दूरी सहसंबंध: Difference between revisions
No edit summary |
|||
(3 intermediate revisions by 3 users not shown) | |||
Line 34: | Line 34: | ||
सांख्यिकीय ''T<sub>n</sub>'' = ''n'' dCov<sup>2</sup><sub>''n''</sub>(''X'', ''Y'') यादृच्छिक आयामों में यादृच्छिक सदिश की स्वतंत्रता का सुसंगत बहुभिन्नरूपी परीक्षण निर्धारित करता है। कार्यान्वयन के लिए R के लिए ऊर्जा पैकेज में dcov.test फलन देखें।<sup>{{sfn|Rizzo|Székely|2021}} | सांख्यिकीय ''T<sub>n</sub>'' = ''n'' dCov<sup>2</sup><sub>''n''</sub>(''X'', ''Y'') यादृच्छिक आयामों में यादृच्छिक सदिश की स्वतंत्रता का सुसंगत बहुभिन्नरूपी परीक्षण निर्धारित करता है। कार्यान्वयन के लिए R के लिए ऊर्जा पैकेज में dcov.test फलन देखें।<sup>{{sfn|Rizzo|Székely|2021}} | ||
'''दूरी सहप्रसरण''' के जनसंख्या मान को उसी | '''दूरी सहप्रसरण''' के जनसंख्या मान को उसी पद्धति पर परिभाषित किया जा सकता है। मान X यादृच्छिक चर है जो संभाव्यता वितरण μ के साथ p-आयामी यूक्लिडियन स्थान में मान लेता है और Y को एक यादृच्छिक चर होने देता है जो एक q-आयामी यूक्लिडियन स्थान में मान लेता है संभाव्यता वितरण ν के साथ, और मान लीजिए कि X और Y की सीमित अपेक्षाएँ हैं। लिखें | ||
:<math>a_\mu(x):= \operatorname{E}[\|X-x\|], \quad D(\mu) := \operatorname{E}[a_\mu(X)], \quad d_\mu(x, x') := \|x-x'\|-a_\mu(x)-a_\mu(x')+D(\mu). | :<math>a_\mu(x):= \operatorname{E}[\|X-x\|], \quad D(\mu) := \operatorname{E}[a_\mu(X)], \quad d_\mu(x, x') := \|x-x'\|-a_\mu(x)-a_\mu(x')+D(\mu). | ||
Line 157: | Line 157: | ||
\operatorname{dCov}^2_n(X, Y; \alpha):= \frac{1}{n^2}\sum_{k,\ell}A_{k,\ell}\,B_{k,\ell}. | \operatorname{dCov}^2_n(X, Y; \alpha):= \frac{1}{n^2}\sum_{k,\ell}A_{k,\ell}\,B_{k,\ell}. | ||
</math> | </math> | ||
कोई विस्तार कर सकता है <math>\operatorname{dCov}</math> [[ मीट्रिक स्थान | | कोई विस्तार कर सकता है <math>\operatorname{dCov}</math> [[ मीट्रिक स्थान |मापीय स्थान]] के लिए | मापीय-स्पेस-वैल्यू [[यादृच्छिक चर]] <math>X</math> और <math>Y</math>: अगर <math>X</math> कानून है <math>\mu</math> मापीय के साथ एक मापीय स्थान में <math>d</math>, फिर परिभाषित करें <math>a_\mu(x):= \operatorname{E}[d(X, x)]</math>, <math>D(\mu) := \operatorname{E}[a_\mu(X)]</math>, और (प्रदान किया गया <math>a_\mu</math> परिमित है, अर्थात्, <math>X</math> पहला क्षण परिमित है), <math>d_\mu(x, x') := d(x, x')-a_\mu(x)-a_\mu(x')+D(\mu)</math>. तो अगर <math>Y</math> कानून है <math>\nu</math> (परिमित पहले क्षण के साथ संभावित रूप से भिन्न मापीय स्थान में), परिभाषित करें | ||
:<math> | :<math> | ||
\operatorname{dCov}^2(X, Y) := \operatorname{E}\big[d_\mu(X,X')d_\nu(Y,Y')\big]. | \operatorname{dCov}^2(X, Y) := \operatorname{E}\big[d_\mu(X,X')d_\nu(Y,Y')\big]. | ||
