बीपीपी (जटिलता): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Concept in computer science}}
{{Short description|Concept in computer science}}
[[कम्प्यूटेशनल जटिलता सिद्धांत|'''कम्प्यूटेशनल जटिलता सिद्धांत''']] में, कंप्यूटर विज्ञान की शाखा, सीमाबद्ध-त्रुटि संभाव्य बहुपद समय (बीपीपी) सभी उदाहरणों के लिए 1/3 से बंधी त्रुटि [[संभावना]] के साथ बहुपद समय में [[संभाव्य ट्यूरिंग मशीन]] द्वारा समाधान करने योग्य [[निर्णय समस्या|निर्णय समस्याओं]] का वर्ग है। बीपीपी समस्याओं के सबसे बड़े व्यावहारिक वर्गों में से है, जिसका अर्थ है कि बीपीपी में रुचि की अधिकांश समस्याओं में कुशल संभाव्य एल्गोरिदम हैं जिन्हें वास्तविक आधुनिक मशीनों पर जल्दी से चलाया जा सकता है। बीपीपी में पी (जटिलता) भी शामिल है, जो नियतात्मक मशीन के साथ बहुपद समय में समाधान करने योग्य समस्याओं का वर्ग है, क्योंकि नियतात्मक मशीन संभाव्य मशीन का  विशेष मामला है।
[[कम्प्यूटेशनल जटिलता सिद्धांत]] में, कंप्यूटर विज्ञान की शाखा, '''सीमाबद्ध-त्रुटि संभाव्य बहुपद समय (बीपीपी)''' सभी उदाहरणों के लिए 1/3 से बंधी त्रुटि [[संभावना]] के साथ बहुपद समय में [[संभाव्य ट्यूरिंग मशीन]] द्वारा समाधान करने योग्य [[निर्णय समस्या|निर्णय समस्याओं]] का वर्ग है। '''बीपीपी''' समस्याओं के सबसे बड़े व्यावहारिक वर्गों में से है, जिसका अर्थ है कि '''बीपीपी''' में रुचि की अधिकांश समस्याओं में कुशल संभाव्य एल्गोरिदम हैं जिन्हें वास्तविक आधुनिक मशीनों पर शीघ्रता से चलाया जा सकता है। '''बीपीपी''' में '''P''' (जटिलता) भी सम्मिलित है, जो नियतात्मक मशीन के साथ बहुपद समय में समाधान करने योग्य समस्याओं का वर्ग है, क्योंकि नियतात्मक मशीन संभाव्य मशीन की विशेष स्थिति है।


{| class="wikitable" style="float:right; clear:right; text-align:center; margin-left:1em;"
{| class="wikitable" style="float:right; clear:right; text-align:center; margin-left:1em;"
Line 34: Line 34:
|colspan="3" style="font-size:85%"|for some constant ''c'' > 0
|colspan="3" style="font-size:85%"|for some constant ''c'' > 0
|}
|}
अनौपचारिक रूप से, समस्या बीपीपी में है यदि इसके लिए कोई एल्गोरिदम है जिसमें निम्नलिखित गुण हैं:
अनौपचारिक रूप से, समस्या '''बीपीपी''' में है यदि इसके लिए कोई एल्गोरिदम है जिसमें निम्नलिखित गुण हैं:
*इसमें सिक्के उछालने और यादृच्छिक निर्णय लेने की अनुमति है
*इसमें सिक्के उछालने और यादृच्छिक निर्णय लेने की अनुमति है।
*इसके बहुपद समय में चलने की गारंटी है
*इसके बहुपद समय में चलने का आश्वासन है।
*एल्गोरिदम के किसी भी दिए गए रन पर, गलत उत्तर देने की अधिकतम 1/3 संभावना होती है, चाहे उत्तर हाँ हो या नहीं।
*एल्गोरिदम के किसी भी दिए गए रन पर, त्रुटिपूर्ण उत्तर देने की अधिकतम 1/3 संभावना होती है, चाहे उत्तर हाँ हो या नहीं।


== परिभाषा ==
== परिभाषा ==
भाषा L 'BPP' में है यदि और केवल तभी जब कोई संभाव्य ट्यूरिंग मशीन M मौजूद हो, जैसे कि
भाषा L ''''बीपीपी'''<nowiki/>' में है यदि और केवल तभी जब कोई संभाव्य ट्यूरिंग मशीन M उपस्थित हो, जैसे कि
* M सभी इनपुट पर बहुपद समय के लिए चलता है
* M सभी इनपुट पर बहुपद समय के लिए चलता है।
* एल में सभी ्स के लिए, एम 2/3 से अधिक या उसके बराबर संभावना के साथ 1 आउटपुट देता है
* L में सभी x के लिए, M 2/3 से अधिक या उसके समान संभावना के साथ 1 आउटपुट देता है।
* एल में नहीं सभी ्स के लिए, एम 1/3 से कम या उसके बराबर संभावना के साथ 1 आउटपुट देता है
* L में नहीं सभी x के लिए, M 1/3 से कम या उसके समान संभावना के साथ 1 आउटपुट देता है।
जटिलता वर्ग 'जेडपीपी (जटिलता)' के विपरीत, मशीन एम को यादृच्छिक सिक्का फ्लिप के परिणाम की परवाह किए बिना, सभी इनपुट पर बहुपद समय तक चलने की आवश्यकता होती है।
जटिलता वर्ग 'जेडपीपी' के विपरीत, मशीन M को यादृच्छिक सिक्का फ्लिप के परिणाम की विचार किए बिना, सभी इनपुट पर बहुपद समय तक चलने की आवश्यकता होती है।


वैकल्पिक रूप से, 'बीपीपी' को केवल नियतात्मक ट्यूरिंग मशीनों का उपयोग करके परिभाषित किया जा सकता है।  भाषा एल 'बीपीपी' में है यदि और केवल तभी जब बहुपद पी और नियतात्मक ट्यूरिंग मशीन एम मौजूद हो, जैसे कि
वैकल्पिक रूप से, 'बीपीपी' को केवल नियतात्मक ट्यूरिंग मशीनों का उपयोग करके परिभाषित किया जा सकता है।  भाषा L 'बीपीपी' में है यदि और केवल तभी जब बहुपद p और नियतात्मक ट्यूरिंग मशीन M उपस्थित हो, जैसे कि;
* M सभी इनपुट पर बहुपद समय के लिए चलता है
* M सभी इनपुट पर बहुपद समय के लिए चलता है।
* L में सभी x के लिए, लंबाई p(|x|) की स्ट्रिंग y का अंश जो संतुष्ट करता है {{tmath|1=M(x,y) = 1}} 2/3 से बड़ा या उसके बराबर है
* L में सभी x के लिए, लंबाई p(|x|) की स्ट्रिंग y का अंश जो संतुष्ट करता है {{tmath|1=M(x,y) = 1}} 2/3 से बड़ा या उसके समान है।
* L में नहीं सभी x के लिए, लंबाई p(|x|) की स्ट्रिंग y का अंश जो संतुष्ट करता है {{tmath|1=M(x,y) = 1}} 1/3 से कम या उसके बराबर है
* L में नहीं सभी x के लिए, लंबाई p(|x|) की स्ट्रिंग y का अंश जो संतुष्ट करता है {{tmath|1=M(x,y) = 1}} 1/3 से कम या उसके समान है।
इस परिभाषा में, स्ट्रिंग y यादृच्छिक सिक्का फ़्लिप के आउटपुट से मेल खाती है जो संभाव्य ट्यूरिंग मशीन ने बनाई होगी। कुछ अनुप्रयोगों के लिए यह परिभाषा बेहतर है क्योंकि इसमें संभाव्य ट्यूरिंग मशीनों का उल्लेख नहीं है।
इस परिभाषा में, स्ट्रिंग y यादृच्छिक सिक्का फ़्लिप के आउटपुट से युग्मित होती है जो संभाव्य ट्यूरिंग मशीन ने बनाई होगी। कुछ अनुप्रयोगों के लिए यह परिभाषा उत्तम है क्योंकि इसमें संभाव्य ट्यूरिंग मशीनों का उल्लेख नहीं है।


