परजीवी निष्कर्षण: Difference between revisions

From Vigyanwiki
(Created page with "इलेक्ट्रॉनिक डिजाइन स्वचालन में, परजीवी निष्कर्षण एक विद्युत स...")
 
No edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[इलेक्ट्रॉनिक डिजाइन स्वचालन]] में, परजीवी निष्कर्षण एक [[ विद्युत सर्किट ]] के दोनों डिज़ाइन किए गए उपकरणों और आवश्यक वायरिंग इंटरकनेक्ट्स (एकीकृत सर्किट) में परजीवी प्रभाव की गणना है: [[परजीवी समाई]], [[परजीवी प्रतिरोध]] और [[परजीवी अधिष्ठापन]], जिसे आमतौर पर [[परजीवी उपकरण]], परजीवी घटक कहा जाता है। , या बस परजीवी।
[[इलेक्ट्रॉनिक डिजाइन स्वचालन|इलेक्ट्रॉनिक डिजाइन ऑटोमेशन]] में, '''परजीवी निष्कर्षण'''[[ विद्युत सर्किट | विद्युत परिपथ]] के दोनों डिज़ाइन किए गए उपकरणों और आवश्यक वायरिंग इंटरकनेक्ट्स (एकीकृत परिपथ) में परजीवी प्रभाव की गणना है: [[परजीवी समाई]], [[परजीवी प्रतिरोध]] और [[परजीवी अधिष्ठापन]], जिसे सामान्यतः [[परजीवी उपकरण]], परजीवी घटक कहा जाता है।


परजीवी निष्कर्षण का प्रमुख उद्देश्य सर्किट का एक सटीक एनालॉग मॉडल बनाना है, ताकि विस्तृत सिमुलेशन वास्तविक डिजिटल और एनालॉग सर्किट प्रतिक्रियाओं का अनुकरण कर सकें। डिजिटल सर्किट प्रतिक्रियाओं का उपयोग अक्सर सिग्नल देरी और लोडिंग गणना के लिए डेटाबेस को पॉप्युलेट करने के लिए किया जाता है जैसे: [[समय विश्लेषण]]; [[पावर ऑप्टिमाइज़ेशन (EDA)]]ईडीए); [[सर्किट सिमुलेशन]]; और संकेत अखंडता विश्लेषण। एनालॉग सर्किट अक्सर विस्तृत परीक्षण बेंच में चलाए जाते हैं यह इंगित करने के लिए कि क्या अतिरिक्त निकाले गए परजीवी अभी भी डिज़ाइन किए गए सर्किट को काम करने देंगे।
परजीवी निष्कर्षण का प्रमुख उद्देश्य परिपथ का स्पष्ट एनालॉग मॉडल बनाना है, जिससे विस्तृत सिमुलेशन वास्तविक डिजिटल और एनालॉग परिपथ प्रतिक्रियाओं का अनुकरण कर सकता है। डिजिटल परिपथ प्रतिक्रियाओं का उपयोग अधिकांशतः सिग्नल विलंब और लोडिंग गणना के लिए डेटाबेस को पॉप्युलेट करने के लिए किया जाता है जैसे: [[समय विश्लेषण]]; [[पावर ऑप्टिमाइज़ेशन (EDA)|पावर ऑप्टिमाइज़ेशन (ईडीए)]] [[सर्किट सिमुलेशन|परिपथ सिमुलेशन]]; और संकेत अखंडता विश्लेषण एनालॉग परिपथ अधिकांशतः विस्तृत परीक्षण बेंच में चलाए जाते हैं यह इंगित करने के लिए कि क्या अतिरिक्त निकाले गए परजीवी अभी भी डिज़ाइन किए गए परिपथ को को कार्य करने की अनुमति देंगे या नहीं देते है


== पृष्ठभूमि ==
== पृष्ठभूमि ==


प्रारंभिक [[एकीकृत परिपथ]]ों में तारों का प्रभाव नगण्य था, और तारों को परिपथ के विद्युत तत्वों के रूप में नहीं माना जाता था। हालाँकि, 0.5-[[माइक्रोमीटर]] प्रौद्योगिकी के नीचे नोड प्रतिरोध और इंटरकनेक्ट की धारिता ने सर्किट के प्रदर्शन पर महत्वपूर्ण प्रभाव डालना शुरू कर दिया।<ref>"Automatic Layout Modification", by Michael Reinhardt, [https://books.google.com/books?id=N4c5BKo-SnsC&pg=PA120&dq=%22parasitic+extraction%22 p. 120]</ref><!-- not the best choice; a better ref to be added --> सिकुड़ते सेमीकंडक्टर डिवाइस निर्माण प्रौद्योगिकियों के साथ इंटरकनेक्ट्स के अधिष्ठापन प्रभाव भी महत्वपूर्ण हो गए।
प्रारंभिक [[एकीकृत परिपथ|एकीकृत परिपथो]] में तारों का प्रभाव नगण्य था, और तारों को परिपथ के विद्युत तत्वों के रूप में नहीं माना जाता था। चूंकि, 0.5-[[माइक्रोमीटर]] प्रौद्योगिकी के नीचे नोड प्रतिरोध और इंटरकनेक्ट की धारिता ने परिपथ के प्रदर्शन पर महत्वपूर्ण प्रभाव डालना प्रारंभ कर दिया था।<ref>"Automatic Layout Modification", by Michael Reinhardt, [https://books.google.com/books?id=N4c5BKo-SnsC&pg=PA120&dq=%22parasitic+extraction%22 p. 120]</ref> संकुचन अर्धचालक उपकरण निर्माण प्रौद्योगिकियों के साथ इंटरकनेक्ट्स के अधिष्ठापन प्रभाव भी महत्वपूर्ण हो गए थे।