</math> | </math> | ||
यह ऐसे सभी के लिए ऋणात्मक है <math>X, Y</math> यदि दोनों | यह ऐसे सभी के लिए ऋणात्मक है <math>X, Y</math> यदि दोनों मापीय रिक्त स्थान ऋणात्मक प्रकार के होते हैं।{{sfn|Lyons|2014}} यहां, एक मापीय स्थान <math>(M, d)</math> यदि ऋणात्मक प्रकार है <math>(M, d^{1/2})</math> [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्पेस]] के एक सबसेट के लिए [[आइसोमेट्री]] है।{{sfn|Klebanov|2005|p={{pn|date=October 2021}}}} अगर दोनों मापीय स्पेस में स्ट्रॉन्ग नेगेटिव टाइप है, तो <math>\operatorname{dCov}^2(X, Y)= 0</math> आईएफएफ <math>X, Y</math> स्वतंत्र हैं।{{sfn|Lyons|2014}} | ||
== दूरी सहप्रसरण की वैकल्पिक परिभाषा == | == दूरी सहप्रसरण की वैकल्पिक परिभाषा == | ||
Line 235: | Line 235: | ||
*[http://personal.bgsu.edu/~mrizzo/energy.htm E-statistics (energy statistics)] | *[http://personal.bgsu.edu/~mrizzo/energy.htm E-statistics (energy statistics)] | ||
{{DEFAULTSORT:Distance Correlation}} | {{DEFAULTSORT:Distance Correlation}} | ||
[[Category:Created On 24/05/2023|Distance Correlation]] | |||
[[Category:Machine Translated Page|Distance Correlation]] | |||
[[Category: Machine Translated Page]] | [[Category:Pages with script errors|Distance Correlation]] | ||
[[Category: | [[Category:Templates Vigyan Ready|Distance Correlation]] | ||
[[Category:Wikipedia articles needing page number citations from October 2021]] | |||
[[Category:संभाव्यता वितरण का सिद्धांत|Distance Correlation]] | |||
[[Category:सहप्रसरण और सहसंबंध|Distance Correlation]] | |||
[[Category:सांख्यिकीय दूरी|Distance Correlation]] |
Latest revision as of 11:18, 2 July 2023
सांख्यिकी और प्रायिकता सिद्धांत में, दूरी सहसंबंध या दूरी सहसंयोजक, यादृच्छिक के दो युग्मित यादृच्छिक सदिश के बीच निर्भरता का एक माप है। जनसंख्या सहसंबंध गुणांक शून्य है यदि और केवल यदि यादृच्छिक सदिश स्वतंत्र है। इस प्रकार, दूरी सहसंबंध दो यादृच्छिक चर या यादृच्छिक सदिश के बीच रैखिक और गैर-रेखीय संबंधों को मापता है। यह पियर्सन के सहसंबंध के विपरीत है, जो केवल दो यादृच्छिक चर के बीच रैखिक संबंध का आकलन कर सकता है।
दूरी सहसंबंध का उपयोग क्रमपरिवर्तन परीक्षण के साथ निर्भरता का सांख्यिकीय परीक्षण करने के लिए किया जा सकता है। पहले दो यादृच्छिक सदिश के बीच दूरी सहसंबंध (यूक्लिडियन दूरी आव्यूह के पुन: केंद्रित होने सहित) की गणना करता है और फिर इस मान की तुलना डेटा के कई क्रमपरिवर्तनों के दूरी सहसंबंधों से करता है।
पृष्ठभूमि
