लोरेनसियम: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (11 revisions imported from alpha:लोरेनसियम) |
(No difference)
| |
Revision as of 12:55, 21 June 2023
| Lawrencium | ||||||
|---|---|---|---|---|---|---|
| उच्चारण | /lɒˈrɛnsiəm/ ( | |||||
| दिखावट | silvery (predicted)[1] | |||||
| जन अंक | [266] | |||||
| Lawrencium in the periodic table | ||||||
| ||||||
| Atomic number (Z) | 103 | |||||
| समूह | group 3 | |||||
| अवधि | period 7 | |||||
| ब्लॉक | d-block | |||||
| ऋणावेशित सूक्ष्म अणु का विन्यास | [Rn] 5f14 7s2 7p1 | |||||
| प्रति शेल इलेक्ट्रॉन | 2, 8, 18, 32, 32, 8, 3 | |||||
| भौतिक गुण | ||||||
| Phase at STP | solid (predicted) | |||||
| गलनांक | 1900 K (1627 °C, 2961 °F) (predicted) | |||||
| Density (near r.t.) | 14.4 g/cm3 (predicted)[2] | |||||
| परमाणु गुण | ||||||
| ऑक्सीकरण राज्य | +3 | |||||
| इलेक्ट्रोनगेटिविटी | Pauling scale: 1.3 (predicted)[3] | |||||
| Ionization energies |
| |||||
| अन्य गुण | ||||||
| प्राकृतिक घटना | synthetic | |||||
| क्रिस्टल की संरचना | hexagonal close-packed (hcp) (predicted)[5] | |||||
| CAS नंबर | 22537-19-5 | |||||
| History | ||||||
| नामी | after Ernest Lawrence | |||||
| खोज] | Lawrence Berkeley National Laboratory and Joint Institute for Nuclear Research (1961–1971) | |||||
| ||||||
लॉरेंसियम एक कृत्रिम रासायनिक तत्व है जिसमें प्रतीक Lr (पूर्व में एलडब्ल्यू) और परमाणु संख्या १०३ है। इसका नाम साइक्लोट्रॉन (एक उपकरण जिसका उपयोग कई कृत्रिम रेडियोधर्मी तत्वों की खोज के लिए किया गया था) के आविष्कारक अर्नेस्ट लॉरेंस के सम्मान में रखा गया है। एक रेडियोधर्मी धातु, लॉरेंसियम ग्यारहवां परायूरेनिमय तत्व है और एक्टिनाइड श्रृंखला का अंतिम सदस्य है। १०० से अधिक परमाणु संख्या वाले सभी तत्वों की तरह, आवेशित कणों के साथ हल्के तत्वों पर अभिघात करके केवल कण त्वरक में लॉरेंशियम का उत्पादन किया जा सकता है। लॉरेंसियम के चौदह समस्थानिक वर्तमान में ज्ञात हैं; सबसे स्थिर २६०Lr है जिसमें अर्ध-जीवन 11 घंटे है, लेकिन कम समय तक रहने वाले २६०Lr (अर्ध-जीवन २.७ मिनट) रसायन विज्ञान में सबसे अधिक उपयोग किया जाता है क्योंकि इसे बड़े मापक्रम पर उत्पादित किया जा सकता है।
रसायन विज्ञान के प्रयोग इस बात की पुष्टि करते हैं कि लॉरेंसियम आवर्त सारणी में ल्यूटेशियम के लिए एक भारी होमोलॉग (रसायन विज्ञान) के रूप में व्यवहार करता है, और एक त्रिकोणीय (रसायन विज्ञान) तत्व है। इस प्रकार इसे 7-अवधि के संक्रमण धातुओं में से पहले के रूप में वर्गीकृत किया जा सकता है: हालांकि, इसकी इलेक्ट्रॉन विन्यास आवर्त सारणी में अपनी स्थिति के लिए विषम है, इसके होमोलॉग ल्यूटेटियम के s2d विन्यास के स्थान पर एक s2d विन्यास है। इसका अर्थ यह है कि लॉरेंसियम आवर्त सारणी में अपनी स्थिति के लिए अपेक्षा से अधिक अस्थिरता (रसायन विज्ञान) हो सकता है और इसमें सीसे की तुलना में अस्थिरता हो सकती है।
१९५०, १९६० और १९७० के दशक में, सोवियत संघ और संयुक्त राज्य अमेरिका में प्रयोगशालाओं से अलग-अलग गुणवत्ता के लॉरेंसियम के संश्लेषण के कई दावे किए गए थे। खोज की प्राथमिकता और इसलिए तत्व का नाम सोवियत और अमेरिकी वैज्ञानिकों के बीच विवादित था, और जबकि शुद्ध और व्यावहारिक रसायन के अंतर्राष्ट्रीय संघ (आईयूपीएसी) ने प्रारम्भ में तत्व के लिए आधिकारिक नाम के रूप में लॉरेंशियम की स्थापना की और अमेरिकी दल को खोज का श्रेय दिया, इसका पुनर्मूल्यांकन १९९७ में किया गया, जिससे दोनों दलो ने खोज के लिए साझा श्रेय दिया लेकिन तत्व के नाम को नहीं बदला।
परिचय
| External video | |
|---|---|
The heaviest[lower-alpha 1] atomic nuclei are created in nuclear reactions that combine two other nuclei of unequal size[lower-alpha 2] into one; roughly, the more unequal the two nuclei in terms of mass, the greater the possibility that the two react.[12] The material made of the heavier nuclei is made into a target, which is then bombarded by the beam of lighter nuclei. Two nuclei can fuse into one only if they approach each other closely enough; normally, nuclei (all positively charged) repel each other due to electrostatic repulsion. The strong interaction can overcome this repulsion but only within a very short distance from a nucleus; beam nuclei are thus greatly accelerated in order to make such repulsion insignificant compared to the velocity of the beam nucleus.[13] Coming close alone is not enough for two nuclei to fuse: when two nuclei approach each other, they usually remain together for approximately 10−20 seconds and then part ways (not necessarily in the same composition as before the reaction) rather than form a single nucleus.[13][14] If fusion does occur, the temporary merger—termed a compound nucleus—is an excited state. To lose its excitation energy and reach a more stable state, a compound nucleus either fissions or ejects one or several neutrons,[lower-alpha 3] which carry away the energy. This occurs in approximately 10−16 seconds after the initial collision.[15][lower-alpha 4]
The beam passes through the target and reaches the next chamber, the separator; if a new nucleus is produced, it is carried with this beam.[18] In the separator, the newly produced nucleus is separated from other nuclides (that of the original beam and any other reaction products)[lower-alpha 5] and transferred to a surface-barrier detector, which stops the nucleus. The exact location of the upcoming impact on the detector is marked; also marked are its energy and the time of the arrival.[18] The transfer takes about 10−6 seconds; in order to be detected, the nucleus must survive this long.[21] The nucleus is recorded again once its decay is registered, and the location, the energy, and the time of the decay are measured.[18]
