॉलीक्रिस्टलाइन और [[ एपिटाक्सी |एपिटाक्सी]] चलचित्रों और [[सुपरलैटिस|लैटिस]] के उत्पादन के लिए किया जा सकता है।<ref name=":4" />
== प्रक्रिया ==
== प्रक्रिया ==
रासायनिक स्नान जमाव एक समाधान बनाने पर निर्भर करता है जैसे कि निक्षेपण (चरण संक्रमण) (एक जलीय से ठोस पदार्थ में परिवर्तन) केवल नीचे की विधि का उपयोग करके सब्सट्रेट पर होगा:
रासायनिक ऊष्म निक्षेपण एक समाधान बनाने पर निर्भर करता है जैसे कि निक्षेपण (चरण संक्रमण) (एक जलीय से शुद्ध पदार्थ में परिवर्तन) केवल नीचे की विधि का उपयोग करके सब्सट्रेट पर होता है:


* धातु के लवण और (आमतौर पर) चॉकोजेनाइड अग्रदूतों को पानी में मिलाया जाता है ताकि धातु के आयनों और चॉकोजेनाइड आयनों से युक्त एक जलीय घोल बनाया जा सके जो जमा होने वाले यौगिक का निर्माण करेगा।
* धातु के लवण और (सामान्यतः) चॉकोजेनाइड को पानी में मिलाया जाता है जिससे कि धातु के आयनों और चॉकोजेनाइड आयनों से युक्त एक जलीय घोल बनाया जा सके जो जमा होने वाले यौगिक का निर्माण करता है।
* तापमान, पीएच, और नमक की एकाग्रता को तब तक समायोजित किया जाता है जब तक कि समाधान मेटास्टेबल [[अतिसंतृप्ति]] में न हो,<ref name=":5" />यह तब तक है जब तक आयन जमा करने के लिए तैयार नहीं होते हैं, लेकिन न्यूक्लिएशन (ठोस क्रिस्टल बनाने और घोल से बाहर निकलने) के लिए थर्मोडायनामिक बाधा को दूर नहीं कर सकते हैं।<ref name=":0" />* एक सब्सट्रेट पेश किया जाता है, जो न्यूक्लिएशन के उत्प्रेरक के रूप में कार्य करता है, और पूर्ववर्ती आयन नीचे वर्णित दो विधियों में से एक द्वारा एक पतली क्रिस्टलीय फिल्म बनाने वाले सब्सट्रेट पर पालन करते हैं।
* तापमान, पीएच, और नमक की एकाग्रता को तब तक समायोजित किया जाता है जब तक कि समाधान [[अतिसंतृप्ति]] में नहीं होता है,<ref name=":5" /> यह तब तक होता है जब तक आयन जमा करने के लिए तैयार नहीं होते है, लेकिन केंद्रक के लिए थर्मोडायनामिक बाधा को दूर नहीं कर सकते है।<ref name=":0" /> एक सब्सट्रेट प्रस्तुत किया जाता है, जो केंद्रक के उत्प्रेरक के रूप में कार्य करता है, और पूर्ववर्ती आयन नीचे वर्णित दो विधियों में से एक पतली क्रिस्टलीय चलचित्र बनाने वाले सब्सट्रेट का पालन करता है।


अर्थात्, समाधान एक ऐसी अवस्था में है जहाँ अग्रदूत आयन या कोलाइडल कण 'चिपचिपा' होते हैं, लेकिन एक दूसरे से 'चिपक' नहीं सकते। जब सब्सट्रेट पेश किया जाता है, तो अग्रदूत आयन या कण उससे चिपक जाते हैं और जलीय आयन ठोस आयनों से चिपक जाते हैं, जिससे एक ठोस यौगिक बनता है - क्रिस्टलीय फिल्म बनाने के लिए जमा होता है।
अर्थात्, समाधान एक ऐसी अवस्था में है जहाँ आयन या कोलाइडल कण चिपचिप' होते है, लेकिन एक दूसरे से चिपकते नहीं है। जब सब्सट्रेट प्रस्तुत किया जाता है, तो आयन या कण उससे चिपक जाते है और जलीय आयन शुद्ध आयनों से चिपक जाते है, जिससे एक शुद्ध यौगिक बनता है - क्रिस्टलीय चलचित्र बनाने के लिए जमा होता है।