निर्भरता का संरचनात्मक माप, पियर्सन सहसंबंध गुणांक, [1] दो चर के बीच एक रैखिक संबंध के लिए मुख्य संवेदनशील है। दूरी सहसंबंध 2005 में गैबोर जे द्वारा पेश किया गया था। पियर्सन के सहसंबंध के इस घाटे को दूर करने के लिए कई व्याख्यानों में स्ज़ेकली, अर्थात् यह निर्भर चर के लिए आसानी से शून्य हो सकता है। सहसंबंध = 0 ( असंबद्धता ) स्वतंत्रता का अर्थ नहीं है जबकि दूरी सहसंबंध = 0 स्वतंत्रता का अर्थ है। दूरी सहसंबंध पर पहला परिणाम 2007 और 2009 में प्रकाशित हुआ था।[2][3] यह प्रचारित किया गया था कि दूरी सहसंयोजक ब्राउनियन सहसंयोजक के समान है।[3] ये माप ऊर्जा दूरी के उदाहरण हैं।
दूरी सहसंबंध कई अन्य मात्राओं से लिया गया है जो इसके विनिर्देशन में उपयोग किए जाते हैं, विशेष रूप से: दूरी विचरण, दूरी मानक विचलन, और दूरी सहसंयोजक। ये मात्राएं पियर्सन गुणक सहसंबंध गुणांक के विनिर्देशन में संबंधित नामों के साथ सामान्य क्षणों के समान भूमिका निभाती हैं।
परिभाषाएँ
दूरी सहप्रसरण
आइए हम दृष्टांत दूरी की परिभाषा के साथ प्रारंभ करें। मान लें (Xk, Yk), k = 1, 2, ..., n वास्तविक मूल्यवान या सदिश मूल्यवान यादृच्छिक चर की एक युग्म से सांख्यिकीय दृष्टांत (X, Y) हो। सबसे पहले, n दूरी की आव्यूह द्वारा n की गणना करें (aj, k) और (bj, k) जिसमें सभी युग्मन दूरी हैं।
जहां || ⋅ || यूक्लिडियन मानक को दर्शाता है। फिर सभी दोगुनी केंद्रित दूरी लें
जहां j-वें पंक्ति का माध्य है, k-वें स्तंभ का माध्य है, और X नमूने की दूरी आव्यूह का भव्य माध्य है। b मानों के लिए अंकन समान है। (केंद्रित दूरियों (Aj, k) और (Bj,k) के आव्यूहों में सभी पंक्तियों और सभी स्तंभों का योग शून्य होता है।) वर्गित दृष्टांत दूरी सहप्रसरण (एक अदिश राशि) केवल गुणनों Aj, k Bj, k: का अंकगणितीय औसत है:
सांख्यिकीय Tn = n dCov2n(X, Y) यादृच्छिक आयामों में यादृच्छिक सदिश की स्वतंत्रता का सुसंगत बहुभिन्नरूपी परीक्षण निर्धारित करता है। कार्यान्वयन के लिए R के लिए ऊर्जा पैकेज में dcov.test फलन देखें।[4]
दूरी सहप्रसरण के जनसंख्या मान को उसी पद्धति पर परिभाषित किया जा सकता है। मान X यादृच्छिक चर है जो संभाव्यता वितरण μ के साथ p-आयामी यूक्लिडियन स्थान में मान लेता है और Y को एक यादृच्छिक चर होने देता है जो एक q-आयामी यूक्लिडियन स्थान में मान लेता है संभाव्यता वितरण ν के साथ, और मान लीजिए कि X और Y की सीमित अपेक्षाएँ हैं। लिखें
अंत में, X और Y के वर्ग दूरी सहप्रसरण के जनसंख्या मान को इस प्रकार परिभाषित करें
कोई दर्शा सकता है कि यह निम्नलिखित परिभाषा के समतुल्य है:
जहां E अपेक्षित मान दर्शाता है, और और स्वतंत्र और समान रूप से वितरित हैं। प्राथमिक यादृच्छिक चर और निरूपित चर की स्वतंत्र और समान रूप से वितरित (iid) प्रतियां और और इसी तरह iid हैं।[5] दूरी सहप्रसरण को पारम्परिक पियर्सन सहप्रसरण के संदर्भ में व्यक्त किया जा सकता है, सीओवी, इस प्रकार है:
यह पहचान दर्शाती है कि दूरी सहप्रसरण दूरियों के सहप्रसरण के समान नहीं है, cov(||X − X' ||, ||Y − Y' ||)। यह शून्य हो सकता है भले ही X और Y स्वतंत्र न हों।