Stability of a nucleus is provided by the strong interaction. However, its range is very short; as nuclei become larger, their influence on the outermost nucleons (protons and neutrons) weakens. At the same time, the nucleus is torn apart by electrostatic repulsion between protons, as it has unlimited range.[22] Nuclei of the heaviest elements are thus theoretically predicted[23] and have so far been observed[24] to primarily decay via decay modes that are caused by such repulsion: alpha decay and spontaneous fission;[lower-alpha 6] these modes are predominant for nuclei of superheavy elements. Alpha decays are registered by the emitted alpha particles, and the decay products are easy to determine before the actual decay; if such a decay or a series of consecutive decays produces a known nucleus, the original product of a reaction can be determined arithmetically.[lower-alpha 7] Spontaneous fission, however, produces various nuclei as products, so the original nuclide cannot be determined from its daughters.[lower-alpha 8]
The information available to physicists aiming to synthesize one of the heaviest elements is thus the information collected at the detectors: location, energy, and time of arrival of a particle to the detector, and those of its decay. The physicists analyze this data and seek to conclude that it was indeed caused by a new element and could not have been caused by a different nuclide than the one claimed. Often, provided data is insufficient for a conclusion that a new element was definitely created and there is no other explanation for the observed effects; errors in interpreting data have been made.[lower-alpha 9]
इतिहास
१९५८ में, लॉरेंस बर्कले राष्ट्रीय प्रयोगशाला के वैज्ञानिकों ने तत्व १०२ की खोज का दावा किया, जिसे अब नोबेलियम कहा जाता है। साथ ही, उन्होंने भूयाति-१४ आयनों के साथ प्रयोग किए जाने वाले एक ही क्यूरियम लक्ष्य पर अभिघात करके तत्व १०३ को संश्लेषित करने का भी प्रयास किया। अठारह पथानुसरण का उल्लेख किया गया, जिसमें क्षय ऊर्जा लगभग 9±1 एमवी और आधा जीवन ०.२५ सेकंड के आसपास था; बर्कले दल ने टिप्पणी किया कि यद्यपि इसका कारण तत्व १०३ के समस्थानिक का उत्पादन हो सकता है, अन्य संभावनाओं से अस्वीकार नहीं किया जा सकता है। जबकि आंकड़े यथोचित रूप से २५७Lr (अल्फा क्षय ऊर्जा ८.८७ एमईवी, अर्ध-जीवन ०.६ एस) के लिए बाद में खोजे गए से सहमत है, इस प्रयोग में प्राप्त साक्ष्य निर्णायक रूप से तत्व १०३ के संश्लेषण को प्रदर्शित करने के लिए आवश्यक शक्ति से बहुत कम थे। अनुवर्ती कार्रवाई इस पर प्रयोग नहीं किया गया, क्योंकि लक्ष्य नष्ट हो गया था। [36][37] १९६० में, लॉरेंस बर्कले प्रयोगशाला ने अभिघात करके तत्व को संश्लेषित करने का प्रयास किया २५२Cf के साथ १०B और ११B है। इस प्रयोग के परिणाम निर्णायक नहीं थे। [36]
तत्व १०३ पर पहला महत्वपूर्ण कार्य १४ फरवरी, १९६१ को अल्बर्ट घियोर्सो, टोरबजोर्न सिक्कलैंड, एलमोन लार्श, रॉबर्ट एम. लैटिमर और उनके सहकर्मियों की परमाणु भौतिकी दल द्वारा बर्कले में किया गया था। [38] लॉरेंशियम के पहले परमाणुओं को भारी आयन रैखिक त्वरक (एचआईएलएसी) से बोरॉन -१० और बोरॉन -११ परमाणु नाभिक के साथ तीन मिलीग्राम लक्ष्य पर अभिघात करके कथित तौर पर बनाया गया था। [39] बर्कले दल ने बताया कि समस्थानिक २५७१०३ का पता इस तरीके से लगाया गया था, यह 8±2 S के आधे जीवन के साथ 8.6 MeV अल्फा कण का उत्सर्जन करके क्षय हो गया। [37] बाद में इस पहचान २५८१०३ को सुधारा गया, [39] जैसा कि बाद के काम ने सिद्ध किया कि 257Lr में गुणों का पता नहीं चला, लेकिन 258Lr में पता लगा था। [37] इसे उस समय तत्व १०३ के संश्लेषण का ठोस प्रमाण माना जाता था: जबकि द्रव्यमान समनुदेशन कम निश्चित था और गलत सिद्ध हुआ, इसने तत्व १०३ के संश्लेषण के पक्ष में तर्कों को प्रभावित नहीं किया। अप्रैल (तब सोवियत संघ में) में परमाणु अनुसंधान के संयुक्त संस्थान के वैज्ञानिकों ने कई आलोचनाएँ कीं: और एक को छोड़कर सभी का पर्याप्त उत्तर दिया गया। अपवाद वह था कि लक्ष्य में २५२Cf सबसे सामान्य समस्थानिक था और १०B के साथ प्रतिक्रियाओं में २५८Lr केवल चार न्यूट्रॉन का उत्सर्जित करके किया जा सकता था, और तीन न्यूट्रॉन के उत्सर्जन की संभावना चार या पांच के उत्सर्जन की तुलना में बहुत कम होने की आशा थी। यह एक संकीर्ण उपज वक्र की ओर ले जाएगा। एक संभावित व्याख्या यह थी कि तत्व १०३ के कारण घटनाओं की संख्या कम थी। [37] तत्व १०३ की निर्विवाद खोज के लिए यह एक महत्वपूर्ण मध्यवर्ती कदम था, हालांकि साक्ष्य पूरी तरह से आश्वस्त करने वाला नहीं था। [37] साइक्लोट्रॉन के आविष्कारक अर्नेस्ट लॉरेंस के बाद, बर्कले दल ने प्रतीक एलडब्ल्यू के साथ लॉरेंसियम नाम प्रस्तावित किया। अकार्बनिक रसायन विज्ञान के नामपद्धति पर आईयूपीएसी आयोग ने नाम स्वीकार कर लिया, लेकिन प्रतीक को Lr में बदल दिया। [40] खोज की इस स्वीकृति को बाद में डबना दल द्वारा अविचारी के रूप में वर्णित किया गया। [37]
- 252
98Cf
+ 11
5B
→ 263
103Lr
* → 258
103Lr
+ 5 1
0n