फिल्म का पीएच, तापमान और संरचना क्रिस्टल के आकार को प्रभावित करती है, और इसका उपयोग फिल्म के निर्माण की दर और संरचना को नियंत्रित करने के लिए किया जा सकता है। क्रिस्टल के आकार को प्रभावित करने वाले अन्य कारकों में आंदोलन, रोशनी और उस फिल्म की मोटाई शामिल है जिस पर क्रिस्टल जमा होता है।<ref name=":0" />विलयन को उत्तेजित करने से निलंबित कोलाइडल क्रिस्टल के जमाव को रोकता है,<ref name=":6">{{Cite journal|last1=Tec-Yam|first1=S.|last2=Patiño|first2=R.|last3=Oliva|first3=A. I.|date=2011-05-01|title=विभिन्न सब्सट्रेट ओरिएंटेशन पर सीडीएस फिल्मों का रासायनिक स्नान निक्षेपण|url=https://www.sciencedirect.com/science/article/pii/S1567173910004967|journal=Current Applied Physics|language=en|volume=11|issue=3|pages=914–920|doi=10.1016/j.cap.2010.12.016|bibcode=2011CAP....11..914T |issn=1567-1739}}</ref> उच्च बैंड गैप ऊर्जा के साथ एक चिकनी और अधिक समरूप फिल्म बनाना। आंदोलन गठन की गति और तापमान को प्रभावित करता है जिस पर गठन होता है, और जमा किए गए क्रिस्टल की संरचना को बदल सकता है।<ref name=":6" />
चलचित्र का पीएच, तापमान और संरचना क्रिस्टल के आकार को प्रभावित करती है, और इसका उपयोग चलचित्र के निर्माण की दर और संरचना को नियंत्रित करने के लिए किया जा सकता है। क्रिस्टल के आकार को प्रभावित करने वाले अन्य कारकों में प्रकाश और उस चलचित्र की मोटाई सम्मलित होती है जिस पर क्रिस्टल जमा होता है।<ref name=":0" /> विलयन को उत्तेजित करने से निलंबित कोलाइडल क्रिस्टल के निक्षेपण को रोकता है,<ref name=":6">{{Cite journal|last1=Tec-Yam|first1=S.|last2=Patiño|first2=R.|last3=Oliva|first3=A. I.|date=2011-05-01|title=विभिन्न सब्सट्रेट ओरिएंटेशन पर सीडीएस फिल्मों का रासायनिक स्नान निक्षेपण|url=https://www.sciencedirect.com/science/article/pii/S1567173910004967|journal=Current Applied Physics|language=en|volume=11|issue=3|pages=914–920|doi=10.1016/j.cap.2010.12.016|bibcode=2011CAP....11..914T |issn=1567-1739}}</ref> गठन की गति और तापमान को प्रभावित करता है जिस पर गठन होता है, वह जमा किए गए क्रिस्टल की संरचना को बदल सकता है।<ref name=":6" />


अधिकांश अन्य निक्षेपण प्रक्रियाओं के विपरीत, रासायनिक स्नान निक्षेपण अनियमित (प्रतिरूपित या आकार) सबस्ट्रेट्स पर भी समान मोटाई, संरचना, और ज्यामिति (पार्श्व समरूपता) की एक फिल्म बनाने के लिए जाता है क्योंकि यह निक्षेपण के अन्य तरीकों के विपरीत, सतह रसायन द्वारा नियंत्रित होता है। आयन सब्सट्रेट की सभी उजागर सतहों का पालन करते हैं और क्रिस्टल उन आयनों से बढ़ते हैं। <ref name=":5" /><ref name=":2">{{Cite journal|last1=Froment|first1=Michel|last2=Lincot|first2=Daniel|date=1995-07-01|title=Phase formation processes in solution at the atomic level: Metal chalcogenide semiconductors|url=https://dx.doi.org/10.1016/0013-4686%2895%2900065-M|journal=Electrochimica Acta|language=en|volume=40|issue=10|pages=1293–1303|doi=10.1016/0013-4686(95)00065-M|issn=0013-4686}}</ref>
अधिकांश अन्य निक्षेपण प्रक्रियाओं के विपरीत, रासायनिक ऊष्म निक्षेपण अनियमित सबस्ट्रेट्स पर भी समान मोटाई, संरचना, और ज्यामिति (पार्श्व समरूपता) की एक चलचित्र बनाने के लिए किया जाता है क्योंकि यह निक्षेपण के अन्य विधियों के विपरीत, सतह रसायन द्वारा नियंत्रित होता है। आयन सब्सट्रेट की सभी उजागर सतहों का पालन करते है और क्रिस्टल उन आयनों से बढ़ते है। <ref name=":5" /><ref name=":2">{{Cite journal|last1=Froment|first1=Michel|last2=Lincot|first2=Daniel|date=1995-07-01|title=Phase formation processes in solution at the atomic level: Metal chalcogenide semiconductors|url=https://dx.doi.org/10.1016/0013-4686%2895%2900065-M|journal=Electrochimica Acta|language=en|volume=40|issue=10|pages=1293–1303|doi=10.1016/0013-4686(95)00065-M|issn=0013-4686}}</ref>
=== आयन-द्वारा-आयन तंत्र ===
=== आयन-दर-आयन तंत्र ===
आयन-दर-आयन जमाव में, जलीय अग्रदूत आयन पतली फिल्म बनाने के लिए सीधे प्रतिक्रिया करते हैं।
आयन-दर-आयन निक्षेपण में, जलीय आयन पतली चलचित्र बनाने के लिए सीधे प्रतिक्रिया करते है।