व्यवहार में, 1/3 की त्रुटि संभावना स्वीकार्य नहीं हो सकती है, हालाँकि, परिभाषा में 1/3 का विकल्प मनमाना है। 1/3 के स्थान पर 0 और 1/2 (अनन्य) के बीच किसी भी [[गणितीय स्थिरांक]] का उपयोग करने के लिए परिभाषा को संशोधित करने से परिणामी सेट 'बीपीपी' नहीं बदलेगा। उदाहरण के लिए, यदि किसी ने वर्ग को इस प्रतिबंध के साथ परिभाषित किया है कि एल्गोरिदम अधिकतम 1/2 संभावना के साथ गलत हो सकता है<sup>100</sup>, इसके परिणामस्वरूप समस्याओं का ही वर्ग उत्पन्न होगा। त्रुटि संभावना का स्थिर होना भी आवश्यक नहीं है: समस्याओं के समान वर्ग को 1/2 जितनी अधिक त्रुटि की अनुमति देकर परिभाषित किया जाता है - n<sup>-सी</sup> तरफ, या 2 जैसी छोटी त्रुटि की आवश्यकता है<sup>-n<sup>दूसरी ओर, c</sup></sup> जहां c कोई धनात्मक स्थिरांक है, और n इनपुट की लंबाई है। त्रुटि संभावना की पसंद में यह लचीलापन त्रुटि-प्रवण एल्गोरिदम को कई बार चलाने और अधिक सटीक एल्गोरिदम प्राप्त करने के लिए रन के बहुमत परिणाम का उपयोग करने के विचार पर आधारित है। संभावना है कि अधिकांश रन [[चेर्नॉफ़ बाध्य]] के परिणामस्वरूप गलत [[घातीय क्षय]] हैं।<ref>Valentine Kabanets, [http://www.cs.sfu.ca/~kabanets/cmpt710/lec16.pdf CMPT 710 - Complexity Theory: Lecture 16], October 28, 2003</ref>
व्यवहार में, 1/3 की त्रुटि संभावना स्वीकार्य नहीं हो सकती है, चूँकि, परिभाषा में 1/3 का विकल्प इच्छानुसार है। 1/3 के स्थान पर 0 और 1/2 (अनन्य) के मध्य किसी भी [[गणितीय स्थिरांक]] का उपयोग करने के लिए परिभाषा को संशोधित करने से परिणामी सेट 'बीपीपी' परिवर्तित नहीं होता है। उदाहरण के लिए, यदि किसी ने वर्ग को इस प्रतिबंध के साथ परिभाषित किया है कि एल्गोरिदम अधिकतम 1/2<sup>100</sup> संभावना के साथ त्रुटिपूर्ण हो सकता है, तो इसके परिणामस्वरूप समस्याओं का एक ही वर्ग उत्पन्न होगा। त्रुटि संभावना का स्थिर होना भी आवश्यक नहीं है: समस्याओं के समान वर्ग को एक ओर 1/2 - n<sup>-''c''</sup> जितनी उच्च त्रुटि की अनुमति देकर, या दूसरी ओर 2<sup>-n<sup>c</sup></sup> जितनी छोटी त्रुटि की आवश्यकता के द्वारा परिभाषित किया जाता है, जहां c कोई धनात्मक स्थिरांक है, और n इनपुट की लंबाई है। त्रुटि संभावना की रूचि में यह लचीलापन त्रुटि-प्रवण एल्गोरिदम को कई बार चलाने और अधिक त्रुटिहीन एल्गोरिदम प्राप्त करने के लिए रन के बहुमत परिणाम का उपयोग करने के विचार पर आधारित है। [[चेर्नॉफ़ बाध्य|चेरनॉफ बाउंड]] के परिणामस्वरूप अधिकांश रन त्रुटिपूर्ण होने की संभावना शीघ्रता से [[घातीय क्षय|क्षय]] हो जाती है।<ref>Valentine Kabanets, [http://www.cs.sfu.ca/~kabanets/cmpt710/lec16.pdf CMPT 710 - Complexity Theory: Lecture 16], October 28, 2003</ref>
== समस्याएँ ==
== समस्याएँ ==
{{unsolved|computer science|{{tmath|1= \mathsf P \overset{?}{=} \mathsf{BPP} }}}}
{{unsolved|computer science|{{tmath|1= \mathsf P \overset{?}{=} \mathsf{BPP} }}}}
पी में सभी समस्याएं स्पष्ट रूप से बीपीपी में भी हैं। हालाँकि, कई समस्याओं के बारे में पता चला है कि वे BPP में हैं, लेकिन P में नहीं हैं। ऐसी समस्याओं की संख्या कम हो रही है, और यह अनुमान लगाया गया है कि P = BPP है।
पी में सभी समस्याएं स्पष्ट रूप से बीपीपी में भी हैं। चूँकि , कई समस्याओं के बारे में पता चला है कि वे BPP में हैं, लेकिन P में नहीं हैं। ऐसी समस्याओं की संख्या कम हो रही है, और यह अनुमान लगाया गया है कि P = BPP है।


लंबे समय से, सबसे प्रसिद्ध समस्याओं में से  जिसे बीपीपी में जाना जाता था लेकिन पी में नहीं जाना जाता था, वह [[प्रारंभिक परीक्षण]] की समस्या थी कि क्या कोई दी गई संख्या [[अभाज्य संख्या]] है। हालाँकि, 2002 के पेपर ''ेएस प्राइमैलिटी टेस्ट'' में, [[मनिन्द्र अग्रवाल]] और उनके छात्रों [[-नीरज कयाल]] और [[ नितिन सक्सैना ]] ने इस समस्या के लिए  नियतात्मक बहुपद-समय एल्गोरिदम पाया, जिससे पता चला कि यह पी में है।
लंबे समय से, सबसे प्रसिद्ध समस्याओं में से  जिसे बीपीपी में जाना जाता था लेकिन पी में नहीं जाना जाता था, वह [[प्रारंभिक परीक्षण]] की समस्या थी कि क्या कोई दी गई संख्या [[अभाज्य संख्या]] है। चूँकि , 2002 के पेपर ''ेएस प्राइमैलिटी टेस्ट'' में, [[मनिन्द्र अग्रवाल]] और उनके छात्रों [[-नीरज कयाल]] और [[ नितिन सक्सैना ]] ने इस समस्या के लिए  नियतात्मक बहुपद-समय एल्गोरिदम पाया, जिससे पता चला कि यह पी में है।