तत्व १०३ पर डबना में पहला काम १९६५ में आया, जब उन्होंने १९७० में २४३m पर १८ऑक्सीजन के साथ अभिघात करके २५६१०३ बनाने की सूचना दी, इसके क्षय उत्पादफेर्मियम -२५२ से अप्रत्यक्ष रूप से इसकी पहचान की। उनके द्वारा बताया गया आधा जीवन संभवतः पृष्ठभूमि की घटनाओं के कारण कुछ हद तक बहुत अधिक था। बाद में उसी प्रतिक्रिया पर १९६७ के कार्य ने ८.३५–८.५० एमईवी और ८.५०–८.६० एमईवी की सीमा में दो क्षय ऊर्जाओं की पहचान की: इन्हें २५६१०३ और २५७१०३ सौंपा गया था। [37] बार-बार के प्रयासों के बाद भी, वे ८ सेकंड के आधे जीवन के साथ एक अल्फा उत्सर्जक २५७१०३ के समनुदेशन की पुष्टि करने में असमर्थ थे। [41][42] रूसियों ने १९६७ में नए तत्व के लिए रदरफोर्डियम नाम प्रस्तावित किया: [36][43] यह नाम बाद में बर्कले द्वारा रदरफोर्डियम के लिए प्रस्तावित किया गया था। [43]
- 243
95Am
+ 18
8O
→ 261
103Lr
* → 256
103Lr
+ 5 1
0n
१९६९ में डबना में और १९७० में बर्कले में आगे के प्रयोगों ने नए तत्व के लिए एक एक्टिनाइड रसायन का प्रदर्शन किया; इसलिए १९७० तक यह ज्ञात हो गया था कि तत्व १०३ अंतिम एक्टिनाइड है। [37][44] १९७० में, डबना समूह ने अर्ध-जीवन २० सेकंड और अल्फ़ा क्षय ऊर्जा ८.३८ एमईवी के साथ २५५१०३ के संश्लेषण की सूचना दी। [37] हालांकि, यह १९७१ तक नहीं था, जब बर्कले में कैलिफोर्निया विश्वविद्यालय में परमाणु भौतिकी दल ने २५५ से २६० द्रव्यमान संख्या वाले लॉरेन्शियम समस्थानिकों के परमाणु क्षय गुणों को मापने के उद्देश्य से प्रयोगों की एक पूरी श्रृंखला सफलतापूर्वक की थी, [45][46] जो बर्कले और डबना के पिछले सभी परिणाम थे। इसके अतिरिक्त बर्कले के समूह ने अपने पहले उत्पादित समनुदेशन को संभवत: सही २५८१०३ के स्थान पर २५७१०३ पर प्रारंभिक गलत समनुदेशन के अतिरिक्त सभी अंतिम संदेह [37] १९७६ और १९७७ में दूर हो गए जब एक्स-रे की ऊर्जा से उत्सर्जित हुई २५८१०३ मापा गया। [37]
लेकिन १९७१ में, आइयूपीएसी ने लॉरेंस बर्कले प्रयोगशाला को लॉरेंसियम की खोज की अनुमति दी, भले ही उनके पास तत्व के अस्तित्व के लिए आदर्श आंकड़े नहीं था। लेकिन १९९२ में,आइयूपीएसी ट्रांसमियम वर्किंग ग्रुप (टीडब्ल्यूजी) ने डबना और बर्कले में परमाणु भौतिकी दलो को लॉरेंसियम के सह-खोजकर्ता के रूप में आधिकारिक रूप से मान्यता दी, यह निष्कर्ष निकाला कि १९६१ के बर्कले प्रयोग लॉरेंसियम की खोज के लिए एक महत्वपूर्ण कदम थे, लेकिन वे अभी तक पूरी तरह से आश्वस्त नहीं थे।; और जबकि १९६५, १९६८, और १९७० डबना प्रयोग एक साथ लिए गए विश्वास के आवश्यक स्तर के बहुत निकट आ गए, केवल १९७१ के बर्कले प्रयोग, जिन्होंने पिछले अवलोकनों को स्पष्ट और पुष्टि की, अंततः तत्व १०३ की खोज में पूर्ण विश्वास का परिणाम हुआ। [36][40] क्योंकि इस समय तक लॉरेंसियम नाम लंबे समय से उपयोग में था, इसे आइयूपीएसी द्वारा बनाए रखा गया था,[36]और अगस्त १९९७ में, शुद्ध और अनुप्रयुक्त रसायन विज्ञान का अंतर्राष्ट्रीय संघ (आइयूपीएसी) ने जिनेवा में एक बैठक के उपरान्त लॉरेंसियम नाम और प्रतीक Lr की पुष्टि करी थी। [40]
विशेषताएं
भौतिक
लॉरेंसियम अंतिम एक्टिनाइड है। इस विषय पर विचार करने वाले लेखक सामान्यतः इसे स्कैंडियम, येट्रियम और ल्यूटेटियम के साथ समूह ३ तत्व मानते हैं, क्योंकि इसके भरे हुए f-आवरण से यह अन्य अवधि ७ तत्व के संक्रमण धातुओं के समान होने की आशा है। आवर्त सारणी में, यह एक्टिनाइड नोबेलियम के दाईं ओर, ६D संक्रमण धातु रदरफोर्डियम के बाईं ओर, और लैंथेनाइड ल्यूटेटियम के नीचे है जिसके साथ यह कई भौतिक और रासायनिक गुणों को साझा करता है। लॉरेंशियम सामान्य परिस्थितियों में एक ठोस होने की आशा है और एक षटकोणीय सुसंकुलन क्रिस्टल संरचना (c/a = 1.58) है, इसके लाइटर सजातीय (रसायन विज्ञान) ल्यूटीशियम के समान, हालांकि यह अभी तक प्रयोगात्मक रूप से ज्ञात नहीं है। [5] लॉरेंसियम के उर्ध्वपातन (चरण संक्रमण) की तापीय धारिता का पुर्वानुमान ३५२ केजे/एमओएलl है, जो ल्यूटेशियम के मूल्य के निकट है और दृढ़ता से सुझाव देता है कि धात्विक लॉरेंशियम तीन इलेक्ट्रॉनों के साथ त्रिसंयोजक है, इलेक्ट्रॉनों को विस्थानित किया गया है, एक पूर्वानुमान भी मूल्यों के एक व्यवस्थित बहिर्वेशन द्वारा समर्थित है। लॉरेन्शियम के वाष्पीकरण की ऊष्मा, थोक मापांक, और प्रतिवैस तत्वों का परमाणु आयतन:[47] यह इसे तुरंत बाद के एक्टिनाइड्स के विपरीत बनाता है जो कि (फर्मियम और मेंडेलीवियम) के रूप में जाने जाते हैं या (नोबेलियम) द्विसंयोजक होने की आशा है। [48] वाष्पीकरण की अनुमानित तापीय धारिता दर्शाती है कि लॉरेन्शियम उत्तरवर्ती एक्टिनाइड्स की प्रवृत्ति से विचलित होता है और इसके स्थान पर बाद के ६डी तत्वों रदरफोर्डियम और डब्नियम की प्रवृत्ति से मेल खाता है, [49][50] समूह ३ तत्व के रूप में लॉरेंसियम की व्याख्या के अनुरूप है।[50] कुछ वैज्ञानिक एक्टिनाइड्स को नोबेलियम से समाप्त करना पसंद करते हैं और लॉरेंसियम को सातवीं अवधि की पहली संक्रमण धातु मानते हैं।[51][52]
विशेष रूप से, लॉरेंशियम एक त्रिसंयोजक, चांदी की धातु होने की आशा है, हवा, भाप और अम्ल द्वारा आसानी से ऑक्सीकरण किया जाता है,[53] और ल्यूटेटियम के समान एक परमाणु मात्रा और १७१ pm का त्रिसंयोजी धात्विक त्रिज्या होने की आशा है। [47] यह लगभग 14.4 g/cm3 के घनत्व के साथ अपेक्षाकृत भारी धातु होने की अपेक्षा है। यह भी लगभग 1900 K (1627 ° C) के गलनांक होने का पूर्वानुमान किया गया है, जो लुटेटियम (1925 K) के मान से बहुत दूर नहीं है।।[54]
रासायनिक
१९४९ में, ग्लेन टी. सीबॉर्ग, जिन्होंने एक्टिनाइड अवधारणा को तैयार किया, उन्होंने पूर्वानुमान की कि तत्व १०३ (लॉरेंशियम) अंतिम एक्टिनाइड होना चाहिए और कि Lr3+ आयन लगभग उतना ही स्थिर होना चाहिए जितना कि जलीय घोल Lu3+ है। यह दशकों बाद तक नहीं था कि तत्व १०३ को अंततः निर्णायक रूप से संश्लेषित किया गया था और इस पूर्वानुमान की प्रयोगात्मक रूप से पुष्टि की गई थी। [55]