वैकल्पिक रूप से, दूरी के सहसंयोजक को यादृच्छिक चर के संयुक्त विशेषता फलन और उनके सीमांत विशेषता कार्यों के गुणन के बीच की दूरी के निर्धारित L2 मानक के रूप में परिभाषित किया जा सकता है:[6]
जहां और क्रमशः (X, Y), X और Y के विशिष्ट फलन हैं, p, q, X और Y के यूक्लिडियन आयाम को दर्शाते हैं, और इस प्रकार s और t,और cp, cq स्थिरांक हैं। भार फलन समतुल्य और घूर्णन अपरिवर्तनीय मापों को ऐसे पैमाने पर गुणा करने के लिए चुना गया है जो आश्रित चर के लिए शून्य की ओर नहीं जाता है।[6][7] अभिलाक्षणिक फलन परिभाषा की एक व्याख्या यह है कि चर eisX और eitY द्वारा दी गई विभिन्न अवधियों के साथ X और Y का चक्रीय निरूपण है, और व्यंजक ϕX, Y(s, t) − ϕX(s) ϕY(t) विशेषता फलन के अंश में दूरी सहप्रसरण की परिभाषा केवल eisX और eitY वर्गीय सहसंयोजक है। विशेषता फलन परिभाषा स्पष्ट रूप से दिखाती है कि dCov2(X, Y) = 0 यदि और केवल X और Y स्वतंत्र हैं।
दूरी विचरण और दूरी मानक विस्थापन
दूरी विचरण दूरी के सहसंयोजक का विशेष स्तिथि है जब दो चर समान होते हैं। दूरी विचरण का जनसंख्या मूल्य वर्गमूल है
जहाँ , , और स्वतंत्र और समान रूप से वितरित यादृच्छिक चर हैं, अपेक्षित मूल्य को दर्शाता है, और फलन के लिए , जैसे, ।
दृष्टांत दूरी प्रसरण का वर्गमूल है
जो 1912 में प्रारम्भ किए गए कोराडो गिन्नी के औसत अंतर का संबंध है (लेकिन गिन्नी केंद्रित दूरी) के साथ काम नहीं करती थी।[8]
दूरी मानक विचलन दूरी विचरण का वर्गमूल है।
दूरी सहसंबंध
दो यादृच्छिक चर के दूरी सहसंबंध[2] उनकी दूरी मानक विचलन के गुणन द्वारा उनकी दूरी के सहसंयोजक को विभाजित करके प्राप्त किया जाता है। दूरी सहसंबंध वर्गमूल है:
और दृष्टांत दूरी सहसंबंध को उपरोक्त जनसंख्या गुणांक के लिए दृष्टांत दूरी सहप्रसरण और दूरी प्रसरण को प्रतिस्थापित करके परिभाषित किया गया है।
दृष्टांत दूरी सहसंबंध की आसान गणना के लिए R के लिए ऊर्जा पैकेज में डीसीओआर फलन देखें।[4]
गुण
दूरी सहसंबंध
- and ; यह पियर्सन के सहसंबंध के विपरीत है, जो ऋणात्मक हो सकता है।
- यदि और केवल यदि X और Y स्वतंत्र हैं।
- तात्पर्य है कि रैखिक उप-स्थानों के आयामों द्वारा प्रायोजित X और Y नमूने क्रमशः लगभग निश्चित रूप से समान हैं और यदि हम मानते हैं कि ये उप-स्थान समान हैं, तो इस उप-स्थान में f या कुछ सदिश A, अदिश b, और ऑर्थोनॉर्मल मैट्रिक्स ।
दूरी सहप्रसरण
- और ;
- सभी स्थिर सदिशों के लिए , अदिश , और ऑर्थोनॉर्मल मैट्रिक्स.
- यदि यादृच्छिक सदिश and फिर स्वतंत्र हैं
- यदि और केवल यदि X और Y स्वतन्त्र हैं।
यह अंतिम गुण केंद्रित दूरियों के साथ काम करने का सबसे महत्वपूर्ण प्रभाव है।
सांख्यिकी का पक्षपाती अनुमानक है X और Y की स्वतंत्रता के अंतर्गत है। [9]
का एक निष्पक्ष अनुमानक शेकेली और रिज़ो द्वारा दिया गया है।[10]
दूरी विचरण
- यदि और केवल यदि लगभग निश्चित रूप से।
- यदि और केवल यदि प्रत्येक दृष्टांत अवलोकन समान है।
- सभी स्थिर सदिशों के लिए A, scalars b, और ऑर्थोनॉर्मल मैट्रिक्स .
- If X और Y फिर स्वतंत्र हैं .