बीपीपी में  समस्या का  महत्वपूर्ण उदाहरण (वास्तव में [[आरपी (जटिलता)]] | सह-आरपी में) अभी भी पी में ज्ञात नहीं है, [[बहुपद पहचान परीक्षण]] है, यह निर्धारित करने की समस्या है कि क्या  बहुपद शून्य बहुपद के बराबर है, जब आप किसी दिए गए इनपुट के लिए बहुपद के मान तक पहुंच है, लेकिन गुणांक तक नहीं। दूसरे शब्दों में, क्या चरों के लिए मानों का कोई असाइनमेंट है ताकि जब इन मानों पर  गैर-शून्य बहुपद का मूल्यांकन किया जाए, तो परिणाम गैर-शून्य हो? सीमित त्रुटि संभावना प्राप्त करने के लिए कम से कम ''d'' मानों के  परिमित उपसमुच्चय से यादृच्छिक रूप से प्रत्येक चर के मान को समान रूप से चुनना पर्याप्त है, जहां ''d'' बहुपद की कुल डिग्री है।<ref>Madhu Sudan and Shien Jin Ong. Massachusetts Institute of Technology: 6.841/18.405J Advanced Complexity Theory: [http://people.csail.mit.edu/madhu/ST03/scribe/lect06.pdf Lecture 6: Randomized Algorithms, Properties of BPP]. February 26, 2003.</ref>
बीपीपी में  समस्या का  महत्वपूर्ण उदाहरण (वास्तव में [[आरपी (जटिलता)]] | सह-आरपी में) अभी भी पी में ज्ञात नहीं है, [[बहुपद पहचान परीक्षण]] है, यह निर्धारित करने की समस्या है कि क्या  बहुपद शून्य बहुपद के समान है, जब आप किसी दिए गए इनपुट के लिए बहुपद के मान तक पहुंच है, लेकिन गुणांक तक नहीं। दूसरे शब्दों में, क्या चरों के लिए मानों का कोई असाइनमेंट है ताकि जब इन मानों पर  गैर-शून्य बहुपद का मूल्यांकन किया जाए, तो परिणाम गैर-शून्य हो? सीमित त्रुटि संभावना प्राप्त करने के लिए कम से कम ''d'' मानों के  परिमित उपसमुच्चय से यादृच्छिक रूप से प्रत्येक चर के मान को समान रूप से चुनना पर्याप्त है, जहां ''d'' बहुपद की कुल डिग्री है।<ref>Madhu Sudan and Shien Jin Ong. Massachusetts Institute of Technology: 6.841/18.405J Advanced Complexity Theory: [http://people.csail.mit.edu/madhu/ST03/scribe/lect06.pdf Lecture 6: Randomized Algorithms, Properties of BPP]. February 26, 2003.</ref>
== संबंधित वर्ग ==
== संबंधित वर्ग ==
यदि बीपीपी की परिभाषा से यादृच्छिकता की पहुंच हटा दी जाती है, तो हमें जटिलता वर्ग पी मिलता है। वर्ग की परिभाषा में, यदि हम साधारण [[ट्यूरिंग मशीन]] को [[ एक कंप्यूटर जितना |  कंप्यूटर जितना]] से बदलते हैं, तो हमें वर्ग [[बीक्यूपी]] मिलता है।
यदि बीपीपी की परिभाषा से यादृच्छिकता की पहुंच हटा दी जाती है, तो हमें जटिलता वर्ग पी मिलता है। वर्ग की परिभाषा में, यदि हम साधारण [[ट्यूरिंग मशीन]] को [[ एक कंप्यूटर जितना |  कंप्यूटर जितना]] से बदलते हैं, तो हमें वर्ग [[बीक्यूपी]] मिलता है।


बीपीपी में [[चयन के बाद]] जोड़ने, या गणना पथों को अलग-अलग लंबाई की अनुमति देने से क्लास बीपीपी मिलता है<sub>path</sub>.<ref>{{cite web | url=https://complexityzoo.net/Complexity_Zoo:B#bpppath | title=Complexity Zoo:B - Complexity Zoo }}</ref> बीपीपी<sub>path</sub> यह ज्ञात है कि इसमें एनपी शामिल है, और यह इसके क्वांटम समकक्ष [[पोस्टबीक्यूपी]] में निहित है।
बीपीपी में [[चयन के बाद]] जोड़ने, या गणना पथों को अलग-अलग लंबाई की अनुमति देने से क्लास बीपीपी मिलता है<sub>path</sub>.<ref>{{cite web | url=https://complexityzoo.net/Complexity_Zoo:B#bpppath | title=Complexity Zoo:B - Complexity Zoo }}</ref> बीपीपी<sub>path</sub> यह ज्ञात है कि इसमें एनपी सम्मिलित है, और यह इसके क्वांटम समकक्ष [[पोस्टबीक्यूपी]] में निहित है।


[[मोंटे कार्लो एल्गोरिथ्म]]  [[यादृच्छिक एल्गोरिदम]] है जिसके सही होने की संभावना है। क्लास बीपीपी में समस्याओं में बहुपद सीमाबद्ध रनिंग टाइम के साथ मोंटे कार्लो एल्गोरिदम हैं। इसकी तुलना [[लास वेगास एल्गोरिथ्म]] से की जाती है जो  यादृच्छिक एल्गोरिदम है जो या तो सही उत्तर देता है, या कम संभावना के साथ आउटपुट विफल हो जाता है। वर्ग ZPP (जटिलता) को परिभाषित करने के लिए बहुपद बाध्य चलने वाले समय के साथ लास वेगास एल्गोरिदम का उपयोग किया जाता है। वैकल्पिक रूप से, ZPP में संभाव्य एल्गोरिदम होते हैं जो हमेशा सही होते हैं और अपेक्षित बहुपद चलने का समय होता है। यह कहने से कमज़ोर है कि यह  बहुपद समय एल्गोरिथ्म है, क्योंकि यह सुपर-बहुपद समय तक चल सकता है, लेकिन बहुत कम संभावना के साथ।
[[मोंटे कार्लो एल्गोरिथ्म]]  [[यादृच्छिक एल्गोरिदम]] है जिसके सही होने की संभावना है। क्लास बीपीपी में समस्याओं में बहुपद सीमाबद्ध रनिंग टाइम के साथ मोंटे कार्लो एल्गोरिदम हैं। इसकी तुलना [[लास वेगास एल्गोरिथ्म]] से की जाती है जो  यादृच्छिक एल्गोरिदम है जो या तो सही उत्तर देता है, या कम संभावना के साथ आउटपुट विफल हो जाता है। वर्ग ZPP (जटिलता) को परिभाषित करने के लिए बहुपद बाध्य चलने वाले समय के साथ लास वेगास एल्गोरिदम का उपयोग किया जाता है। वैकल्पिक रूप से, ZPP में संभाव्य एल्गोरिदम होते हैं जो हमेशा सही होते हैं और अपेक्षित बहुपद चलने का समय होता है। यह कहने से कमज़ोर है कि यह  बहुपद समय एल्गोरिथ्म है, क्योंकि यह सुपर-बहुपद समय तक चल सकता है, लेकिन बहुत कम संभावना के साथ।
Line 71: Line 71:
[[File:Complexity-classes-polynomial.svg|thumb|पी (जटिलता), [[एनपी (जटिलता)]], [[सह-एनपी]], बीपीपी (जटिलता), पी/पॉली, [[पीएच (जटिलता)]], और पीएसपीएसीई सहित जटिलता वर्गों का समावेश]]यह ज्ञात है कि BPP [[पूरक (जटिलता)]] के अंतर्गत बंद है; अर्थात्, BPP = सह-BPP। BPP अपने आप में [[कम (जटिलता)]] है, जिसका अर्थ है कि BPP समस्याओं को तुरंत समाधान करने की शक्ति वाली BPP मशीन (BPP [[ओरेकल मशीन]]) इस अतिरिक्त शक्ति के बिना मशीन से अधिक शक्तिशाली नहीं है। प्रतीकों में, बी.पी.पी बीपीपी = बीपीपी।
[[File:Complexity-classes-polynomial.svg|thumb|पी (जटिलता), [[एनपी (जटिलता)]], [[सह-एनपी]], बीपीपी (जटिलता), पी/पॉली, [[पीएच (जटिलता)]], और पीएसपीएसीई सहित जटिलता वर्गों का समावेश]]यह ज्ञात है कि BPP [[पूरक (जटिलता)]] के अंतर्गत बंद है; अर्थात्, BPP = सह-BPP। BPP अपने आप में [[कम (जटिलता)]] है, जिसका अर्थ है कि BPP समस्याओं को तुरंत समाधान करने की शक्ति वाली BPP मशीन (BPP [[ओरेकल मशीन]]) इस अतिरिक्त शक्ति के बिना मशीन से अधिक शक्तिशाली नहीं है। प्रतीकों में, बी.पी.पी बीपीपी = बीपीपी।