स्थितियों को इस तरह नियंत्रित किया जाता है कि कुछ हाइड्रॉक्साइड आयन जमाव (सब्सट्रेट पर नहीं) या अघुलनशील धातु हाइड्रॉक्साइड की वर्षा को रोकने के लिए बनते हैं। कभी-कभी धातु हाइड्रॉक्साइड के गठन को रोकने के लिए एक जटिल एजेंट का उपयोग किया जाता है।<ref name=":0" />मेटल सॉल्ट और चेलकोजेनाइड सॉल्ट असंबद्ध होकर प्रीकर्सर मेटल केशन और चेलकोजेनाइड आयन बनाते हैं, जो वैन डेर वाल्स बल द्वारा सब्सट्रेट की ओर आकर्षित होते हैं और उनका पालन करते हैं।<ref name=":3">{{Citation|last1=Aida|first1=M. S.|title=Cadmium Sulfide Thin Films by Chemical Bath Deposition Technique|date=2020|url=https://doi.org/10.1007/978-3-030-50108-2_3|work=Advances in Energy Materials|pages=49–75|editor-last=Ikhmayies|editor-first=Shadia Jamil|series=Advances in Material Research and Technology|place=Cham|publisher=Springer International Publishing|language=en|doi=10.1007/978-3-030-50108-2_3|isbn=978-3-030-50108-2|access-date=2021-11-22|last2=Hariech|first2=S.|s2cid=226640144 }}</ref> आयन सब्सट्रेट का पालन करते हैं, और जलीय आयन बढ़ते क्रिस्टल से जुड़ते हैं, जिससे बड़े क्रिस्टल बनते हैं। इस प्रकार, जमाव की इस विधि के परिणामस्वरूप हाइड्रॉक्साइड-क्लस्टर तंत्र की तुलना में बड़े और कम समान क्रिस्टल होते हैं।<ref name=":0" />
स्थितियों को इस तरह नियंत्रित किया जाता है कि कुछ हाइड्रॉक्साइड आयन निक्षेपण (सब्सट्रेट पर नहीं) या अघुलनशील धातु हाइड्रॉक्साइड की वर्षा को रोकने के लिए बनते है। कभी-कभी धातु हाइड्रॉक्साइड के गठन को रोकने के लिए एक जटिल प्रतिनिधि का उपयोग किया जाता है।<ref name=":0" /> धातु और चेलकोजेनाइड असंबद्ध होकर धातु और चेलकोजेनाइड आयन बनाते है, जो वैन डेर वाल्स बल द्वारा सब्सट्रेट की ओर आकर्षित होते है और उनका पालन करते है।<ref name=":3">{{Citation|last1=Aida|first1=M. S.|title=Cadmium Sulfide Thin Films by Chemical Bath Deposition Technique|date=2020|url=https://doi.org/10.1007/978-3-030-50108-2_3|work=Advances in Energy Materials|pages=49–75|editor-last=Ikhmayies|editor-first=Shadia Jamil|series=Advances in Material Research and Technology|place=Cham|publisher=Springer International Publishing|language=en|doi=10.1007/978-3-030-50108-2_3|isbn=978-3-030-50108-2|access-date=2021-11-22|last2=Hariech|first2=S.|s2cid=226640144 }}</ref> आयन सब्सट्रेट का पालन करते है, और जलीय आयन बढ़ते क्रिस्टल से जुड़ते है, जिससे बड़े क्रिस्टल बनते है। इस प्रकार, निक्षेपण की इस विधि के परिणामस्वरूप हाइड्रॉक्साइड-क्लस्टर तंत्र की तुलना में बड़े और कम समान क्रिस्टल होते है।<ref name=":0" />


प्रतिक्रिया का एक उदाहरण, कैडमियम सल्फाइड जमा करना, नीचे दिखाया गया है:
प्रतिक्रिया का एक उदाहरण, कैडमियम सल्फाइड जमा करना होता है, नीचे दिखाया गया है:


<chem>Cd^2+ + S^2- -> CdS</chem> (जमाव) <ref name=":0" /><ref name=":2" /><ref name=":3" />
<chem>Cd^2+ + S^2- -> CdS</chem> (निक्षेपण)<ref name=":0" /><ref name=":2" /><ref name=":3" />
=== हाइड्रोक्साइड-क्लस्टर तंत्र ===
=== हाइड्रोक्साइड-क्लस्टर तंत्र ===
हाइड्रॉक्साइड-क्लस्टर जमाव तब होता है जब हाइड्रॉक्साइड आयन घोल में मौजूद होते हैं और आमतौर पर आयन-दर-आयन जमाव की तुलना में छोटे और अधिक समान [[स्फटिक]] होते हैं।
हाइड्रॉक्साइड-क्लस्टर निक्षेपण तब होती है जब हाइड्रॉक्साइड आयन घोल में उपस्थित होते है और सामान्यतः आयन-दर-आयन निक्षेपण की तुलना में छोटे और अधिक समान होते है।