तत्व पर १९६९ के अध्ययन से पता चला है कि लॉरेंसियम क्लोरीन के साथ प्रतिक्रिया करके एक उत्पाद बनाता है जो ट्राइक्लोराइड LrCl3 होने की सबसे अधिक संभावना थी। इसकी अस्थिरता (रसायन विज्ञान) क्यूरियम, फर्मियम और नोबेलियम के क्लोराइड के समान पाई गई और रदरफोर्डियम क्लोराइड की तुलना में बहुत कम पाई गई। १९७० में, के १५०० परमाणुओं पर रासायनिक अध्ययन किए गए २५६एलआर, इसकी तुलना डाइवेलेंट (नोबेलियम, बेरियम, रेडियम), ट्रिवेलेंट (फ़र्मियम, कैलिफ़ोर्नियम, क्यूरियम, एमरिकियम, जंगी ) और टेट्रावेलेंट (थोरियम, प्लूटोनियम) तत्वों से करते हैं। यह पाया गया कि लॉरेंसियम निष्कर्षण (रसायन विज्ञान) त्रिसंयोजक आयनों के साथ, लेकिन कम आधा जीवन २५६Lr ने इस बात की पुष्टि नहीं की कि यह Md3+ सन्दर्भ अनुक्रम में आगे निकल रहा है। [55] लॉरेंसियम त्रिसंयोजक के रूप में होता है Lr3+ जलीय घोल में आयन और इसलिए इसके यौगिक अन्य त्रिसंयोजक एक्टिनाइड्स के समान होने चाहिए: उदाहरण के लिए, लॉरेंसियम (तृतीय) फ्लोराइड (LrF3) और हीड्राकसीड (Lr(OH)3) दोनों पानी में अघुलनशील होना चाहिए। [55] लैंथेनाइड संकुचन के कारण, आयनिक त्रिज्या Lr3+ से छोटा होना चाहिए Md3+, और इसे आगे बढ़ना चाहिए Md3+ जब अमोनियम α-हाइड्रॉक्सीआइसोब्यूटाइरेट (अमोनियम α-एचआईबी) का उपयोग प्रोद्धावक के रूप में किया जाता है। [55] बाद में लंबे समय तक रहने वाले समस्थानिक 260Lr पर 1987 के प्रयोगों ने लॉरेन्शियम की त्रिसंयोजकता की पुष्टि की और यह स्थूलतः एर्बियम के समान स्थान में पाया गया, और पाया कि लॉरेन्शियम का आयनिक त्रिज्या 88.6±0.3 अपराह्न था, जो आवधिक प्रवृत्तियों से सरल बहिर्वेशन से अपेक्षित होगा। [55] बाद में अधिक लॉरेंसियम परमाणुओं के साथ 1988 के प्रयोगों ने इसे परिष्कृत किया 88.1±0.1 pm और के जलयोजन मान −3685±13 kJ/mol की ऊष्मा की गणना करी। [55] यह भी पाया गया कि एक्टिनाइड्स के अंत में एक्टिनाइड संकुचन समान लैंथेनाइड संकुचन से बड़ा था, अंतिम एक्टिनाइड, लॉरेंसियम के अपवाद के साथ: इसका कारण सापेक्ष प्रभाव होने का पुर्वानुमान लगाया गया था। [55]
यह पुर्वानुमान लगाया गया है कि 7s इलेक्ट्रान आपेक्षिक रूप से स्थिर किया जाता है, ताकि परिस्थितियों को कम करने में, केवल 7p1/2 इलेक्ट्रॉन को आयनित किया जा सके, जिससे एकार्थक Lr+ आयन होता है। यद्यपि, सभी प्रयोग कम करने के लिए Lr3+ को Lr2+ या Lr+ जलीय घोल में असफल रहे, इसी तरह ल्यूटेटियम होता है। इसके आधार पर, E°(Lr3+ → Lr+) युगल की मानक विद्युतद्वार क्षमता की गणना -1.56 V से कम की गई थी, यह दर्शाता है कि जलीय घोल में Lr+ आयनों के अस्तित्व की संभावना नहीं थी। E°(Lr3+ → Lr2+) युगल के लिए ऊपरी सीमा −0.44 V होने की भविष्यवाणी की गई थी: E°(Lr3+ → Lr) और E°(Lr4+ → Lr3+) के मान -2.06 V और +7.9 V होने का पूर्वानुमान किया गया है। 6d संक्रमण श्रृंखला में समूह ऑक्सीकरण अवस्था की स्थिरता RfIV> DbV> SgVI के रूप में घट जाती है, और लॉरेंशियम LrIII के साथ RfIV की तुलना में अधिक स्थिर होने की प्रवृत्ति को जारी रखता है। [56]
लॉरेंशियम डाइहाइड्राइड (LrH2) अणु में, जिसके मुड़े होने का पूर्वानुमान किया गया है, लॉरेंसियम के 6d कक्षीय से आबंधन में भूमिका निभाने की अपेक्षा नहीं है। LaH2 में 2.158 Å की La-H आबंध दूरी है, जबकि LrH2 में 2.042 Å की Lr-H आबंध दूरी कम होनी चाहिए, जो आबन्धन में सम्मिलित 7s और 7p कक्षीय के सापेक्षिक संकुचन और स्थिरीकरण के कारण अंतर्भाग-जैसे 5f के विपरीत है। उपकोश और अधिकतर असंबद्ध 6d उपकोश है। सामान्यतः, आणविक LrH2 और LrH संबंधित थैलियम प्रजातियों (गैस चरण में 6s26p1 संयोजी विन्यास वाले थैलियम, लॉरेन्शियम के 7s27p1 की तरह) से मिलते-जुलते होने की अपेक्षा की जाती है। Lr+ और Lr2+ का इलेक्ट्रॉन विन्यास क्रमशः 7s2 और 7s1 होने की अपेक्षा है। हालांकि, प्रजातियों में जहां लॉरेंसियम के सभी तीन रासायनिक संयोजन इलेक्ट्रॉनों को कम से कम औपचारिक रूप से Lr3+ धनायन देने के लिए आयनित किया जाता है, लॉरेंसियम से एक विशिष्ट एक्टिनाइड और ल्यूटेशियम के भारी संयुग्मक की तरह व्यवहार करने की अपेक्षा की जाती है, विशेष रूप से क्योंकि लॉरेंसियम के पहले तीन आयनीकरण क्षमता की भविष्यवाणी की जाती है लुटेटियम के समान है। इसलिए, थैलियम के विपरीत लेकिन लुटेटियम की तरह, लॉरेंसियम LrH की तुलना में LrCl3 बनाना पसंद करेगा, और LrCO को भी अज्ञात LuCO के समान होने की अपेक्षा है, दोनों धातुएं अपने मोनोकार्बोनिल्स में रासायनिक संयोजन समाकृति σ2π1 रखती हैं। pπ-dπ आबंध LrCl3 में दिखाई देने की अपेक्षा है जैसे कि यह LuCl3 और अधिक सामान्यतः सभी LnCl3 के लिए है। संकुल ऋणायन [Lr(C5H4SiMe3)3] लॉरेंसियम के लिए 6d1 के विन्यास के साथ स्थिर होने की अपेक्षा है; यह 6d कक्षीय इसका उच्चतम अधिकृत आणविक कक्षीय होगा। यह समान ल्यूटेटियम यौगिक की इलेक्ट्रॉनिक संरचना के अनुरूप है।
परमाणु
लॉरेंसियम में तीन वैलेंस इलेक्ट्रॉन होते हैं: 5f इलेक्ट्रॉन परमाणु कोर में होते हैं। [61] 1970 में, यह भविष्यवाणी की गई थी कि लॉरेंसियम का जमीनी अवस्था इलेक्ट्रॉन विन्यास [Rn]5f146d17s2 (स्थिर अवस्था शब्द प्रतीक 2D3/2) था, औफबाऊ सिद्धांत के अनुसार और लॉरेंसियम के लाइटर होमोलॉग लुटेटियम के [Xe]4f145d16s2 विन्यास के अनुरूप था। लेकिन अगले साल, गणना प्रकाशित की गई जिसने इस भविष्यवाणी पर सवाल उठाया, इसके बजाय एक विषम [Rn]5f147s27p1 विन्यास की अपेक्षा की। हालांकि प्रारम्भिक गणनाओं ने परस्पर विरोधी परिणाम दिए, हाल के अध्ययनों और गणनाओं ने s2p सुझाव की पुष्टि करी थी। 1974 सापेक्षतावादी गणना ने निष्कर्ष निकाला कि दो विन्यासों के बीच ऊर्जा अंतर छोटा था और यह अनिश्चित था जो स्थिर स्थिति थी। बाद में 1995 की गणनाओं ने निष्कर्ष निकाला कि s2p विन्यास ऊर्जावान रूप से अनुकूल होना चाहिए, क्योंकि गोलाकार s और p1/2 कक्षीय परमाणु नाभिक के सबसे निकट हैं और इस प्रकार इतनी तीव्रता से आगे बढ़ते हैं कि उनका सापेक्षिक द्रव्यमान काफी बढ़ जाता है। [57]
1988 में, आयशर के नेतृत्व में वैज्ञानिकों के एक दल ने गणना की कि धातु स्रोतों पर लॉरेंसियम की सोखने की ऊष्मा इसके इलेक्ट्रॉन विन्यास के आधार पर पर्याप्त रूप से भिन्न होगी कि लॉरेंसियम के इलेक्ट्रॉन विन्यास को मापने के लिए इस तथ्य का लाभ उठाने के लिए प्रयोग करना संभव होगा। S2p विन्यास S की तुलना में अधिक अस्थिरता (रसायन विज्ञान) होने की आशा s2d समाकृति, और पी-खण्ड अल्पांश लेड के समान होना चाहिए। लॉरेंसियम के अस्थिर होने का कोई प्रमाण प्राप्त नहीं हुआ था और स्फटिक या प्लैटिनम पर लॉरेंसियम के सोखने की ऊष्मा की निचली सीमा S2p समाकृति के लिए अनुमानित मूल्य से काफी अधिक थी।[57]