बीपीपी और एनपी (जटिलता) के बीच संबंध अज्ञात है: यह ज्ञात नहीं है कि बीपीपी एनपी (जटिलता) का  उपसमूह है या नहीं, एनपी बीपीपी का  उपसमूह है या नहीं। यदि एनपी बीपीपी में समाहित है, जिसे असंभावित माना जाता है क्योंकि यह एनपी-पूर्ण समस्याओं के लिए व्यावहारिक समाधान प्रदान करेगा, तो एनपी = आरपी और पीएच (जटिलता) ⊆ बीपीपी।<ref>Lance Fortnow, [http://weblog.fortnow.com/2005/12/pulling-out-quantumness.html Pulling Out The Quantumness],  December 20, 2005</ref>
बीपीपी और एनपी (जटिलता) के मध्य संबंध अज्ञात है: यह ज्ञात नहीं है कि बीपीपी एनपी (जटिलता) का  उपसमूह है या नहीं, एनपी बीपीपी का  उपसमूह है या नहीं। यदि एनपी बीपीपी में समाहित है, जिसे असंभावित माना जाता है क्योंकि यह एनपी-पूर्ण समस्याओं के लिए व्यावहारिक समाधान प्रदान करेगा, तो एनपी = आरपी और पीएच (जटिलता) ⊆ बीपीपी।<ref>Lance Fortnow, [http://weblog.fortnow.com/2005/12/pulling-out-quantumness.html Pulling Out The Quantumness],  December 20, 2005</ref>
यह ज्ञात है कि आरपी (जटिलता) बीपीपी का  उपसमूह है, और बीपीपी पीपी (जटिलता) का  उपसमूह है। यह ज्ञात नहीं है कि क्या वे दोनों सख्त उपसमुच्चय हैं, क्योंकि हम यह भी नहीं जानते हैं कि क्या P, PSPACE का  सख्त उपसमुच्चय है। BPP [[बहुपद पदानुक्रम]] के दूसरे स्तर में समाहित है और इसलिए यह PH में समाहित है। अधिक सटीक रूप से, सिप्सर-लौटेमैन प्रमेय यह बताता है <math>\mathsf{BPP} \subseteq \Sigma_2 \cap \Pi_2 </math>. परिणामस्वरूप, P = NP, P = BPP की ओर ले जाता है क्योंकि इस मामले में PH घटकर P हो जाता है। इस प्रकार या तो P = BPP या P ≠ NP या दोनों।
यह ज्ञात है कि आरपी (जटिलता) बीपीपी का  उपसमूह है, और बीपीपी पीपी (जटिलता) का  उपसमूह है। यह ज्ञात नहीं है कि क्या वे दोनों सख्त उपसमुच्चय हैं, क्योंकि हम यह भी नहीं जानते हैं कि क्या P, PSPACE का  सख्त उपसमुच्चय है। BPP [[बहुपद पदानुक्रम]] के दूसरे स्तर में समाहित है और इसलिए यह PH में समाहित है। अधिक सटीक रूप से, सिप्सर-लौटेमैन प्रमेय यह बताता है <math>\mathsf{BPP} \subseteq \Sigma_2 \cap \Pi_2 </math>. परिणामस्वरूप, P = NP, P = BPP की ओर ले जाता है क्योंकि इस मामले में PH घटकर P हो जाता है। इस प्रकार या तो P = BPP या P ≠ NP या दोनों।


एडलमैन के प्रमेय में कहा गया है कि बीपीपी में किसी भी भाषा में सदस्यता बहुपद आकार के [[बूलियन सर्किट]] के परिवार द्वारा निर्धारित की जा सकती है, जिसका अर्थ है कि बीपीपी पी/पॉली में निहित है।<ref>{{cite conference | author = Adleman, L. M. | author-link = Leonard Adleman | title = यादृच्छिक बहुपद समय पर दो प्रमेय| book-title = Proceedings of the Nineteenth Annual IEEE Symposium on Foundations of Computing | year = 1978 | pages = 75–83}}</ref> दरअसल, इस तथ्य के प्रमाण के परिणामस्वरूप, बंधी हुई लंबाई के इनपुट पर काम करने वाले प्रत्येक बीपीपी एल्गोरिदम को यादृच्छिक बिट्स की  निश्चित स्ट्रिंग का उपयोग करके  नियतात्मक एल्गोरिदम में यादृच्छिक किया जा सकता है। हालाँकि, इस स्ट्रिंग को ढूँढना महंगा हो सकता है। मोंटे कार्लो समय कक्षाओं के लिए कुछ कमजोर पृथक्करण परिणाम सिद्ध हुए {{harvtxt|Karpinski|Verbeek|1987a}}, यह सभी देखें {{harvtxt|Karpinski|Verbeek|1987b}}.
एडलमैन के प्रमेय में कहा गया है कि बीपीपी में किसी भी भाषा में सदस्यता बहुपद आकार के [[बूलियन सर्किट]] के परिवार द्वारा निर्धारित की जा सकती है, जिसका अर्थ है कि बीपीपी पी/पॉली में निहित है।<ref>{{cite conference | author = Adleman, L. M. | author-link = Leonard Adleman | title = यादृच्छिक बहुपद समय पर दो प्रमेय| book-title = Proceedings of the Nineteenth Annual IEEE Symposium on Foundations of Computing | year = 1978 | pages = 75–83}}</ref> दरअसल, इस तथ्य के प्रमाण के परिणामस्वरूप, बंधी हुई लंबाई के इनपुट पर काम करने वाले प्रत्येक बीपीपी एल्गोरिदम को यादृच्छिक बिट्स की  निश्चित स्ट्रिंग का उपयोग करके  नियतात्मक एल्गोरिदम में यादृच्छिक किया जा सकता है। चूँकि , इस स्ट्रिंग को ढूँढना महंगा हो सकता है। मोंटे कार्लो समय कक्षाओं के लिए कुछ कमजोर पृथक्करण परिणाम सिद्ध हुए {{harvtxt|Karpinski|Verbeek|1987a}}, यह सभी देखें {{harvtxt|Karpinski|Verbeek|1987b}}.


=== समापन गुण ===
=== समापन गुण ===
Line 80: Line 80:


===सापेक्षीकरण ===
===सापेक्षीकरण ===
दैवज्ञों के संबंध में, हम जानते हैं कि दैवज्ञ ए और बी मौजूद हैं, जैसे कि पी<sup>ए</sup> = बीपीपी और पी बी बीपीपी बी. इसके अलावा, संभाव्यता 1 के साथ  [[यादृच्छिक दैवज्ञ]] के सापेक्ष, पी = बीपीपी और बीपीपी सख्ती से एनपी और सह-एनपी में निहित है।<ref>{{Citation | last1=Bennett | first1=Charles H. | author1-link=Charles H. Bennett (computer scientist) | last2=Gill | first2=John | title=Relative to a Random Oracle A, P^A != NP^A != co-NP^A with Probability 1 | year=1981 | journal=SIAM Journal on Computing | issn=1095-7111 | volume=10 | issue=1 | pages=96–113 | doi=10.1137/0210008}}</ref>
दैवज्ञों के संबंध में, हम जानते हैं कि दैवज्ञ ए और बी उपस्थित हैं, जैसे कि पी<sup>ए</sup> = बीपीपी और पी बी बीपीपी बी. इसके अलावा, संभाव्यता 1 के साथ  [[यादृच्छिक दैवज्ञ]] के सापेक्ष, पी = बीपीपी और बीपीपी सख्ती से एनपी और सह-एनपी में निहित है।<ref>{{Citation | last1=Bennett | first1=Charles H. | author1-link=Charles H. Bennett (computer scientist) | last2=Gill | first2=John | title=Relative to a Random Oracle A, P^A != NP^A != co-NP^A with Probability 1 | year=1981 | journal=SIAM Journal on Computing | issn=1095-7111 | volume=10 | issue=1 | pages=96–113 | doi=10.1137/0210008}}</ref>
यहाँ तक कि  दैवज्ञ भी है जिसमें BPP=EXP एनपी(और इसलिए P<NP<BPP=EXP=NEXP),<ref>{{Citation | last=Heller | first=Hans | title=On relativized exponential and probabilistic complexity classes | year=1986 | journal=Information and Control | volume=71 | issue=3 | pages=231–243 | doi=10.1016/S0019-9958(86)80012-2| doi-access=free }}</ref> जिसे निम्नानुसार पुनरावृत्तीय रूप से निर्मित किया जा सकता है।  निश्चित [[ई (जटिलता)]] के लिए एनपी (सापेक्षिक) पूर्ण समस्या, यदि समस्या के उदाहरण के साथ लंबाई kn (n उदाहरण की लंबाई है; k  उपयुक्त छोटा स्थिरांक है) की  यादृच्छिक स्ट्रिंग के साथ पूछताछ की जाती है, तो ओरेकल उच्च संभावना के साथ सही उत्तर देगा। n=1 से प्रारंभ करें. लंबाई n की समस्या के प्रत्येक उदाहरण के लिए इंस्टेंस आउटपुट को ठीक करने के लिए ओरेकल उत्तरों को ठीक करें (नीचे लेम्मा देखें)। इसके बाद, kn-लंबाई स्ट्रिंग के बाद वाले उदाहरण वाले प्रश्नों के लिए उदाहरण आउटपुट प्रदान करें, और फिर लंबाई ≤(k+1)n की क्वेरी के लिए आउटपुट को निश्चित मानें, और लंबाई n+1 के उदाहरणों के साथ आगे बढ़ें।
यहाँ तक कि  दैवज्ञ भी है जिसमें BPP=EXP एनपी(और इसलिए P<NP<BPP=EXP=NEXP),<ref>{{Citation | last=Heller | first=Hans | title=On relativized exponential and probabilistic complexity classes | year=1986 | journal=Information and Control | volume=71 | issue=3 | pages=231–243 | doi=10.1016/S0019-9958(86)80012-2| doi-access=free }}</ref> जिसे निम्नानुसार पुनरावृत्तीय रूप से निर्मित किया जा सकता है।  निश्चित [[ई (जटिलता)]] के लिए एनपी (सापेक्षिक) पूर्ण समस्या, यदि समस्या के उदाहरण के साथ लंबाई kn (n उदाहरण की लंबाई है; k  उपयुक्त छोटा स्थिरांक है) की  यादृच्छिक स्ट्रिंग के साथ पूछताछ की जाती है, तो ओरेकल उच्च संभावना के साथ सही उत्तर देगा। n=1 से प्रारंभ करें. लंबाई n की समस्या के प्रत्येक उदाहरण के लिए इंस्टेंस आउटपुट को ठीक करने के लिए ओरेकल उत्तरों को ठीक करें (नीचे लेम्मा देखें)। इसके बाद, kn-लंबाई स्ट्रिंग के बाद वाले उदाहरण वाले प्रश्नों के लिए उदाहरण आउटपुट प्रदान करें, और फिर लंबाई ≤(k+1)n की क्वेरी के लिए आउटपुट को निश्चित मानें, और लंबाई n+1 के उदाहरणों के साथ आगे बढ़ें।


Line 102: Line 102:
क्षेत्र के अधिकांश विशेषज्ञों द्वारा कुछ मजबूत [[छद्म यादृच्छिक संख्या जनरेटर]]ों के अस्तित्व का [[अनुमान]] लगाया गया है। इस अनुमान का तात्पर्य है कि यादृच्छिकता बहुपद समय गणना को अतिरिक्त कम्प्यूटेशनल शक्ति नहीं देती है, अर्थात, पी = आरपी = बीपीपी। ध्यान दें कि साधारण जनरेटर इस परिणाम को दिखाने के लिए पर्याप्त नहीं हैं;  विशिष्ट यादृच्छिक संख्या जनरेटर का उपयोग करके कार्यान्वित कोई भी संभाव्य एल्गोरिदम बीज के बावजूद कुछ इनपुट पर हमेशा गलत परिणाम देगा (हालांकि ये इनपुट दुर्लभ हो सकते हैं)।{{citation needed|date=September 2015}}
क्षेत्र के अधिकांश विशेषज्ञों द्वारा कुछ मजबूत [[छद्म यादृच्छिक संख्या जनरेटर]]ों के अस्तित्व का [[अनुमान]] लगाया गया है। इस अनुमान का तात्पर्य है कि यादृच्छिकता बहुपद समय गणना को अतिरिक्त कम्प्यूटेशनल शक्ति नहीं देती है, अर्थात, पी = आरपी = बीपीपी। ध्यान दें कि साधारण जनरेटर इस परिणाम को दिखाने के लिए पर्याप्त नहीं हैं;  विशिष्ट यादृच्छिक संख्या जनरेटर का उपयोग करके कार्यान्वित कोई भी संभाव्य एल्गोरिदम बीज के बावजूद कुछ इनपुट पर हमेशा गलत परिणाम देगा (हालांकि ये इनपुट दुर्लभ हो सकते हैं)।{{citation needed|date=September 2015}}


लास्ज़लो बाबई, [[लांस फ़ोर्टनो]], [[ नोआम निसान ]] और [[एवी विग्डर्सन]] ने दिखाया कि जब तक [[EXPTIME]] MA (जटिलता) तक सीमित नहीं हो जाता, BPP इसमें समाहित है<ref name="Babai">{{cite journal | last1 = Babai | first1 = László | last2 = Fortnow | first2 = Lance | last3 = Nisan | first3 = Noam | last4 = Wigderson | first4 = Avi | year = 1993 | title = '''बीपीपी''' में उप-घातांकीय समय सिमुलेशन है जब तक कि ''एक्सपीटीआईएमई''' में प्रकाशन योग्य प्रमाण न हों| journal = Computational Complexity | volume = 3 | issue = 4 | pages = 307–318 | doi=10.1007/bf01275486| s2cid = 14802332 }}</ref> :<math>\textsf{i.o.-SUBEXP} = \bigcap\nolimits_{\varepsilon>0} \textsf{i.o.-DTIME} \left (2^{n^\varepsilon} \right).</math> वर्ग i.o.-SUBEXP, जिसका अर्थ अनंत बार SUBEXP है, में ऐसी समस्याएं हैं जिनमें अनंत रूप से कई इनपुट आकारों के लिए [[उप-घातांकीय समय]] एल्गोरिदम हैं। उन्होंने यह भी दिखाया कि यदि घातीय-समय पदानुक्रम है तो पी = बीपीपी, जिसे बहुपद पदानुक्रम और ई के रूप में ई के रूप में परिभाषित किया गया है।<sup>PH</sup>, E तक ढह जाता है; हालाँकि, ध्यान दें कि घातीय-समय पदानुक्रम को आमतौर पर ढहने के लिए ''नहीं'' होने का अनुमान लगाया जाता है।
लास्ज़लो बाबई, [[लांस फ़ोर्टनो]], [[ नोआम निसान ]] और [[एवी विग्डर्सन]] ने दिखाया कि जब तक [[EXPTIME]] MA (जटिलता) तक सीमित नहीं हो जाता, BPP इसमें समाहित है<ref name="Babai">{{cite journal | last1 = Babai | first1 = László | last2 = Fortnow | first2 = Lance | last3 = Nisan | first3 = Noam | last4 = Wigderson | first4 = Avi | year = 1993 | title = '''बीपीपी''' में उप-घातांकीय समय सिमुलेशन है जब तक कि ''एक्सपीटीआईएमई''' में प्रकाशन योग्य प्रमाण न हों| journal = Computational Complexity | volume = 3 | issue = 4 | pages = 307–318 | doi=10.1007/bf01275486| s2cid = 14802332 }}</ref> :<math>\textsf{i.o.-SUBEXP} = \bigcap\nolimits_{\varepsilon>0} \textsf{i.o.-DTIME} \left (2^{n^\varepsilon} \right).</math> वर्ग i.o.-SUBEXP, जिसका अर्थ अनंत बार SUBEXP है, में ऐसी समस्याएं हैं जिनमें अनंत रूप से कई इनपुट आकारों के लिए [[उप-घातांकीय समय]] एल्गोरिदम हैं। उन्होंने यह भी दिखाया कि यदि घातीय-समय पदानुक्रम है तो पी = बीपीपी, जिसे बहुपद पदानुक्रम और ई के रूप में ई के रूप में परिभाषित किया गया है।<sup>PH</sup>, E तक ढह जाता है; चूँकि , ध्यान दें कि घातीय-समय पदानुक्रम को आमतौर पर ढहने के लिए ''नहीं'' होने का अनुमान लगाया जाता है।