जब हाइड्रॉक्साइड आयन मात्रा में घोल में मौजूद होते हैं, तो धातु हाइड्रॉक्साइड आयन बनते हैं। हाइड्रॉक्साइड आयन धातु के पिंजरों के लिए [[लिगेंड]] के रूप में कार्य करते हैं, अघुलनशील [[कोलाइड]] क्लस्टर बनाते हैं जो दोनों पूरे समाधान में फैल जाते हैं और सब्सट्रेट पर जमा हो जाते हैं। ये क्लस्टर वैन डेर वाल्स बलों द्वारा सब्सट्रेट की ओर आकर्षित होते हैं। चॉकोजेनाइड आयन धातु के हाइड्रॉक्साइड समूहों के साथ प्रतिक्रिया करते हैं, दोनों फैल गए और जमा हो गए, धातु चाकोजेनाइड क्रिस्टल बनाने के लिए। ये क्रिस्टल पतली फिल्म बनाते हैं, जिसकी संरचना क्रिस्टलीय के समान होती है। संक्षेप में, हाइड्रॉक्साइड आयन धातु आयनों और चाकोजेनाइड आयनों के बीच मध्यस्थ के रूप में कार्य करते हैं। क्योंकि प्रत्येक हाइड्रॉक्साइड क्लस्टर एक न्यूक्लिएशन साइट है, यह जमाव विधि आमतौर पर आयन-दर-आयन जमाव की तुलना में छोटे और अधिक समान क्रिस्टल में परिणत होती है।<ref name=":2" /><ref name=":3" />
जब हाइड्रॉक्साइड आयन मात्रा में घोल में उपस्थित होते है, तो धातु हाइड्रॉक्साइड आयन बनते है। हाइड्रॉक्साइड आयन धातु के लिए [[लिगेंड]] के रूप में कार्य करते है, अघुलनशील [[कोलाइड]] क्लस्टर बनाते है जो सब्सट्रेट पर जमा हो जाते है। ये क्लस्टर वैन डेर वाल्स बलों द्वारा सब्सट्रेट की ओर आकर्षित होते है। चॉकोजेनाइड आयन धातु के हाइड्रॉक्साइड समूहों के साथ प्रतिक्रिया करते है, धातु चाकोजेनाइड क्रिस्टल बनाते है। ये क्रिस्टल पतली चलचित्र बनाते है, जिसकी संरचना क्रिस्टलीय के समान होती है। संक्षेप में, हाइड्रॉक्साइड आयन धातु आयनों और चाकोजेनाइड आयनों के बीच मध्यस्थ के रूप में कार्य करते है। क्योंकि प्रत्येक हाइड्रॉक्साइड क्लस्टर केंद्रक होते है, यह निक्षेपण विधि सामान्यतः आयन-दर-आयन निक्षेपण की तुलना में छोटे और अधिक समान क्रिस्टल में परिणत होते है।<ref name=":2" /><ref name=":3" />


कैडमियम सल्फाइड जमा करने वाली रासायनिक प्रतिक्रिया का एक उदाहरण नीचे दिखाया गया है:
कैडमियम सल्फाइड जमा करने वाली रासायनिक प्रतिक्रिया का एक उदाहरण नीचे दिखाया गया है:
Line 52: Line 52:
  <chem>[Cd(OH)2] n + nS^2- -> nCdS + 2n OH^-</chem> (प्रतिस्थापन प्रतिक्रिया)<ref name=":3" />
  <chem>[Cd(OH)2] n + nS^2- -> nCdS + 2n OH^-</chem> (प्रतिस्थापन प्रतिक्रिया)<ref name=":3" />
=== सब्सट्रेट ===
=== सब्सट्रेट ===
पतली-फिल्म जमाव के अन्य तरीकों के विपरीत, किसी भी सब्सट्रेट जो जलीय घोल में रासायनिक रूप से स्थिर है, सैद्धांतिक रूप से रासायनिक स्नान जमाव में उपयोग किया जा सकता है।<ref name=":0" />फिल्म के वांछित गुण आमतौर पर सब्सट्रेट की पसंद तय करते हैं; उदाहरण के लिए, जब प्रकाश पारदर्शिता वांछित होती है तो विभिन्न प्रकार के कांच का उपयोग किया जाता है, और फोटोवोल्टिक अनुप्रयोगों में <chem>CuInSe2</chem>आमतौर पर प्रयोग किया जाता है। पतली फिल्मों के गठन और संरचना को निर्देशित करने के लिए सबस्ट्रेट्स को मोनोलयर्स के साथ भी प्रतिरूपित किया जा सकता है।<ref name=":0" />सबस्ट्रेट्स जैसे कार्बोनाइज्ड मेलामाइन फोम (सीएफएम) और ऐक्रेलिक एसिड (AA) हाइड्रोजेल<ref>{{Cite journal|last1=Temel|first1=Sinan|last2=Gokmen|first2=Fatma Ozge|last3=Yaman|first3=Elif|date=2019-12-18|title=रासायनिक स्नान जमाव द्वारा बायोडिग्रेडेबल ऐक्रेलिक एसिड हाइड्रोजेल पर जमा किए गए ZnO नैनोफ्लॉवर की जीवाणुरोधी गतिविधि|url=https://doi.org/10.1007/s12034-019-1967-1|journal=Bulletin of Materials Science|language=en|volume=43|issue=1|pages=18|doi=10.1007/s12034-019-1967-1|s2cid=209393032 |issn=0973-7669}}</ref> कुछ विशेष अनुप्रयोगों के लिए भी उपयोग किया गया है।
पतली-चलचित्र निक्षेपण के अन्य विधियों के विपरीत, किसी भी सब्सट्रेट जो जलीय घोल में रासायनिक रूप से स्थिर होते है, और सैद्धांतिक रूप से रासायनिक ऊष्म निक्षेपण में उपयोग किया जा सकता है।<ref name=":0" /> चलचित्र के वांछित गुण सामान्यतः सब्सट्रेट की पसंद तय करते है, उदाहरण के लिए, जब प्रकाश पारदर्शिता वांछित होती है तो विभिन्न प्रकार उपयोग किया जाता है, और फोटोवोल्टिक अनुप्रयोगों में <chem>CuInSe2</chem>सामान्यतः प्रयोग किया जाता है। पतली चलचित्रों के गठन और संरचना को निर्देशित करने के लिए सबस्ट्रेट्स को मोनोलयर्स के साथ भी प्रतिरूपित किया जा सकता है।<ref name=":0" /> सबस्ट्रेट्स जैसे कार्बोनाइज्ड मेलामाइन फोम (सीएफएम) और ऐक्रेलिक अम्ल (AA) हाइड्रोजेल<ref>{{Cite journal|last1=Temel|first1=Sinan|last2=Gokmen|first2=Fatma Ozge|last3=Yaman|first3=Elif|date=2019-12-18|title=रासायनिक स्नान जमाव द्वारा बायोडिग्रेडेबल ऐक्रेलिक एसिड हाइड्रोजेल पर जमा किए गए ZnO नैनोफ्लॉवर की जीवाणुरोधी गतिविधि|url=https://doi.org/10.1007/s12034-019-1967-1|journal=Bulletin of Materials Science|language=en|volume=43|issue=1|pages=18|doi=10.1007/s12034-019-1967-1|s2cid=209393032 |issn=0973-7669}}</ref> कुछ विशेष अनुप्रयोगों के लिए भी उपयोग किया जा सकता है।


