(One intermediate revision by one other user not shown)
Line 202:
Line 202:
* {{cite book | author=Griffiths, David J. | authorlink=David Griffiths (physicist) | title=Introduction to Electrodynamics (3rd ed.) | publisher=Prentice Hall | year=1998 | isbn=0-13-805326-X | url-access=registration | url=https://archive.org/details/introductiontoel00grif_0 }}
* {{cite book | author=Griffiths, David J. | authorlink=David Griffiths (physicist) | title=Introduction to Electrodynamics (3rd ed.) | publisher=Prentice Hall | year=1998 | isbn=0-13-805326-X | url-access=registration | url=https://archive.org/details/introductiontoel00grif_0 }}
* {{cite book|author=J. I. Pankove|title=Optical Processes in Semiconductors|publisher=Dover Publications Inc. |location=New York |year=1971}}
* {{cite book|author=J. I. Pankove|title=Optical Processes in Semiconductors|publisher=Dover Publications Inc. |location=New York |year=1971}}
[[Category: विद्युत चुम्बकीय विकिरण]] [[Category: बिखराव, अवशोषण और विकिरण स्थानांतरण (प्रकाशिकी)]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Created On 03/06/2023]]
[[Category:Created On 03/06/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:बिखराव, अवशोषण और विकिरण स्थानांतरण (प्रकाशिकी)]]
[[Category:विद्युत चुम्बकीय विकिरण]]
Latest revision as of 13:53, 30 June 2023
जब विद्युत चुम्बकीय तरंग ऐसे माध्यम से स्थानांतरण करती है जिसमें यह क्षीण हो जाती है (इसे अपारदर्शिता (ऑप्टिक्स) या क्षीणन स्थिर माध्यम कहा जाता है) यह बीयर-लैंबर्ट द्वारा वर्णित घातीय क्षय से निकलती
है। चूँकि तरंग को चिह्नित करने के कई संभावित विधि हैं और यह कितनी जल्दी क्षीण हो जाता है। इस प्रकार यह आलेख निम्नलिखित के बीच गणितीय संबंधों का वर्णन करता है:
ध्यान दें कि इनमें से कई स्थितियों में सामान्य उपयोग में कई परस्पर विरोधी परिभाषाएं और परंपराएं हैं। यह लेख आवश्यक रूप से व्यापक या सार्वभौमिक नहीं है।
किसी दी गई आवृत्ति के लिए, विद्युत चुम्बकीय तरंग की तरंग दैर्ध्य उस पदार्थ से प्रभावित होती है जिसमें यह प्रचार कर रही है। निर्वात तरंगदैर्घ्य (वेवलेंथ जो इस आवृत्ति की तरंग होगी यदि यह निर्वात में प्रचार कर रही हो) है
क्षीणन की अनुपस्थिति में अपवर्तन सूचकांक (जिसे अपवर्तक सूचकांक भी कहा जाता है) इन दो तरंग दैर्ध्य का अनुपात है, अर्थात,
तरंग की तीव्रता (भौतिकी) तरंग के कई दोलनों पर समय-औसत आयाम के वर्ग के समानुपाती होती है, जिसकी मात्रा:
ध्यान दें कि यह तीव्रता स्थिति z से स्वतंत्र है, यह संकेत है कि यह तरंग दूरी के साथ क्षीण नहीं हो रही है। हम I0 को परिभाषित करते हैं इस निरंतर तीव्रता के समान करने के लिए:
जटिल संयुग्म अस्पष्टता
क्योंकि
किसी भी अभिव्यक्ति का परस्पर उपयोग किया जा सकता है।[1] सामान्यतः, भौतिक विज्ञानी और रसायनज्ञ बाईं ओर के सम्मेलन का उपयोग करते हैं (e−iωt), जबकि इलेक्ट्रिकल इंजीनियर दाईं ओर कन्वेंशन का उपयोग करते हैं (e+iωt, उदाहरण के लिए विद्युत प्रतिबाधा देखें) अप्रशिक्षित तरंग के लिए भेद अप्रासंगिक है किन्तु नीचे कुछ स्थितियों में प्रासंगिक हो जाता है। उदाहरण के लिए, अपवर्तक सूचकांक की दो परिभाषाएँ हैं, सकारात्मक काल्पनिक भाग के साथ और नकारात्मक काल्पनिक भाग के साथ, जो दो अलग-अलग सम्मेलनों से प्राप्त हुआ है।[2] दो परिभाषाएँ दूसरे की जटिल संयुग्म हैं।