2015 में, समस्थानिक का उपयोग करके लॉरेंसियम की पहली आयनीकरण ऊर्जा को मापा गया था। [4] मापित मूल्य, 4.96+0.08
−0.07 eV, 4.963(15) eV की सापेक्षवादी सैद्धांतिक पूर्वानुमान से बहुत अच्छी तरह से सहमत हुए, और ट्रांसएक्टिनाइड्स की पहली आयनीकरण ऊर्जा को मापने में पहला कदम भी प्रदान किया। [4] यह मान सभी लैंथेनाइड्स और एक्टिनाइड्स में सबसे कम है, और s2p कॉन्फ़िगरेशन का समर्थन करता है क्योंकि 7p1/2 इलेक्ट्रॉन के केवल शक्तिहीन रूप से बंधे होने की उम्मीद है। जैसा कि F-खण्ड में सामान्यतः आयनीकरण ऊर्जा बाएं से दाएं बढ़ती है, यह कम मूल्य बताता है कि ल्यूटेशियम और लॉरेंशियम डी-खण्ड (जिसकी प्रवृत्ति वे अनुसरण करते हैं) में हैं और एफ-खण्ड नहीं हैं। यह उन्हें लेण्टेनियुम और एक्टिनियम के स्थान पर स्कैंडियम और येट्रियम के भारी प्रवर्तक बना देगा। [58] हालांकि कुछ क्षार धातु जैसे व्यवहार की पूर्वानुमान की गई है, [59] अधिशोषण के प्रयोगों से पता चलता है कि लॉरेंसियम स्कैंडियम और येट्रियम की तरह त्रिसंयोजक है, क्षार धातुओं की तरह एकार्थक नहीं। [49] प्रयोगात्मक रूप से 2021 में लॉरेंसियम की दूसरी आयनीकरण ऊर्जा (>13.3 eV) की निचली सीमा पाई गई थी। [60]
भले ही s2p को अब लॉरेंसियम परमाणु, ds2 के स्थिर अवस्था विन्यास के रूप में जाना जाता है एक निम्न-स्तरीय उत्तेजित-राज्य समाकृति होना चाहिए, जिसमें विभिन्न प्रकार से 0.156 eV, 0.165 eV, या 0.626 eV के रूप में गणना की गई उत्तेजना ऊर्जा हो। [61] इस तरह के लॉरेंसियम को अभी भी एक डी-खण्ड तत्व माना जा सकता है, यद्यपि एक विषम इलेक्ट्रॉन विन्यास (जैसे क्रोमियम या तांबे) के साथ, क्योंकि इसका रासायनिक व्यवहार ल्यूटेटियम के भारी समधर्मी के लिए अपेक्षाओं से मेल खाता है। [50]
समस्थानिक
लॉरेंसियम के चौदह समस्थानिक ज्ञात हैं, जिनका द्रव्यमान संख्या 251-262, 264 और 266 है; सभी रेडियोधर्मी हैं। [62][63][64] सात परमाणु समभारी ज्ञात हैं। सबसे लंबे समय तक रहने वाला समस्थानिक, 266Lr, का आधा जीवन लगभग दस घंटे का होता है और यह अब तक ज्ञात सबसे लंबे समय तक रहने वाले अतिभारी तत्व समस्थानिकों में से एक है। [65] हालांकि, कम-जीवित समस्थानिक सामान्यतः रासायनिक प्रयोगों में उपयोग किए जाते हैं क्योंकि 266Lr वर्तमान में केवल भारी और कठिन बनाने वाले तत्वों के अंतिम क्षय उत्पाद के रूप में उत्पादित किया जा सकता है: यह 2014 में 294Ts की क्षय श्रृंखला में खोजा गया था। लॉरेंसियम पर पहले रासायनिक अध्ययन में 256Lr (अर्ध-जीवन 27 सेकंड) का उपयोग किया गया था: वर्तमान में, लंबे समय तक रहने वाले 260Lr (अर्ध-जीवन 2.7 मिनट) का उपयोग सामान्यतः इस उद्देश्य के लिए किया जाता है। 266Lr के बाद, सबसे लंबे समय तक रहने वाले समस्थानिक 264Lr (4.8+2.2−1.3 h), 262Lr (3.6 h), और 261Lr (44 मिनट) हैं। [62] [66] [67] अन्य सभी ज्ञात लॉरेन्शियम समस्थानिकों का आधा जीवन 5 मिनट से कम है, और उनमें से सबसे कम जीवित (251Lr) का आधा जीवन 24.4 मिलीसेकंड है। लॉरेंसियम समस्थानिकों का अर्ध-जीवन 251Lr से 266Lr तक आसानी से बढ़ता है, 257Lr से 259Lr तक की गिरावट के साथ है। [62][64][66][68] [68]
तैयारी और शुद्धि
लॉरेन्शियम के अधिकांश समस्थानिक हल्के आयनों (बोरॉन से नियॉन तक) के साथ एक्टिनाइड (अमरीकी से आइंस्टिनियम) लक्ष्य पर अभिघात करके उत्पादित किए जा सकते हैं। दो सबसे महत्वपूर्ण समस्थानिक, 256Lr और 260Lr, क्रमशः कैलिफ़ोर्नियम-249 पर 70 एमईवी बोरॉन-11 आयनों (लॉरेंशियम-256 और चार न्यूट्रॉन का उत्पादन) पर अभिघात करके और ऑक्सीजन-18 के साथ बर्कीलियम -249 पर अभिघात करके (लॉरेनशियम-260, एक अल्फा उत्पन्न करके कण, और तीन न्यूट्रॉन) उत्पादित किया जा सकता है। [69] दो सबसे भारी और सबसे लंबे समय तक रहने वाले ज्ञात समस्थानिक, 264Lr और 266Lr, डब्नियम के क्षय उत्पादों के रूप में बहुत कम प्रतिफल पर ही उत्पादित किया जा सकता है, जिसके पूर्वज मोस्कोवियम और टेनेसाइन के समस्थानिक हैं।
दोनों 256Lr और 260Lr की आधी आयु इतनी कम है कि पूरी रासायनिक शुद्धिकरण प्रक्रिया संभव नहीं हो पाती। के साथ प्रारंभिक प्रयोग 256Lr इसलिए तीव्रता से विलायक निष्कर्षण का इस्तेमाल किया, मिथाइल आइसोबुटिल कीटोन (MIBK) में घुलने वाले कीलेटन कर्ता थेनॉयलट्रीफ्लूओरोस्टोने (TTA) के साथ कार्बनिक चरण के रूप में, और जलीय चरण के साथ मध्यवर्ती एसीटेट समाधान है। अलग-अलग प्रभार (+2, +3, या +4) के आयन फिर अलग-अलग pH सीमा के अंतर्गत कार्बनिक चरण में निकाले जाएंगे, लेकिन यह विधि त्रिसंयोजक एक्टिनाइड्स को अलग नहीं करेगी और इस प्रकार 256Lr की पहचान इसके उत्सर्जित 8.24 एमईवी अल्फ़ा कणों द्वारा की जानी चाहिए। [69] अधिक हाल के तरीकों ने लंबे समय तक रहने वाले समस्थानिक को अलग करने के लिए पर्याप्त समय में α-HIB के साथ तीव्रता से चयनात्मक क्षालन 260Lr की अनुमति दी है जिसे 0.05 M हाइड्रोक्लोरिक अम्ल के साथ अभिग्राहित्र संचिका से हटाया जा सकता है। [69]
यह भी देखें
टिप्पणियाँ
- ↑ In nuclear physics, an element is called heavy if its atomic number is high; lead (element 82) is one example of such a heavy element. The term "superheavy elements" typically refers to elements with atomic number greater than 103 (although there are other definitions, such as atomic number greater than 100[7] or 112;[8] sometimes, the term is presented an equivalent to the term "transactinide", which puts an upper limit before the beginning of the hypothetical superactinide series).[9] Terms "heavy isotopes" (of a given element) and "heavy nuclei" mean what could be understood in the common language—isotopes of high mass (for the given element) and nuclei of high mass, respectively.