समानता (iv) में होती है यदि और केवल यदि यादृच्छिक चर में से एक X या Y स्थिरांक है।
सामान्यीकरण
यूक्लिडियन दूरी की घात को सम्मिलित करने के लिए दूरी सहप्रसरण को सामान्यीकृत किया जा सकता है।
फिर प्रत्येक के लिए , और स्वतंत्र हैं अगर और केवल अगर । यह ध्यान रखना महत्वपूर्ण है कि यह लक्षण वर्णन प्रतिपादक के लिए नहीं है ; इस स्तिथि में द्विचर के लिए , पियर्सन सहसंबंध का एक नियतात्मक कार्य है।[2] अगर और हैं संबंधित दूरियों की घात, , तब दृष्टांत दूरी सहप्रसरण को ऋणात्मक संख्या के रूप में परिभाषित किया जा सकता है।
कोई विस्तार कर सकता है मापीय स्थान के लिए | मापीय-स्पेस-वैल्यू यादृच्छिक चर और : अगर कानून है मापीय के साथ एक मापीय स्थान में , फिर परिभाषित करें , , और (प्रदान किया गया परिमित है, अर्थात्, पहला क्षण परिमित है), . तो अगर कानून है (परिमित पहले क्षण के साथ संभावित रूप से भिन्न मापीय स्थान में), परिभाषित करें
यह ऐसे सभी के लिए ऋणात्मक है यदि दोनों मापीय रिक्त स्थान ऋणात्मक प्रकार के होते हैं।[11] यहां, एक मापीय स्थान यदि ऋणात्मक प्रकार है हिल्बर्ट स्पेस के एक सबसेट के लिए आइसोमेट्री है।[12] अगर दोनों मापीय स्पेस में स्ट्रॉन्ग नेगेटिव टाइप है, तो आईएफएफ स्वतंत्र हैं।[11]
दूरी सहप्रसरण की वैकल्पिक परिभाषा
मूल दूरी सहसंबंध दूरी सहप्रसरण को के वर्गमूल के रूप में परिभाषित किया गया है। , वर्ग गुणांक के बल्कि संयुक्त वितरण के बीच ऊर्जा की दूरी है और इसके अंतर का गुणन है। इस परिभाषा के तहत, हालांकि, दूरी मानक विचलन के बजाय दूरी भिन्नता को उसी इकाइयों में मापा जाता है।
वैकल्पिक रूप से, ऊर्जा दूरी के वर्ग के रूप में 'दूरी सहप्रसरण' को परिभाषित किया जा सकता है: इस स्तिथि में, की दूरी मानक विचलन के समान इकाइयों में मापा जाता है दूरी, और जनसंख्या दूरी सहप्रसरण के लिए एक निष्पक्ष अनुमानक उपस्थित है।[10]
इन वैकल्पिक परिभाषाओं के अंतर्गत, दूरी सहसंबंध को वर्ग के रूप में भी परिभाषित किया गया है।
वैकल्पिक सूत्रीकरण: ब्राउनियन सहप्रसरण
ब्राउनियन कोवैरियंस स्टोचैस्टिक प्रक्रियाओं के लिए कॉन्वर्सिस की धारणा के सामान्यीकरण से प्रेरित है। यादृच्छिक चर X और Y के सहप्रसरण के वर्ग को निम्न रूप में लिखा जा सकता है:
जहां E अपेक्षित मूल्य को दर्शाता है और अभाज्य स्वतंत्र और समान रूप से वितरित प्रतियों को दर्शाता है। हमें इस सूत्र के निम्नलिखित सामान्यीकरण की आवश्यकता है। यदि U(s),V(t) मनमानी यादृच्छिक प्रक्रियाएं हैं जो सभी वास्तविक s और t के लिए परिभाषित हैं तो X के U-केंद्रित संस्करण को परिभाषित करें
जब भी घटाया गया सशर्त अपेक्षित मूल्य उपस्थित होता है और YV द्वारा Y का V-केंद्रित संस्करण निरूपित किया जाता है।[3][13][14] (X,Y) के (U,V) सहप्रसरण को उस गैरऋणात्मक संख्या के रूप में परिभाषित किया गया है जिसका वर्ग है:
जब भी दाहिने हाथ की तरफ गैरऋणात्मक और परिमित हो, सबसे महत्वपूर्ण उदाहरण है जब U और V दो तरफा स्वतंत्र ब्राउनियन गति हैं। अपेक्षा शून्य और सहसंयोजक के साथ वीनर प्रक्रिया |s| + |t| − |s − t| = 2 min(s,t) ( केवल ऋणात्मक s के लिए, t. (यह मानक वीनर प्रक्रिया के सहसंयोजक से दोगुना है; यहाँ कारक 2 संगणना को सरल करता है।) इस स्तिथि में (U, V) सहसंयोजक को ब्राउनियन सहसंयोजक कहा जाता है और इसके द्वारा निरूपित किया जाता है।
एक आश्चर्यजनक संयोग है: ब्राउनियन सहप्रसरण दूरी सहप्रसरण के समान है:
और इस प्रकार ब्राउनियन सहसंबंध दूरी सहसंबंध के समान है।
दूसरी ओर, यदि हम ब्राउनियन गति को नियतात्मक पहचान फलन आईडी से प्रतिस्थापित करते हैं तो Covid(X,Y) चिरसम्मत पियर्सन सहप्रसरण का केवल निरपेक्ष मान है:
संबंधित आव्यूह
कर्नेल-आधारित सहसंबंध आव्यूह (जैसे कि हिल्बर्ट-श्मिट इंडिपेंडेंस क्राइटेरियन या एचएसआईसी) सहित अन्य सहसंबंध आव्यूह भी रैखिक और गैर-रेखीय परस्पर क्रिया का पता लगा सकते हैं। स्थिर सांख्यिकीय घात प्राप्त करने के लिए दूरी सहसंबंध और कर्नेल-आधारित आव्यूह दोनों का उपयोग कैनोनिकल सांख्यिकीय विश्लेषण और स्वतंत्र घटक विश्लेषण जैसी विधियों के साथ किया जा सकता है।
यह भी देखें
- आरवी गुणांक
- संबंधित तृतीय-क्रम आँकड़ों के लिए, दूरी विषमता देखें।
टिप्पणियाँ
- ↑ Pearson 1895a, 1895b
- ↑ 2.0 2.1 2.2 Székely, Rizzo & Bakirov 2007.