== संदर्भ ==
== संदर्भ ==
<references />[[Category: रसायन विज्ञान]] [[Category: नेनोसामग्री]] [[Category: पदार्थ विज्ञान]]
<references />


 
[[Category:CS1]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:Created On 11/06/2023]]
[[Category:Created On 11/06/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:नेनोसामग्री]]
[[Category:पदार्थ विज्ञान]]
[[Category:रसायन विज्ञान]]

Latest revision as of 08:34, 21 June 2023

रासायनिक ऊष्म निक्षेपण, जिसे रासायनिक समाधान निक्षेपण[1] और सीबीडी भी कहा जाता है, यह जलीय समाधान का उपयोग करके पतली-चलचित्र निक्षेपण की एक विधि होती है।[1] रासायनिक ऊष्म निक्षेपण सामान्यतः विषम केंद्रक (एक शुद्ध सब्सट्रेट पर जलीय आयनों का निक्षेपण) का उपयोग करके चलचित्र बनाता है,[2] धातु चॉकोजेनाइड्स (ज्यादातर ऑक्साइड, सल्फाइड, और सेलेनाइड)[1] और कई कम सजातीय पतली चलचित्रों का निर्माण करता है। यौगिक[1][2] कम तापमान (<100˚C), और कम लागत पर एक सरल प्रक्रिया का उपयोग करते हुए, रासायनिक ऊष्म निक्षेपण से चलचित्रों का निर्माण मज़बूती से होता है।[1] इसके अतिरिक्त, रासायनिक ऊष्म निक्षेपण को बड़े क्षेत्र के प्रसंस्करण या निरंतर निक्षेपण के लिए नियोजित किया जा सकता है। सीबीडी द्वारा निर्मित चलचित्रों का उपयोग अधिकांशतः अर्धचालकों, फोटोवोल्टिक कोशिकाओं और संधारित्र में किया जाता है, और नैनो सामग्री बनाने के लिए रासायनिक ऊष्म निक्षेपण का उपयोग करने में रुचि बढ़ाता है।[1][3]

उपयोग

रासायनिक ऊष्म निक्षेपण औद्योगिक अनुप्रयोगों में उपयोगी है क्योंकि यह पतली-चलचित्र निक्षेपण के अन्य विधियों की तुलना में बेहद सस्ता, सरल और विश्वसनीय होती है, जिसके लिए (अपेक्षाकृत) कम तापमान और न्यूनतम केवल जलीय घोल की आवश्यकता होती है।[1] रासायनिक ऊष्म निक्षेपण प्रक्रिया को बड़े क्षेत्र के प्रसंस्करण या निरंतर निक्षेपण तक आसानी से बढ़ाया जा सकता है।

रासायनिक ऊष्म निक्षेपण छोटे क्रिस्टल बनाता है, जो अर्धचालकों के लिए पतली-चलचित्र निक्षेपण के अन्य विधियों द्वारा बनाए गए बड़े क्रिस्टल की तुलना में कम उपयोगी होते है लेकिन नैनो सामग्री के लिए अधिक उपयोगी होते है। चूंकि, रासायनिक ऊष्म निक्षेपण द्वारा बनाई गई चलचित्रों में अधिकांशतः अन्य विधियों से बनने वाले समान पदार्थ की चलचत्रों की तुलना में बेहतर फोटोवोल्टिक गुण होते है।[1]

ऐतिहासिक उपयोग

रासायनिक ऊष्म निक्षेपण का एक उच्च इतिहास रहा है लेकिन यह पतली-चलचित्र निक्षेपण की एक असामान्य विधि होती थी।[1]

1865 में, जस्टस वॉन लिबिंग ने एक लेख प्रकाशित किया जिसमें रासायनिक ऊष्म निक्षेपण के उपयोग का वर्णन किया गया था,[4] चूंकि आधुनिक समय में विद्युत और निर्वात निक्षेपण अधिक सामान्य होते है।

WWII के आसपास, लेड सल्फाइड (PbS) और लेड सेलेनाइड (PbSe) CBD चलचित्रों का उपयोग अवरक्त अधिनायक में किया जाता है।[1] रासायनिक ऊष्म निक्षेपण द्वारा बनने पर यह चलचित्रें प्रवाहकीय होती है।[1]

अर्द्धसुचालक में भी उपयोग होने वाली पतली चलचित्रों को बनाने में रासायनिक ऊष्म निक्षेपण का एक उच्च इतिहास रहा है। चूँकि जमे क्रिस्टल का छोटा आकार अर्धचालकों के लिए आदर्श नहीं होता है और आधुनिक समय में अर्धचालकों के निर्माण के लिए रासायनिक ऊष्म निक्षेपण का उपयोग संभवतः ही कभी किया जाता है।[1]