[[रसेल इम्पाग्लिआज़ो]] और एवी विग्डरसन ने दिखाया कि यदि ई (जटिलता) में कोई समस्या है, तो कहाँ
[[रसेल इम्पाग्लिआज़ो]] और एवी विग्डरसन ने दिखाया कि यदि ई (जटिलता) में कोई समस्या है, तो कहाँ

Revision as of 22:09, 3 July 2023

कम्प्यूटेशनल जटिलता सिद्धांत में, कंप्यूटर विज्ञान की शाखा, सीमाबद्ध-त्रुटि संभाव्य बहुपद समय (बीपीपी) सभी उदाहरणों के लिए 1/3 से बंधी त्रुटि संभावना के साथ बहुपद समय में संभाव्य ट्यूरिंग मशीन द्वारा समाधान करने योग्य निर्णय समस्याओं का वर्ग है। बीपीपी समस्याओं के सबसे बड़े व्यावहारिक वर्गों में से है, जिसका अर्थ है कि बीपीपी में रुचि की अधिकांश समस्याओं में कुशल संभाव्य एल्गोरिदम हैं जिन्हें वास्तविक आधुनिक मशीनों पर शीघ्रता से चलाया जा सकता है। बीपीपी में P (जटिलता) भी सम्मिलित है, जो नियतात्मक मशीन के साथ बहुपद समय में समाधान करने योग्य समस्याओं का वर्ग है, क्योंकि नियतात्मक मशीन संभाव्य मशीन की विशेष स्थिति है।

बीपीपी एल्गोरिदम (1 रन)
Answer
produced
Correct
answer
Yes No
Yes ≥ 2/3 ≤ 1/3
No ≤ 1/3 ≥ 2/3
बीपीपी एल्गोरिदम (k रन)
Answer
produced
Correct
answer
Yes No
Yes > 1 − 2ck < 2ck
No < 2ck > 1 − 2ck
for some constant c > 0

अनौपचारिक रूप से, समस्या बीपीपी में है यदि इसके लिए कोई एल्गोरिदम है जिसमें निम्नलिखित गुण हैं:

  • इसमें सिक्के उछालने और यादृच्छिक निर्णय लेने की अनुमति है।
  • इसके बहुपद समय में चलने का आश्वासन है।
  • एल्गोरिदम के किसी भी दिए गए रन पर, त्रुटिपूर्ण उत्तर देने की अधिकतम 1/3 संभावना होती है, चाहे उत्तर हाँ हो या नहीं।

परिभाषा

भाषा L 'बीपीपी' में है यदि और केवल तभी जब कोई संभाव्य ट्यूरिंग मशीन M उपस्थित हो, जैसे कि

  • M सभी इनपुट पर बहुपद समय के लिए चलता है।
  • L में सभी x के लिए, M 2/3 से अधिक या उसके समान संभावना के साथ 1 आउटपुट देता है।
  • L में नहीं सभी x के लिए, M 1/3 से कम या उसके समान संभावना के साथ 1 आउटपुट देता है।

जटिलता वर्ग 'जेडपीपी' के विपरीत, मशीन M को यादृच्छिक सिक्का फ्लिप के परिणाम की विचार किए बिना, सभी इनपुट पर बहुपद समय तक चलने की आवश्यकता होती है।

वैकल्पिक रूप से, 'बीपीपी' को केवल नियतात्मक ट्यूरिंग मशीनों का उपयोग करके परिभाषित किया जा सकता है। भाषा L 'बीपीपी' में है यदि और केवल तभी जब बहुपद p और नियतात्मक ट्यूरिंग मशीन M उपस्थित हो, जैसे कि;

  • M सभी इनपुट पर बहुपद समय के लिए चलता है।
  • L में सभी x के लिए, लंबाई p(|x|) की स्ट्रिंग y का अंश जो संतुष्ट करता है 2/3 से बड़ा या उसके समान है।
  • L में नहीं सभी x के लिए, लंबाई p(|x|) की स्ट्रिंग y का अंश जो संतुष्ट करता है 1/3 से कम या उसके समान है।

इस परिभाषा में, स्ट्रिंग y यादृच्छिक सिक्का फ़्लिप के आउटपुट से युग्मित होती है जो संभाव्य ट्यूरिंग मशीन ने बनाई होगी। कुछ अनुप्रयोगों के लिए यह परिभाषा उत्तम है क्योंकि इसमें संभाव्य ट्यूरिंग मशीनों का उल्लेख नहीं है।

व्यवहार में, 1/3 की त्रुटि संभावना स्वीकार्य नहीं हो सकती है, चूँकि, परिभाषा में 1/3 का विकल्प इच्छानुसार है। 1/3 के स्थान पर 0 और 1/2 (अनन्य) के मध्य किसी भी गणितीय स्थिरांक का उपयोग करने के लिए परिभाषा को संशोधित करने से परिणामी सेट 'बीपीपी' परिवर्तित नहीं होता है। उदाहरण के लिए, यदि किसी ने वर्ग को इस प्रतिबंध के साथ परिभाषित किया है कि एल्गोरिदम अधिकतम 1/2100 संभावना के साथ त्रुटिपूर्ण हो सकता है, तो इसके परिणामस्वरूप समस्याओं का एक ही वर्ग उत्पन्न होगा। त्रुटि संभावना का स्थिर होना भी आवश्यक नहीं है: समस्याओं के समान वर्ग को एक ओर 1/2 - n-c जितनी उच्च त्रुटि की अनुमति देकर, या दूसरी ओर 2-nc जितनी छोटी त्रुटि की आवश्यकता के द्वारा परिभाषित किया जाता है, जहां c कोई धनात्मक स्थिरांक है, और n इनपुट की लंबाई है। त्रुटि संभावना की रूचि में यह लचीलापन त्रुटि-प्रवण एल्गोरिदम को कई बार चलाने और अधिक त्रुटिहीन एल्गोरिदम प्राप्त करने के लिए रन के बहुमत परिणाम का उपयोग करने के विचार पर आधारित है। चेरनॉफ बाउंड के परिणामस्वरूप अधिकांश रन त्रुटिपूर्ण होने की संभावना शीघ्रता से क्षय हो जाती है।[1]

समस्याएँ

Unsolved problem in computer science:

पी में सभी समस्याएं स्पष्ट रूप से बीपीपी में भी हैं। चूँकि , कई समस्याओं के बारे में पता चला है कि वे BPP में हैं, लेकिन P में नहीं हैं। ऐसी समस्याओं की संख्या कम हो रही है, और यह अनुमान लगाया गया है कि P = BPP है।