- ↑ In 2009, a team at JINR led by Oganessian published results of their attempt to create hassium in a symmetric 136Xe + 136Xe reaction. They failed to observe a single atom in such a reaction, putting the upper limit on the cross section, the measure of probability of a nuclear reaction, as 2.5 pb.[10] In comparison, the reaction that resulted in hassium discovery, 208Pb + 58Fe, had a cross section of ~20 pb (more specifically, 19+19
−11 pb), as estimated by the discoverers.[11] - ↑ The greater the excitation energy, the more neutrons are ejected. If the excitation energy is lower than energy binding each neutron to the rest of the nucleus, neutrons are not emitted; instead, the compound nucleus de-excites by emitting a gamma ray.[15]
- ↑ The definition by the IUPAC/IUPAP Joint Working Party states that a chemical element can only be recognized as discovered if a nucleus of it has not decayed within 10−14 seconds. This value was chosen as an estimate of how long it takes a nucleus to acquire its outer electrons and thus display its chemical properties.[16] This figure also marks the generally accepted upper limit for lifetime of a compound nucleus.[17]
- ↑ This separation is based on that the resulting nuclei move past the target more slowly then the unreacted beam nuclei. The separator contains electric and magnetic fields whose effects on a moving particle cancel out for a specific velocity of a particle.[19] Such separation can also be aided by a time-of-flight measurement and a recoil energy measurement; a combination of the two may allow to estimate the mass of a nucleus.[20]
- ↑ Not all decay modes are caused by electrostatic repulsion. For example, beta decay is caused by the weak interaction.[25]
- ↑ Since mass of a nucleus is not measured directly but is rather calculated from that of another nucleus, such measurement is called indirect. Direct measurements are also possible, but for the most part they have remained unavailable for heaviest nuclei.[26] The first direct measurement of mass of a superheavy nucleus was reported in 2018 at LBNL.[27] Mass was determined from the location of a nucleus after the transfer (the location helps determine its trajectory, which is linked to the mass-to-charge ratio of the nucleus, since the transfer was done in presence of a magnet).[28]
- ↑ Spontaneous fission was discovered by Soviet physicist Georgy Flerov,[29] a leading scientist at JINR, and thus it was a "hobbyhorse" for the facility.[30] In contrast, the LBL scientists believed fission information was not sufficient for a claim of synthesis of an element. They believed spontaneous fission had not been studied enough to use it for identification of a new element, since there was a difficulty of establishing that a compound nucleus had only ejected neutrons and not charged particles like protons or alpha particles.[17] They thus preferred to link new isotopes to the already known ones by successive alpha decays.[29]
- ↑ For instance, element 102 was mistakenly identified in 1957 at the Nobel Institute of Physics in Stockholm, Stockholm County, Sweden.[31] There were no earlier definitive claims of creation of this element, and the element was assigned a name by its Swedish, American, and British discoverers, nobelium. It was later shown that the identification was incorrect.[32] The following year, LBNL was unable to reproduce the Swedish results and announced instead their synthesis of the element; that claim was also disproved later.[32] JINR insisted that they were the first to create the element and suggested a name of their own for the new element, joliotium;[33] the Soviet name was also not accepted (JINR later referred to the naming of element 102 as "hasty").[34] The name "nobelium" remained unchanged on account of its widespread usage.[35]
संदर्भ
- ↑ Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. p. 278–279. ISBN 978-0-19-960563-7.
- ↑ Gyanchandani, Jyoti; Sikka, S. K. (10 May 2011). "Physical properties of the 6 d -series elements from density functional theory: Close similarity to lighter transition metals". Physical Review B. 83 (17): 172101. Bibcode:2011PhRvB..83q2101G. doi:10.1103/PhysRevB.83.172101.
- ↑ Brown, Geoffrey (2012). The Inaccessible Earth: An integrated view to its structure and composition. Springer Science & Business Media. p. 88. ISBN 9789401115162.
- ↑ 4.0 4.1 4.2 Sato, T. K.; Asai, M.; Borschevsky, A.; Stora, T.; Sato, N.; Kaneya, Y.; Tsukada, K.; Düllman, Ch. E.; Eberhardt, K.; Eliav, E.; Ichikawa, S.; Kaldor, U.; Kratz, J. V.; Miyashita, S.; Nagame, Y.; Ooe, K.; Osa, A.; Renisch, D.; Runke, J.; Schädel, M.; Thörle-Pospiech, P.; Toyoshima, A.; Trautmann, N. (9 April 2015). "Measurement of the first ionization potential of lawrencium, element 103" (PDF). Nature. 520 (7546): 209–11. Bibcode:2015Natur.520..209S. doi:10.1038/nature14342. PMID 25855457. S2CID 4384213.
- ↑ 5.0 5.1 Östlin, A.; Vitos, L. (2011). "First-principles calculation of the structural stability of 6d transition metals". Physical Review B. 84 (11): 113104. Bibcode:2011PhRvB..84k3104O. doi:10.1103/PhysRevB.84.113104.
- ↑ Wakhle, A.; Simenel, C.; Hinde, D. J.; et al. (2015). Simenel, C.; Gomes, P. R. S.; Hinde, D. J.; et al. (eds.). "Comparing Experimental and Theoretical Quasifission Mass Angle Distributions". European Physical Journal Web of Conferences. 86: 00061. Bibcode:2015EPJWC..8600061W. doi:10.1051/epjconf/20158600061. ISSN 2100-014X.
- ↑ Krämer, K. (2016). "Explainer: superheavy elements". Chemistry World. Retrieved 2020-03-15.
- ↑ "Discovery of Elements 113 and 115". Lawrence Livermore National Laboratory. Archived from the original on 2015-09-11. Retrieved 2020-03-15.
- ↑ Eliav, E.; Kaldor, U.; Borschevsky, A. (2018). "Electronic Structure of the Transactinide Atoms". In Scott, R. A. (ed.). Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons. pp. 1–16. doi:10.1002/9781119951438.eibc2632. ISBN 978-1-119-95143-8. S2CID 127060181.