फोटोवोल्टिक्स

फोटोवोल्टिक सेल रासायनिक ऊष्म निक्षेपण द्वारा जमा की गई चलचित्रों का सबसे आसान उपयोग होता है क्योंकि कई चलचित्रों में अन्य विधियों से जमा होने की तुलना में सीबीडी के माध्यम से जमा होने पर बेहतर फोटोवोल्टिक गुण होते है।[1] ऐसा इसलिए है क्योंकि रासायनिक ऊष्म निक्षेपण द्वारा बनाई गई पतली चलचित्रें अन्य विधियों से बनने वाली पतली चलचित्रों की तुलना में अधिक आकार की मात्रा का प्रदर्शन करती है, और इसलिए छोटे क्रिस्टल और अधिक प्रकाशिक बन्धन अंतराल होता है।[1] इन बेहतर फोटोवोल्टिक गुणों के कारण कैडमियम सल्फाइड (सीडीएस), फोटोवोल्टिक कोशिकाओं में एक पतली चलचित्र होती है, जो सीबीडी द्वारा सबसे अधिक जमा किया जाने वाला पदार्थ होता है और पदार्थ की सीबीडी शोध पत्रों में सबसे अधिक जांच की जाती है।[1][5]

फोटोवोल्टिक कोशिकाओं में परतों को जमा करने के लिए रासायनिक ऊष्म निक्षेपण का भी उपयोग किया जाता है क्योंकि सीबीडी सब्सट्रेट को नुकसान नहीं पहुंचाता है।

प्रकाशिकी

रासायनिक ऊष्म निक्षेपण चलचित्रों को कुछ तरंग दैर्ध्य को अवशोषित करने और वांछित के रूप में दूसरों को प्रतिबिंबित या प्रसारित करने के लिए बनाया जा सकता है। ऐसा इसलिए है क्योंकि रासायनिक ऊष्म निक्षेपण द्वारा बनाई गई चलचित्रों में एक ऊर्जा अंतराल होता है जिसे ठीक से नियंत्रित किया जा सकता है। इस चयनात्मक संचरण का उपयोग परावर्तक, सौर तापीय अनुप्रयोगों, प्रकाशिक फिल्टर, प्रतिक्षेपक आदि के लिए किया जा सकता है।[1] रासायनिक ऊष्म निक्षेपण द्वारा जमा की गई चलचित्रों में एंटी-प्रतिबिंब, थर्मल नियंत्रक कोटिंग्स, प्रकाशिक फिल्टर, संपूर्ण प्रतिक्षेपक, पोल्ट्री संरक्षण और ऊष्म कोटिंग्स, प्रकाश उत्सर्जक डायोड, सौर सेल निर्माण और वैरिस्टर में संभावित अनुप्रयोग होते है।

नैनो सामग्री

रासायनिक ऊष्म निक्षेपण या इलेक्ट्रोलेस निक्षेपण में नैनोमैटेरियल्स के क्षेत्र में शानदार अनुप्रयोग होते है,[1] क्योंकि छोटा क्रिस्टल आकार नैनोमीटर पर गठन को सक्षम बनाता है, क्योंकि रासायनिक ऊष्म निक्षेपण चलचित्रों के गुणों और नैनोसंरचना को त्रुटिहीन रूप से नियंत्रित किया जा सकता है, और क्योंकि रासायनिक ऊष्म निक्षेपण द्वारा जमा की गई चलचित्रों की एक समान मोटाई, संरचना और ज्यामिति चलचित्र को बनाए रखने की अनुमति देती है।[1] नैनोमीटर पर भी रासायनिक ऊष्म निक्षेपण की कम लागत और उच्च विश्वसनीयता किसी भी अन्य पतली-चलचित्र निक्षेपण तकनीक के विपरीत होते है। रासायनिक ऊष्म निक्षेपण का उपयोग पॉलीक्रिस्टलाइन और एपिटाक्सी चलचित्रों और लैटिस के उत्पादन के लिए किया जा सकता है।[3]

प्रक्रिया

रासायनिक ऊष्म निक्षेपण एक समाधान बनाने पर निर्भर करता है जैसे कि निक्षेपण (चरण संक्रमण) (एक जलीय से शुद्ध पदार्थ में परिवर्तन) केवल नीचे की विधि का उपयोग करके सब्सट्रेट पर होता है:

  • धातु के लवण और (सामान्यतः) चॉकोजेनाइड को पानी में मिलाया जाता है जिससे कि धातु के आयनों और चॉकोजेनाइड आयनों से युक्त एक जलीय घोल बनाया जा सके जो जमा होने वाले यौगिक का निर्माण करता है।
  • तापमान, पीएच, और नमक की एकाग्रता को तब तक समायोजित किया जाता है जब तक कि समाधान अतिसंतृप्ति में नहीं होता है,[5] यह तब तक होता है जब तक आयन जमा करने के लिए तैयार नहीं होते है, लेकिन केंद्रक के लिए थर्मोडायनामिक बाधा को दूर नहीं कर सकते है।[1] एक सब्सट्रेट प्रस्तुत किया जाता है, जो केंद्रक के उत्प्रेरक के रूप में कार्य करता है, और पूर्ववर्ती आयन नीचे वर्णित दो विधियों में से एक पतली क्रिस्टलीय चलचित्र बनाने वाले सब्सट्रेट का पालन करता है।