तरंग के गणितीय विवरण में क्षीणन को सम्मिलित करने का विधि क्षीणन गुणांक के माध्यम से होता है:[3]
जहां α क्षीणन गुणांक है।
तब तरंग की तीव्रता संतुष्ट करती है:
अर्थात।
क्षीणन गुणांक कई अन्य मात्राओं से संबंधित है:
अवशोषण गुणांक अनिवार्य रूप से (किन्तु सदैव नहीं) क्षीणन गुणांक का पर्याय है; विवरण के लिए क्षीणन गुणांक देखें;
मोलर अवशोषण गुणांक या मोलर विलुप्त होने का गुणांक, जिसे मोलर अवशोषण भी कहा जाता है, वह क्षीणन गुणांक है जिसे मोलरिटी से विभाजित किया जाता है (और सामान्यतः ln (10) से गुणा किया जाता है, अर्थात, डेकाडिक); विवरण के लिए बीयर-लैंबर्ट कानून और मोलर अवशोषकता देखें;
द्रव्यमान क्षीणन गुणांक, जिसे द्रव्यमान विलुप्त होने का गुणांक भी कहा जाता है, घनत्व द्वारा विभाजित क्षीणन गुणांक है; विवरण के लिए द्रव्यमान क्षीणन गुणांक देखें;
एक समान दृष्टिकोण प्रवेश डेप्थ का उपयोग करता है:[4]
जहां δpen प्रवेश की डेप्थ है।
स्किन की डेप्थ
स्किन की डेप्थ को परिभाषित किया गया है जिससे तरंग संतुष्ट हो जाती है:[5][6]
जहां δskin स्किन की डेप्थ है।
भौतिक रूप से वेधन की डेप्थ वह दूरी है जो तरंग अपनी तीव्रता 1/e ≈ 0.37 के कारक से कम होने से पहले स्थानांतरण कर सकती है स्किन की डेप्थ वह दूरी है जो तरंग स्थानांतरण कर सकती है इससे पहले कि उसका आयाम उसी कारक से कम हो जाती है।
अवशोषण गुणांक प्रवेश की डेप्थ और स्किन की डेप्थ से संबंधित है
क्षीणन को सम्मिलित करने का दूसरा विधि वेवनंबर का उपयोग करना है:[5][7]
जहाँ k जटिल कोणीय तरंग संख्या है।
तब तरंग की तीव्रता संतुष्ट करती है:
अर्थात।
इसलिए, इसकी तुलना अवशोषण गुणांक दृष्टिकोण से करते हुए,[3]
जटिल संयुग्म अस्पष्टता के अनुसार कुछ लेखक जटिल संयुग्म परिभाषा का उपयोग करते हैं:[8]
प्रसार स्थिरांक
एक निकट से संबंधित दृष्टिकोण, विशेष रूप से संचरण रेखा के सिद्धांत में समान है, इस प्रकार प्रसार स्थिरांक का उपयोग करता है:[9][10]
जहां γ प्रसार स्थिरांक है।
तब तरंग की तीव्रता संतुष्ट करती है:
अर्थात।
दो समीकरणों की तुलना में प्रसार स्थिरांक और जटिल कोणीय वेवंबर निम्न द्वारा संबंधित हैं:
जहाँ * जटिल संयुग्मन को दर्शाता है।
इस मात्रा को क्षीणन स्थिरांक भी कहा जाता है,[8][11] कभी-कभी निरूपित α होता है।
इस मात्रा को चरण स्थिरांक भी कहा जाता है, जिसे कभी-कभी β के रूप में निरूपित किया जाता है।[11] इस प्रकार संकेतन सदैव सुसंगत नहीं होता है। उदाहरण के लिए, कभी-कभी γ के अतिरिक्त प्रसार स्थिरांक कहा जाता है, जो वास्तविक और काल्पनिक भागों की अदला-बदली करता है।[12]
जटिल संयुग्म अस्पष्टता के अनुसार, कुछ लेखक जटिल संयुग्म परिभाषा का उपयोग करते हैं, जहां (अभी भी सकारात्मक) विलुप्त होने का गुणांक 'ऋण' का काल्पनिक भाग है .[2][13]
विद्युत चालकता के माध्यम से क्षीणन को सम्मिलित करने का अन्य विधि निम्नानुसार है।[14] विद्युत चुम्बकीय तरंग प्रसार को नियंत्रित करने वाले समीकरणों में से है एम्पीयर का नियम या मैक्सवेल-एम्पीयर का नियम है:
ओम के नियम में प्लगिंग और (वास्तविक) पारगम्यता की परिभाषा उपयोग किया जाता है
जहां σ (वास्तविक, किन्तु आवृत्ति-निर्भर) विद्युत चालकता है, जिसे 'वैकल्पिक वर्तमान विद्युत चालकता' कहा जाता है।
साइनसोइडल समय के साथ सभी मात्राओं पर निर्भरता है, अर्थात।
परिणाम है
यदि वर्तमान स्पष्ट रूप से (ओम के नियम के माध्यम से) सम्मिलित नहीं थे किन्तु केवल निहित रूप से (एक जटिल पारगम्यता के माध्यम से), कोष्ठक में मात्रा केवल जटिल विद्युत पारगम्यता होती है। इसलिए,