- ↑ Oganessian, Yu. Ts.; Dmitriev, S. N.; Yeremin, A. V.; et al. (2009). "Attempt to produce the isotopes of element 108 in the fusion reaction 136Xe + 136Xe". Physical Review C. 79 (2): 024608. doi:10.1103/PhysRevC.79.024608. ISSN 0556-2813.
- ↑ Münzenberg, G.; Armbruster, P.; Folger, H.; et al. (1984). "The identification of element 108" (PDF). Zeitschrift für Physik A. 317 (2): 235–236. Bibcode:1984ZPhyA.317..235M. doi:10.1007/BF01421260. S2CID 123288075. Archived from the original (PDF) on 7 June 2015. Retrieved 20 October 2012.
- ↑ Subramanian, S. (2019). "Making New Elements Doesn't Pay. Just Ask This Berkeley Scientist". Bloomberg Businessweek. Archived from the original on November 14, 2020. Retrieved 2020-01-18.
- ↑ 13.0 13.1 Ivanov, D. (2019). "Сверхтяжелые шаги в неизвестное" [Superheavy steps into the unknown]. N+1 (in русский). Retrieved 2020-02-02.
- ↑ Hinde, D. (2014). "Something new and superheavy at the periodic table". The Conversation. Retrieved 2020-01-30.
- ↑ 15.0 15.1 Krása, A. (2010). "Neutron Sources for ADS" (PDF). Czech Technical University in Prague. pp. 4–8. S2CID 28796927. Archived from the original (PDF) on 2019-03-03. Retrieved October 20, 2019.
- ↑ Wapstra, A. H. (1991). "Criteria that must be satisfied for the discovery of a new chemical element to be recognized" (PDF). Pure and Applied Chemistry. 63 (6): 883. doi:10.1351/pac199163060879. ISSN 1365-3075. S2CID 95737691. Retrieved 2020-08-28.
- ↑ 17.0 17.1 Hyde, E. K.; Hoffman, D. C.; Keller, O. L. (1987). "A History and Analysis of the Discovery of Elements 104 and 105". Radiochimica Acta. 42 (2): 67–68. doi:10.1524/ract.1987.42.2.57. ISSN 2193-3405. S2CID 99193729.
- ↑ 18.0 18.1 18.2 Chemistry World (2016). "How to Make Superheavy Elements and Finish the Periodic Table [Video]". Scientific American. Retrieved 2020-01-27.
- ↑ Hoffman, Ghiorso & Seaborg 2000, p. 334.
- ↑ Hoffman, Ghiorso & Seaborg 2000, p. 335.
- ↑ Zagrebaev, Karpov & Greiner 2013, p. 3.
- ↑ Beiser 2003, p. 432.
- ↑ Staszczak, A.; Baran, A.; Nazarewicz, W. (2013). "Spontaneous fission modes and lifetimes of superheavy elements in the nuclear density functional theory". Physical Review C. 87 (2): 024320–1. arXiv:1208.1215. Bibcode:2013PhRvC..87b4320S. doi:10.1103/physrevc.87.024320. ISSN 0556-2813. S2CID 118134429.
- ↑ Audi, G.; Kondev, F. G.; Wang, M.; et al. (2017). "The NUBASE2016 evaluation of nuclear properties". Chinese Physics C. 41 (3): 030001-128–030001-138. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
- ↑ Beiser 2003, p. 439.
- ↑ Oganessian, Yu. Ts.; Rykaczewski, K. P. (2015). "A beachhead on the island of stability". Physics Today. 68 (8): 32–38. Bibcode:2015PhT....68h..32O. doi:10.1063/PT.3.2880. ISSN 0031-9228. OSTI 1337838. S2CID 119531411.
- ↑ Grant, A. (2018). "Weighing the heaviest elements". Physics Today. doi:10.1063/PT.6.1.20181113a. S2CID 239775403.
- ↑ Howes, L. (2019). "Exploring the superheavy elements at the end of the periodic table". Chemical & Engineering News. Retrieved 2020-01-27.
- ↑ 29.0 29.1 Robinson, A. E. (2019). "The Transfermium Wars: Scientific Brawling and Name-Calling during the Cold War". Distillations. Retrieved 2020-02-22.
- ↑ "Популярная библиотека химических элементов. Сиборгий (экавольфрам)" [Popular library of chemical elements. Seaborgium (eka-tungsten)]. n-t.ru (in русский). Retrieved 2020-01-07. Reprinted from "Экавольфрам" [Eka-tungsten]. Популярная библиотека химических элементов. Серебро — Нильсборий и далее [Popular library of chemical elements. Silver through nielsbohrium and beyond] (in русский). Nauka. 1977.
- ↑ "Nobelium – Element information, properties and uses | Periodic Table". Royal Society of Chemistry. Retrieved 2020-03-01.
- ↑ 32.0 32.1 Kragh 2018, pp. 38–39.
- ↑ Kragh 2018, p. 40.
- ↑ Ghiorso, A.; Seaborg, G. T.; Oganessian, Yu. Ts.; et al. (1993). "Responses on the report 'Discovery of the Transfermium elements' followed by reply to the responses by Transfermium Working Group" (PDF). Pure and Applied Chemistry. 65 (8): 1815–1824. doi:10.1351/pac199365081815. S2CID 95069384. Archived (PDF) from the original on 25 November 2013. Retrieved 7 September 2016.
- ↑ Commission on Nomenclature of Inorganic Chemistry (1997). "Names and symbols of transfermium elements (IUPAC Recommendations 1997)" (PDF). Pure and Applied Chemistry. 69 (12): 2471–2474. doi:10.1351/pac199769122471.
- ↑ 36.0 36.1 36.2 36.3 36.4 Emsley, John (2011). प्रकृति के बिल्डिंग ब्लॉक्स.
- ↑ 37.00 37.01 37.02 37.03 37.04 37.05 37.06 37.07 37.08 37.09 37.10 Barber, R. C.; Greenwood, N. N.; Hrynkiewicz, A. Z.; Jeannin, Y. P.; Lefort, M.; Sakai, M.; Ulehla, I.; Wapstra, A. P.; Wilkinson, D. H. (1993). "Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements". Pure and Applied Chemistry. 65 (8): 1757. doi:10.1351/pac199365081757. S2CID 195819585. (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879–886, 1991)
- ↑ "This Month in Lab History…Lawrencium Added to Periodic Table". today.lbl.gov. Lawrence Berkeley National Laboratory. 9 April 2013. Retrieved 13 February 2021.
Lawrencium (Lw) was first synthesized Feb. 14, 1961, by a team led by Ghiorso, who was co-discoverer of a record 12 chemical elements on the periodic table.
- ↑ 39.0 39.1 Ghiorso, Albert; Sikkeland, T.; Larsh, A. E.; Latimer, R. M. (1961). "New Element, Lawrencium, Atomic Number 103". Phys. Rev. Lett. 6 (9): 473. Bibcode:1961PhRvL...6..473G. doi:10.1103/PhysRevLett.6.473.
- ↑ 40.0 40.1 40.2 Greenwood, Norman N. (1997). "Recent developments concerning the discovery of elements 101–111" (PDF). Pure Appl. Chem. 69 (1): 179–184. doi:10.1351/pac199769010179. S2CID 98322292.
- ↑ Flerov, G. N. (1967). "On the nuclear properties of the isotopes 256103 and 257103". Nucl. Phys. A. 106 (2): 476. Bibcode:1967NuPhA.106..476F. doi:10.1016/0375-9474(67)90892-5.
- ↑ Donets, E. D.; Shchegolev, V. A.; Ermakov, V. A. (1965). Atomnaya Énergiya (in русский). 19 (2): 109.