- ↑ 3.0 3.1 3.2 Székely & Rizzo 2009a.
- ↑ 4.0 4.1 Rizzo & Székely 2021.
- ↑ Székely & Rizzo 2014, p. 11.
- ↑ 6.0 6.1 Székely & Rizzo 2009a, p. 1249, Theorem 7, (3.7).
- ↑ Székely & Rizzo 2012.
- ↑ Gini 1912.
- ↑ Székely & Rizzo 2009b.
- ↑ 10.0 10.1 Székely & Rizzo 2014.
- ↑ 11.0 11.1 Lyons 2014.
- ↑ Klebanov 2005, p. [page needed].
- ↑ Bickel & Xu 2009.
- ↑ Kosorok 2009.
संदर्भ
- Bickel, Peter J.; Xu, Ying (2009). "Discussion of: Brownian distance covariance". The Annals of Applied Statistics. 3 (4): 1266–1269. doi:10.1214/09-AOAS312A.
- Gini, C. (1912). Variabilità e Mutabilità. Bologna: Tipografia di Paolo Cuppini. Bibcode:1912vamu.book.....G.
- Klebanov, L. B. (2005). N-distances and their applications. Prague: Karolinum Press, Charles University. ISBN 9788024611525.
- Kosorok, Michael R. (2009). "Discussion of: Brownian distance covariance". The Annals of Applied Statistics. 3 (4): 1270–1278. arXiv:1010.0822. doi:10.1214/09-AOAS312B. S2CID 88518490.
- Lyons, Russell (2014). "Distance covariance in metric spaces". The Annals of Probability. 41 (5): 3284–3305. arXiv:1106.5758. doi:10.1214/12-AOP803. S2CID 73677891.
- Pearson, K. (1895a). "Note on regression and inheritance in the case of two parents". Proceedings of the Royal Society. 58: 240–242. Bibcode:1895RSPS...58..240P.
- Pearson, K. (1895b). "Notes on the history of correlation". Biometrika. 13: 25–45. doi:10.1093/biomet/13.1.25.
- Rizzo, Maria; Székely, Gábor (2021-02-22). "energy: E-Statistics: Multivariate Inference via the Energy of Data". Version: 1.7-8. Retrieved 2021-10-31.
- Székely, Gábor J.; Rizzo, Maria L.; Bakirov, Nail K. (2007). "Measuring and testing independence by correlation of distances". The Annals of Statistics. 35 (6): 2769–2794. arXiv:0803.4101. doi:10.1214/009053607000000505. S2CID 5661488.
- Székely, Gábor J.; Rizzo, Maria L. (2009a). "Brownian distance covariance". The Annals of Applied Statistics. 3 (4): 1236–1265. doi:10.1214/09-AOAS312. PMC 2889501. PMID 20574547.
- Székely, Gábor J.; Rizzo, Maria L. (2009b). "Rejoinder: Brownian distance covariance". The Annals of Applied Statistics. 3 (4): 1303–1308. doi:10.1214/09-AOAS312REJ.
- Székely, Gábor J.; Rizzo, Maria L. (2012). "On the uniqueness of distance covariance". Statistics & Probability Letters. 82 (12): 2278–2282. doi:10.1016/j.spl.2012.08.007.
- Székely, Gabor J.; Rizzo, Maria L. (2014). "Partial Distance Correlation with Methods for Dissimilarities". The Annals of Statistics. 42 (6): 2382–2412. arXiv:1310.2926. Bibcode:2014arXiv1310.2926S. doi:10.1214/14-AOS1255. S2CID 55801702.