लंबे समय से, सबसे प्रसिद्ध समस्याओं में से जिसे बीपीपी में जाना जाता था लेकिन पी में नहीं जाना जाता था, वह प्रारंभिक परीक्षण की समस्या थी कि क्या कोई दी गई संख्या अभाज्य संख्या है। चूँकि , 2002 के पेपर ेएस प्राइमैलिटी टेस्ट में, मनिन्द्र अग्रवाल और उनके छात्रों -नीरज कयाल और नितिन सक्सैना ने इस समस्या के लिए नियतात्मक बहुपद-समय एल्गोरिदम पाया, जिससे पता चला कि यह पी में है।

बीपीपी में समस्या का महत्वपूर्ण उदाहरण (वास्तव में आरपी (जटिलता) | सह-आरपी में) अभी भी पी में ज्ञात नहीं है, बहुपद पहचान परीक्षण है, यह निर्धारित करने की समस्या है कि क्या बहुपद शून्य बहुपद के समान है, जब आप किसी दिए गए इनपुट के लिए बहुपद के मान तक पहुंच है, लेकिन गुणांक तक नहीं। दूसरे शब्दों में, क्या चरों के लिए मानों का कोई असाइनमेंट है ताकि जब इन मानों पर गैर-शून्य बहुपद का मूल्यांकन किया जाए, तो परिणाम गैर-शून्य हो? सीमित त्रुटि संभावना प्राप्त करने के लिए कम से कम d मानों के परिमित उपसमुच्चय से यादृच्छिक रूप से प्रत्येक चर के मान को समान रूप से चुनना पर्याप्त है, जहां d बहुपद की कुल डिग्री है।[2]

संबंधित वर्ग

यदि बीपीपी की परिभाषा से यादृच्छिकता की पहुंच हटा दी जाती है, तो हमें जटिलता वर्ग पी मिलता है। वर्ग की परिभाषा में, यदि हम साधारण ट्यूरिंग मशीन को कंप्यूटर जितना से बदलते हैं, तो हमें वर्ग बीक्यूपी मिलता है।

बीपीपी में चयन के बाद जोड़ने, या गणना पथों को अलग-अलग लंबाई की अनुमति देने से क्लास बीपीपी मिलता हैpath.[3] बीपीपीpath यह ज्ञात है कि इसमें एनपी सम्मिलित है, और यह इसके क्वांटम समकक्ष पोस्टबीक्यूपी में निहित है।

मोंटे कार्लो एल्गोरिथ्म यादृच्छिक एल्गोरिदम है जिसके सही होने की संभावना है। क्लास बीपीपी में समस्याओं में बहुपद सीमाबद्ध रनिंग टाइम के साथ मोंटे कार्लो एल्गोरिदम हैं। इसकी तुलना लास वेगास एल्गोरिथ्म से की जाती है जो यादृच्छिक एल्गोरिदम है जो या तो सही उत्तर देता है, या कम संभावना के साथ आउटपुट विफल हो जाता है। वर्ग ZPP (जटिलता) को परिभाषित करने के लिए बहुपद बाध्य चलने वाले समय के साथ लास वेगास एल्गोरिदम का उपयोग किया जाता है। वैकल्पिक रूप से, ZPP में संभाव्य एल्गोरिदम होते हैं जो हमेशा सही होते हैं और अपेक्षित बहुपद चलने का समय होता है। यह कहने से कमज़ोर है कि यह बहुपद समय एल्गोरिथ्म है, क्योंकि यह सुपर-बहुपद समय तक चल सकता है, लेकिन बहुत कम संभावना के साथ।

जटिलता-सैद्धांतिक गुण

[[File:Randomised Complexity Classes 2.svg|alt=Diagram of randomised complexity classes|thumb|upright=1.25|अन्य संभाव्य जटिलता वर्गों (जेड[[पीपी (जटिलता)]], आरपी (जटिलता), सह-आरपी, बीक्यूपी, पीपी (जटिलता)) के संबंध में बीपीपी, जो पीएसपीएसीई के भीतर पी (जटिलता) को सामान्यीकृत करता है। यह अज्ञात है कि इनमें से कोई भी प्रतिबंध सख्त है या नहीं।]]

पी (जटिलता), एनपी (जटिलता), सह-एनपी, बीपीपी (जटिलता), पी/पॉली, पीएच (जटिलता), और पीएसपीएसीई सहित जटिलता वर्गों का समावेश

यह ज्ञात है कि BPP पूरक (जटिलता) के अंतर्गत बंद है; अर्थात्, BPP = सह-BPP। BPP अपने आप में कम (जटिलता) है, जिसका अर्थ है कि BPP समस्याओं को तुरंत समाधान करने की शक्ति वाली BPP मशीन (BPP ओरेकल मशीन) इस अतिरिक्त शक्ति के बिना मशीन से अधिक शक्तिशाली नहीं है। प्रतीकों में, बी.पी.पी बीपीपी = बीपीपी।

बीपीपी और एनपी (जटिलता) के मध्य संबंध अज्ञात है: यह ज्ञात नहीं है कि बीपीपी एनपी (जटिलता) का उपसमूह है या नहीं, एनपी बीपीपी का उपसमूह है या नहीं। यदि एनपी बीपीपी में समाहित है, जिसे असंभावित माना जाता है क्योंकि यह एनपी-पूर्ण समस्याओं के लिए व्यावहारिक समाधान प्रदान करेगा, तो एनपी = आरपी और पीएच (जटिलता) ⊆ बीपीपी।[4] यह ज्ञात है कि आरपी (जटिलता) बीपीपी का उपसमूह है, और बीपीपी पीपी (जटिलता) का उपसमूह है। यह ज्ञात नहीं है कि क्या वे दोनों सख्त उपसमुच्चय हैं, क्योंकि हम यह भी नहीं जानते हैं कि क्या P, PSPACE का सख्त उपसमुच्चय है। BPP बहुपद पदानुक्रम के दूसरे स्तर में समाहित है और इसलिए यह PH में समाहित है। अधिक सटीक रूप से, सिप्सर-लौटेमैन प्रमेय यह बताता है . परिणामस्वरूप, P = NP, P = BPP की ओर ले जाता है क्योंकि इस मामले में PH घटकर P हो जाता है। इस प्रकार या तो P = BPP या P ≠ NP या दोनों।

एडलमैन के प्रमेय में कहा गया है कि बीपीपी में किसी भी भाषा में सदस्यता बहुपद आकार के बूलियन सर्किट के परिवार द्वारा निर्धारित की जा सकती है, जिसका अर्थ है कि बीपीपी पी/पॉली में निहित है।[5] दरअसल, इस तथ्य के प्रमाण के परिणामस्वरूप, बंधी हुई लंबाई के इनपुट पर काम करने वाले प्रत्येक बीपीपी एल्गोरिदम को यादृच्छिक बिट्स की निश्चित स्ट्रिंग का उपयोग करके नियतात्मक एल्गोरिदम में यादृच्छिक किया जा सकता है। चूँकि , इस स्ट्रिंग को ढूँढना महंगा हो सकता है। मोंटे कार्लो समय कक्षाओं के लिए कुछ कमजोर पृथक्करण परिणाम सिद्ध हुए Karpinski & Verbeek (1987a), यह सभी देखें Karpinski & Verbeek (1987b).