{{cite journal}}: Missing or empty|title=(help)
- Translated in Donets, E. D.; Shchegolev, V. A.; Ermakov, V. A. (1965). "Synthesis of the isotope of element 103 (lawrencium) with mass number 256". Soviet Atomic Energy. 19 (2): 109. doi:10.1007/BF01126414. S2CID 97218361.
- ↑ 43.0 43.1 Karpenko, V. (1980). "The Discovery of Supposed New Elements: Two Centuries of Errors". Ambix. 27 (2): 77–102. doi:10.1179/amb.1980.27.2.77.
- ↑ Kaldor, Uzi & Wilson, Stephen (2005). भारी और अतिभारी तत्व का सैद्धांतिक रसायन विज्ञान और भौतिकी. Springer. p. 57. ISBN 1-4020-1371-X.
- ↑ Silva 2011, pp. 1641–2
- ↑ Eskola, Kari; Eskola, Pirkko; Nurmia, Matti; Albert Ghiorso (1971). "Studies of Lawrencium Isotopes with Mass Numbers 255 Through 260". Phys. Rev. C. 4 (2): 632–642. Bibcode:1971PhRvC...4..632E. doi:10.1103/PhysRevC.4.632.
- ↑ 47.0 47.1 Silva 2011, p. 1644
- ↑ Silva 2011, p. 1639
- ↑ 49.0 49.1 Haire, R. G. (11 October 2007). "भारी तत्व सामग्री के संबंध और इलेक्ट्रॉनिक प्रकृति में अंतर्दृष्टि". Journal of Alloys and Compounds. 444–5: 63–71. doi:10.1016/j.jallcom.2007.01.103.
- ↑ 50.0 50.1 50.2 Jensen, William B. (2015). "The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table: an update". Foundations of Chemistry. 17: 23–31. doi:10.1007/s10698-015-9216-1. S2CID 98624395. Archived from the original on 30 January 2021. Retrieved 28 January 2021.
- ↑ Winter, Mark (1993–2022). "वेबतत्व". The University of Sheffield and वेबतत्वLtd, UK. Retrieved 5 December 2022.
- ↑ Cowan, Robert D. (1981). परमाणु संरचना और स्पेक्ट्रा का सिद्धांत. University of California Press. p. 598. ISBN 9780520906150.
- ↑ John Emsley (2011). Nature's Building Blocks: An A-Z Guide to the Elements. Oxford University Press. pp. 278–9. ISBN 978-0-19-960563-7.
- ↑ Lide, D. R., ed. (2003). केमेस्ट्री और फ़ीजिक्स के लिए सीआरसी हैंडबुक (84th ed.). Boca Raton, FL: CRC Press.
- ↑ 55.0 55.1 55.2 55.3 55.4 55.5 55.6 Silva 2011, pp. 1644–7
- ↑ Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean (eds.). एक्टिनाइड और ट्रांसएक्टिनाइड तत्वों की रसायन (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1686. ISBN 1-4020-3555-1.
- ↑ 57.0 57.1 Silva 2011, pp. 1643–4
- ↑ 58.0 58.1 Jensen, W. B. (2015). "आवर्त सारणी में लॉरेंसियम की स्थिति पर कुछ टिप्पणियाँ" (PDF). Archived from the original (PDF) on 23 December 2015. Retrieved 20 September 2015.
- ↑ Gunther, Matthew (9 April 2015). "लॉरेंसियम प्रयोग आवर्त सारणी को हिला सकता है". RSC Chemistry World. Retrieved 21 September 2015.
- ↑ Kwarsick, Jeffrey T.; Pore, Jennifer L.; Gates, Jacklyn M.; Gregorich, Kenneth E.; Gibson, John K.; Jian, Jiwen; Pang, Gregory K.; Shuh, David K. (2021). "Assessment of the Second-Ionization Potential of Lawrencium: Investigating the End of the Actinide Series with a One-Atom-at-a-Time Gas-Phase Ion Chemistry Technique". The Journal of Physical Chemistry A. 125 (31): 6818–6828. Bibcode:2021JPCA..125.6818K. doi:10.1021/acs.jpca.1c01961. OSTI 1844939. PMID 34242037. S2CID 235785891.
- ↑ Xu, Wen-Hua; Pyykkö, Pekka (8 June 2016). "Is the chemistry of lawrencium peculiar". Phys. Chem. Chem. Phys. 2016 (18): 17351–5. Bibcode:2016PCCP...1817351X. doi:10.1039/c6cp02706g. hdl:10138/224395. PMID 27314425. S2CID 31224634. Retrieved 24 April 2017.
- ↑ 62.0 62.1 62.2 Silva 2011, p. 1642
- ↑ Khuyagbaatar, J.; et al. (2014). "48Ca + 249Bk Fusion Reaction Leading to Element Z = 117: Long-Lived α-Decaying 270Db and Discovery of 266Lr" (PDF). Physical Review Letters. 112 (17): 172501. Bibcode:2014PhRvL.112q2501K. doi:10.1103/PhysRevLett.112.172501. hdl:1885/70327. PMID 24836239. S2CID 5949620.
- ↑ 64.0 64.1 Leppänen, A.-P. (2005). आरआईटीयू विभाजक का उपयोग करके भारी तत्वों का अल्फा-क्षय और क्षय-टैगिंग अध्ययन (PDF) (Thesis). University of Jyväskylä. pp. 83–100. ISBN 978-951-39-3162-9. ISSN 0075-465X.
- ↑ Clara Moskowitz (May 7, 2014). "Superheavy Element 117 Points to Fabled "Island of Stability" on Periodic Table". Scientific American. Retrieved 2014-05-08.
- ↑ 66.0 66.1 "Nucleonica :: Web driven nuclear science".
- ↑ Huang, T.; Seweryniak, D.; Back, B. B.; et al. (2022). "Discovery of the new isotope 251Lr: Impact of the hexacontetrapole deformation on single-proton orbital energies near the Z = 100 deformed shell gap". Physical Review C. 106 (L061301). doi:10.1103/PhysRevC.106.L061301. S2CID 254300224.
- ↑ 68.0 68.1 Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
- ↑ 69.0 69.1 69.2 Silva 2011, pp. 1642–3
ग्रन्थसूची
- Audi, G.; Kondev, F. G.; Wang, M.; et al. (2017). "The NUBASE2016 evaluation of nuclear properties". Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
- Beiser, A. (2003). Concepts of modern physics (6th ed.). McGraw-Hill. ISBN 978-0-07-244848-1. OCLC 48965418.
- Hoffman, D. C.; Ghiorso, A.; Seaborg, G. T. (2000). The Transuranium People: The Inside Story. World Scientific. ISBN 978-1-78-326244-1.
- Kragh, H. (2018). From Transuranic to Superheavy Elements: A Story of Dispute and Creation. Springer. ISBN 978-3-319-75813-8.
- Silva, Robert J. (2011). "Chapter 13. Fermium, Mendelevium, Nobelium, and Lawrencium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements. Netherlands: Springer. doi:10.1007/978-94-007-0211-0_13. ISBN 978-94-007-0210-3.
- Zagrebaev, V.; Karpov, A.; Greiner, W. (2013). "Future of superheavy element research: Which nuclei could be synthesized within the next few years?". Journal of Physics: Conference Series. 420 (1): 012001. arXiv:1207.5700. Bibcode:2013JPhCS.420a2001Z. doi:10.1088/1742-6596/420/1/012001. ISSN 1742-6588. S2CID 55434734.
बाहरी संबंध
- "Chart of Nuclides". National Nuclear Data Center (NNDC). Archived from the original on 2018-10-10. Retrieved 2014-08-21.
- Los Alamos National Laboratory's Chemistry Division: Periodic Table – Lawrencium
- Lawrencium at The Periodic Table of Videos (University of Nottingham)