अर्थात्, समाधान एक ऐसी अवस्था में है जहाँ आयन या कोलाइडल कण चिपचिप' होते है, लेकिन एक दूसरे से चिपकते नहीं है। जब सब्सट्रेट प्रस्तुत किया जाता है, तो आयन या कण उससे चिपक जाते है और जलीय आयन शुद्ध आयनों से चिपक जाते है, जिससे एक शुद्ध यौगिक बनता है - क्रिस्टलीय चलचित्र बनाने के लिए जमा होता है।

चलचित्र का पीएच, तापमान और संरचना क्रिस्टल के आकार को प्रभावित करती है, और इसका उपयोग चलचित्र के निर्माण की दर और संरचना को नियंत्रित करने के लिए किया जा सकता है। क्रिस्टल के आकार को प्रभावित करने वाले अन्य कारकों में प्रकाश और उस चलचित्र की मोटाई सम्मलित होती है जिस पर क्रिस्टल जमा होता है।[1] विलयन को उत्तेजित करने से निलंबित कोलाइडल क्रिस्टल के निक्षेपण को रोकता है,[6] गठन की गति और तापमान को प्रभावित करता है जिस पर गठन होता है, वह जमा किए गए क्रिस्टल की संरचना को बदल सकता है।[6]

अधिकांश अन्य निक्षेपण प्रक्रियाओं के विपरीत, रासायनिक ऊष्म निक्षेपण अनियमित सबस्ट्रेट्स पर भी समान मोटाई, संरचना, और ज्यामिति (पार्श्व समरूपता) की एक चलचित्र बनाने के लिए किया जाता है क्योंकि यह निक्षेपण के अन्य विधियों के विपरीत, सतह रसायन द्वारा नियंत्रित होता है। आयन सब्सट्रेट की सभी उजागर सतहों का पालन करते है और क्रिस्टल उन आयनों से बढ़ते है। [5][7]

आयन-दर-आयन तंत्र

आयन-दर-आयन निक्षेपण में, जलीय आयन पतली चलचित्र बनाने के लिए सीधे प्रतिक्रिया करते है।

स्थितियों को इस तरह नियंत्रित किया जाता है कि कुछ हाइड्रॉक्साइड आयन निक्षेपण (सब्सट्रेट पर नहीं) या अघुलनशील धातु हाइड्रॉक्साइड की वर्षा को रोकने के लिए बनते है। कभी-कभी धातु हाइड्रॉक्साइड के गठन को रोकने के लिए एक जटिल प्रतिनिधि का उपयोग किया जाता है।[1] धातु और चेलकोजेनाइड असंबद्ध होकर धातु और चेलकोजेनाइड आयन बनाते है, जो वैन डेर वाल्स बल द्वारा सब्सट्रेट की ओर आकर्षित होते है और उनका पालन करते है।[8] आयन सब्सट्रेट का पालन करते है, और जलीय आयन बढ़ते क्रिस्टल से जुड़ते है, जिससे बड़े क्रिस्टल बनते है। इस प्रकार, निक्षेपण की इस विधि के परिणामस्वरूप हाइड्रॉक्साइड-क्लस्टर तंत्र की तुलना में बड़े और कम समान क्रिस्टल होते है।[1]

प्रतिक्रिया का एक उदाहरण, कैडमियम सल्फाइड जमा करना होता है, नीचे दिखाया गया है:

(निक्षेपण)[1][7][8]

हाइड्रोक्साइड-क्लस्टर तंत्र

हाइड्रॉक्साइड-क्लस्टर निक्षेपण तब होती है जब हाइड्रॉक्साइड आयन घोल में उपस्थित होते है और सामान्यतः आयन-दर-आयन निक्षेपण की तुलना में छोटे और अधिक समान होते है।

जब हाइड्रॉक्साइड आयन मात्रा में घोल में उपस्थित होते है, तो धातु हाइड्रॉक्साइड आयन बनते है। हाइड्रॉक्साइड आयन धातु के लिए लिगेंड के रूप में कार्य करते है, अघुलनशील कोलाइड क्लस्टर बनाते है जो सब्सट्रेट पर जमा हो जाते है। ये क्लस्टर वैन डेर वाल्स बलों द्वारा सब्सट्रेट की ओर आकर्षित होते है। चॉकोजेनाइड आयन धातु के हाइड्रॉक्साइड समूहों के साथ प्रतिक्रिया करते है, धातु चाकोजेनाइड क्रिस्टल बनाते है। ये क्रिस्टल पतली चलचित्र बनाते है, जिसकी संरचना क्रिस्टलीय के समान होती है। संक्षेप में, हाइड्रॉक्साइड आयन धातु आयनों और चाकोजेनाइड आयनों के बीच मध्यस्थ के रूप में कार्य करते है। क्योंकि प्रत्येक हाइड्रॉक्साइड क्लस्टर केंद्रक होते है, यह निक्षेपण विधि सामान्यतः आयन-दर-आयन निक्षेपण की तुलना में छोटे और अधिक समान क्रिस्टल में परिणत होते है।[7][8]

कैडमियम सल्फाइड जमा करने वाली रासायनिक प्रतिक्रिया का एक उदाहरण नीचे दिखाया गया है:

(कैडमियम हाइड्रॉक्साइड क्लस्टर का गठन)

 (प्रतिस्थापन प्रतिक्रिया)[8]

सब्सट्रेट

पतली-चलचित्र निक्षेपण के अन्य विधियों के विपरीत, किसी भी सब्सट्रेट जो जलीय घोल में रासायनिक रूप से स्थिर होते है, और सैद्धांतिक रूप से रासायनिक ऊष्म निक्षेपण में उपयोग किया जा सकता है।[1] चलचित्र के वांछित गुण सामान्यतः सब्सट्रेट की पसंद तय करते है, उदाहरण के लिए, जब प्रकाश पारदर्शिता वांछित होती है तो विभिन्न प्रकार उपयोग किया जाता है, और फोटोवोल्टिक अनुप्रयोगों में सामान्यतः प्रयोग किया जाता है। पतली चलचित्रों के गठन और संरचना को निर्देशित करने के लिए सबस्ट्रेट्स को मोनोलयर्स के साथ भी प्रतिरूपित किया जा सकता है।[1] सबस्ट्रेट्स जैसे कार्बोनाइज्ड मेलामाइन फोम (सीएफएम) और ऐक्रेलिक अम्ल (AA) हाइड्रोजेल[9] कुछ विशेष अनुप्रयोगों के लिए भी उपयोग किया जा सकता है।

संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 Hodes, Gary (2007-05-09). "सेमीकंडक्टर और सिरेमिक नैनोकण फिल्म रासायनिक स्नान जमाव द्वारा जमा की जाती हैं". Physical Chemistry Chemical Physics (in English). 9 (18): 2181–2196. Bibcode:2007PCCP....9.2181H. doi:10.1039/B616684A. ISSN 1463-9084. PMID 17487315.
  2. 2.0 2.1 Nair, P. K; Nair, M. T. S; Garcı́a, V. M; Arenas, O. L; Peña, A. Castillo, Y; Ayala, I. T; Gomezdaza, O; Sánchez, A; Campos, J; Hu, H; Suárez, R (1998-04-30). "सौर ऊर्जा से संबंधित अनुप्रयोगों के लिए रासायनिक स्नान निक्षेपण द्वारा सेमीकंडक्टर पतली फिल्म". Solar Energy Materials and Solar Cells (in English). 52 (3): 313–344. doi:10.1016/S0927-0248(97)00237-7. ISSN 0927-0248. S2CID 97624287.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. 3.0 3.1 Switzer, Jay A.; Hodes, Gary (2010-10-01). "क्रियात्मक नैनो सामग्री का विद्युत निक्षेपण और रासायनिक स्नान निक्षेपण". MRS Bulletin (in English). 35 (10): 743–750. Bibcode:2010MRSBu..35..743S. doi:10.1557/S0883769400051253. ISSN 1938-1425.
  4. Liebig, Justus (1856-01-01). "कांच की सिल्वरिंग और गिल्डिंग के बारे में". Annalen der Chemie und Pharmacie. 98: 132–139. doi:10.1002/jlac.18560980112.
  5. 5.0 5.1 5.2 Guire, Mark R. De; Bauermann, Luciana Pitta; Parikh, Harshil; Bill, Joachim (2013), Schneller, Theodor; Waser, Rainer; Kosec, Marija; Payne, David (eds.), "Chemical Bath Deposition", Chemical Solution Deposition of Functional Oxide Thin Films (in English), Vienna: Springer, pp. 319–339, doi:10.1007/978-3-211-99311-8_14, ISBN 978-3-211-99311-8, retrieved 2021-11-18
  6. 6.0 6.1 Tec-Yam, S.; Patiño, R.; Oliva, A. I. (2011-05-01). "विभिन्न सब्सट्रेट ओरिएंटेशन पर सीडीएस फिल्मों का रासायनिक स्नान निक्षेपण". Current Applied Physics (in English). 11 (3): 914–920. Bibcode:2011CAP....11..914T. doi:10.1016/j.cap.2010.12.016. ISSN 1567-1739.
  7. 7.0 7.1 7.2 Froment, Michel; Lincot, Daniel (1995-07-01). "Phase formation processes in solution at the atomic level: Metal chalcogenide semiconductors". Electrochimica Acta (in English). 40 (10): 1293–1303. doi:10.1016/0013-4686(95)00065-M. ISSN 0013-4686.
  8. 8.0 8.1 8.2 8.3 Aida, M. S.; Hariech, S. (2020), Ikhmayies, Shadia Jamil (ed.), "Cadmium Sulfide Thin Films by Chemical Bath Deposition Technique", Advances in Energy Materials, Advances in Material Research and Technology (in English), Cham: Springer International Publishing, pp. 49–75, doi:10.1007/978-3-030-50108-2_3, ISBN 978-3-030-50108-2, S2CID 226640144, retrieved 2021-11-22
  9. Temel, Sinan; Gokmen, Fatma Ozge; Yaman, Elif (2019-12-18). "रासायनिक स्नान जमाव द्वारा बायोडिग्रेडेबल ऐक्रेलिक एसिड हाइड्रोजेल पर जमा किए गए ZnO नैनोफ्लॉवर की जीवाणुरोधी गतिविधि". Bulletin of Materials Science (in English). 43 (1): 18. doi:10.1007/s12034-019-1967-1. ISSN 0973-7669. S2CID 209393032.