समापन गुण

वर्ग BPP पूरकता, संघ और प्रतिच्छेदन के अंतर्गत बंद है।

सापेक्षीकरण

दैवज्ञों के संबंध में, हम जानते हैं कि दैवज्ञ ए और बी उपस्थित हैं, जैसे कि पी = बीपीपी और पी बी बीपीपी बी. इसके अलावा, संभाव्यता 1 के साथ यादृच्छिक दैवज्ञ के सापेक्ष, पी = बीपीपी और बीपीपी सख्ती से एनपी और सह-एनपी में निहित है।[6] यहाँ तक कि दैवज्ञ भी है जिसमें BPP=EXP एनपी(और इसलिए P<NP<BPP=EXP=NEXP),[7] जिसे निम्नानुसार पुनरावृत्तीय रूप से निर्मित किया जा सकता है। निश्चित ई (जटिलता) के लिए एनपी (सापेक्षिक) पूर्ण समस्या, यदि समस्या के उदाहरण के साथ लंबाई kn (n उदाहरण की लंबाई है; k उपयुक्त छोटा स्थिरांक है) की यादृच्छिक स्ट्रिंग के साथ पूछताछ की जाती है, तो ओरेकल उच्च संभावना के साथ सही उत्तर देगा। n=1 से प्रारंभ करें. लंबाई n की समस्या के प्रत्येक उदाहरण के लिए इंस्टेंस आउटपुट को ठीक करने के लिए ओरेकल उत्तरों को ठीक करें (नीचे लेम्मा देखें)। इसके बाद, kn-लंबाई स्ट्रिंग के बाद वाले उदाहरण वाले प्रश्नों के लिए उदाहरण आउटपुट प्रदान करें, और फिर लंबाई ≤(k+1)n की क्वेरी के लिए आउटपुट को निश्चित मानें, और लंबाई n+1 के उदाहरणों के साथ आगे बढ़ें।

'लेम्मा:' सापेक्ष ई में समस्या (विशेष रूप से, ओरेकल मशीन कोड और समय की कमी) को देखते हुए एनपी , प्रत्येक आंशिक रूप से निर्मित ओरेकल और लंबाई n के इनपुट के लिए, आउटपुट को 2 निर्दिष्ट करके तय किया जा सकता है ओरेकल उत्तर देता है।
'प्रमाण:' मशीन सिम्युलेटेड है, और ओरेकल उत्तर (जो पसमाधाने से तय नहीं हैं) चरण-दर-चरण तय किए जाते हैं। प्रति नियतात्मक संगणना चरण में अधिकतम ओरेकल क्वेरी होती है। रिलेटिवाइज्ड एनपी ओरेकल के लिए, यदि संभव हो तो गणना पथ चुनकर और बेस ओरेकल के उत्तरों को ठीक करके आउटपुट को हां में ठीक करें; अन्यथा कोई फिक्सिंग आवश्यक नहीं है, और किसी भी तरह से प्रति चरण बेस ऑरेकल का अधिकतम 1 उत्तर होता है। चूंकि 2 हैं कदम, लेम्मा अनुसरण करता है।

लेम्मा यह सुनिश्चित करता है कि (पर्याप्त बड़े k के लिए), सापेक्ष E के लिए पर्याप्त तार छोड़ते हुए निर्माण करना संभव है एनपी उत्तर। इसके अलावा, हम यह सुनिश्चित कर सकते हैं कि सापेक्ष ई के लिएएनपी, रैखिक समय पर्याप्त है, यहां तक ​​कि फ़ंक्शन समस्याओं के लिए (यदि फ़ंक्शन ओरेकल और रैखिक आउटपुट आकार दिया गया है) और तेजी से छोटी (रैखिक घातांक के साथ) त्रुटि संभावना के साथ। इसके अलावा, यह निर्माण इस मायने में प्रभावी है कि मनमाना दैवज्ञ ए दिए जाने पर हम दैवज्ञ बी को पी के लिए व्यवस्थित कर सकते हैं ए पी बी और उदाहरण के लिए:ए उदाहरण के लिए: बी बी. इसके अलावा, ZPP (जटिलता) दैवज्ञ (और इसलिए ZPP=BPP=EXP<NEXP) के लिए, कोई सापेक्ष ई गणना में उत्तरों को विशेष गैर-उत्तर में ठीक कर देगा, इस प्रकार यह सुनिश्चित करेगा कि कोई नकली उत्तर नहीं दिया जाएगा।

व्युत्पन्नकरण

क्षेत्र के अधिकांश विशेषज्ञों द्वारा कुछ मजबूत छद्म यादृच्छिक संख्या जनरेटरों के अस्तित्व का अनुमान लगाया गया है। इस अनुमान का तात्पर्य है कि यादृच्छिकता बहुपद समय गणना को अतिरिक्त कम्प्यूटेशनल शक्ति नहीं देती है, अर्थात, पी = आरपी = बीपीपी। ध्यान दें कि साधारण जनरेटर इस परिणाम को दिखाने के लिए पर्याप्त नहीं हैं; विशिष्ट यादृच्छिक संख्या जनरेटर का उपयोग करके कार्यान्वित कोई भी संभाव्य एल्गोरिदम बीज के बावजूद कुछ इनपुट पर हमेशा गलत परिणाम देगा (हालांकि ये इनपुट दुर्लभ हो सकते हैं)।[citation needed]

लास्ज़लो बाबई, लांस फ़ोर्टनो, नोआम निसान और एवी विग्डर्सन ने दिखाया कि जब तक EXPTIME MA (जटिलता) तक सीमित नहीं हो जाता, BPP इसमें समाहित है[8] : वर्ग i.o.-SUBEXP, जिसका अर्थ अनंत बार SUBEXP है, में ऐसी समस्याएं हैं जिनमें अनंत रूप से कई इनपुट आकारों के लिए उप-घातांकीय समय एल्गोरिदम हैं। उन्होंने यह भी दिखाया कि यदि घातीय-समय पदानुक्रम है तो पी = बीपीपी, जिसे बहुपद पदानुक्रम और ई के रूप में ई के रूप में परिभाषित किया गया है।PH, E तक ढह जाता है; चूँकि , ध्यान दें कि घातीय-समय पदानुक्रम को आमतौर पर ढहने के लिए नहीं होने का अनुमान लगाया जाता है।

रसेल इम्पाग्लिआज़ो और एवी विग्डरसन ने दिखाया कि यदि ई (जटिलता) में कोई समस्या है, तो कहाँ

इसमें सर्किट जटिलता 2 हैΩ(n) तो 'पी' = 'बीपीपी'।[9]

यह भी देखें

संदर्भ

  1. Valentine Kabanets, CMPT 710 - Complexity Theory: Lecture 16, October 28, 2003
  2. Madhu Sudan and Shien Jin Ong. Massachusetts Institute of Technology: 6.841/18.405J Advanced Complexity Theory: Lecture 6: Randomized Algorithms, Properties of BPP. February 26, 2003.
  3. "Complexity Zoo:B - Complexity Zoo".
  4. Lance Fortnow, Pulling Out The Quantumness, December 20, 2005
  5. Adleman, L. M. (1978). "यादृच्छिक बहुपद समय पर दो प्रमेय". Proceedings of the Nineteenth Annual IEEE Symposium on Foundations of Computing. pp. 75–83.
  6. Bennett, Charles H.; Gill, John (1981), "Relative to a Random Oracle A, P^A != NP^A != co-NP^A with Probability 1", SIAM Journal on Computing, 10 (1): 96–113, doi:10.1137/0210008, ISSN 1095-7111
  7. Heller, Hans (1986), "On relativized exponential and probabilistic complexity classes", Information and Control, 71 (3): 231–243, doi:10.1016/S0019-9958(86)80012-2
  8. Babai, László; Fortnow, Lance; Nisan, Noam; Wigderson, Avi (1993). "'बीपीपी में उप-घातांकीय समय सिमुलेशन है जब तक कि एक्सपीटीआईएमई में प्रकाशन योग्य प्रमाण न हों". Computational Complexity. 3 (4): 307–318. doi:10.1007/bf01275486. S2CID 14802332.
  9. Russell Impagliazzo and Avi Wigderson (1997). "P = BPP if E requires exponential circuits: Derandomizing the XOR Lemma". Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 220–229. doi:10.1145/258533.258590

बाहरी संबंध