इंटरकनेक्ट परजीवी के प्रमुख प्रभावों में शामिल हैं: [[समूह विलंब और चरण विलंब]], [[संकेत शोर]], [[पावर नेटवर्क डिजाइन (आईसी)]]आईसी) | आईआर ड्रॉप (वोल्टेज का प्रतिरोधी घटक)।
इंटरकनेक्ट परजीवी के प्रमुख प्रभावों में सम्मिलित हैं: [[समूह विलंब और चरण विलंब]], [[संकेत शोर|संकेत ध्वनि]], [[पावर नेटवर्क डिजाइन (आईसी)]] आईआर ड्रॉप (वोल्टेज का प्रतिरोधी घटक)।


== इंटरकनेक्ट कैपेसिटेंस एक्सट्रैक्शन ==
== इंटरकनेक्ट कैपेसिटेंस एक्सट्रैक्शन ==
इंटरकनेक्ट कैपेसिटेंस की गणना निष्कर्षण उपकरण को निम्नलिखित जानकारी देकर की जाती है: परतों के एक सेट पर इनपुट बहुभुज के रूप में डिज़ाइन का शीर्ष दृश्य लेआउट; उपकरणों और पिनों के एक सेट के लिए मैपिंग (एक [[लेआउट बनाम योजनाबद्ध]] रन से), और इन परतों की एक क्रॉस सेक्शनल समझ। इस जानकारी का उपयोग लेआउट तारों का एक सेट बनाने के लिए किया जाता है जिसमें कैपेसिटर जोड़े गए हैं जहां इनपुट बहुभुज और क्रॉस सेक्शनल संरचना इंगित करती है। आउटपुट नेटलिस्ट में इनपुट नेट का वही सेट होता है जो इनपुट डिजाइन नेटलिस्ट में होता है और इन नेट के बीच परजीवी कैपेसिटर डिवाइस जोड़ता है।
इंटरकनेक्ट कैपेसिटेंस की गणना निष्कर्षण उपकरण को निम्नलिखित जानकारी देकर की जाती है: परतों के सेट पर इनपुट बहुभुज के रूप में डिज़ाइन का शीर्ष दृश्य ले आउट; उपकरणों और पिनों के सेट के लिए मैपिंग (एक [[लेआउट बनाम योजनाबद्ध]] रन से), और इन परतों की क्रॉस सेक्शनल समझ होती है। इस जानकारी का उपयोग लेआउट तारों कासेट बनाने के लिए किया जाता है जिसमें कैपेसिटर जोड़े गए हैं जहां इनपुट बहुभुज और क्रॉस सेक्शनल संरचना इंगित करती है। आउटपुट नेटलिस्ट में इनपुट नेट का वही सेट होता है जो इनपुट डिजाइन नेटलिस्ट में होता है और इन नेट के बीच परजीवी कैपेसिटर उपकरण जोड़ता है।


== इंटरकनेक्ट प्रतिरोध निष्कर्षण ==
== इंटरकनेक्ट प्रतिरोध निष्कर्षण ==


निष्कर्षण उपकरण को निम्नलिखित जानकारी देकर इंटरकनेक्ट प्रतिरोध की गणना की जाती है: परतों के एक सेट पर इनपुट बहुभुज के रूप में डिज़ाइन का शीर्ष दृश्य लेआउट; उपकरणों और पिनों के एक सेट के लिए मैपिंग (एक लेआउट बनाम योजनाबद्ध रन से), और परतों की प्रतिरोधकता सहित इन परतों की एक क्रॉस सेक्शनल समझ। इस जानकारी का उपयोग लेआउट उप-तारों का एक सेट बनाने के लिए किया जाता है, जिसने तारों के विभिन्न उप-भागों के बीच प्रतिरोध जोड़ा है। उपरोक्त इंटरकनेक्ट कैपेसिटेंस को उप-नोड्स के बीच आनुपातिक तरीके से विभाजित और साझा किया जाता है। ध्यान दें कि इंटरकनेक्ट कैपेसिटेंस के विपरीत, इंटरकनेक्ट रेजिस्टेंस को इन परजीवी प्रतिरोधों को रखने के लिए सर्किट तत्वों के बीच सब-नोड्स जोड़ने की आवश्यकता होती है। यह निकाले गए आउटपुट नेटलिस्ट के आकार को बहुत बढ़ा सकता है और अतिरिक्त सिमुलेशन समस्याएं पैदा कर सकता है।
निष्कर्षण उपकरण को निम्नलिखित जानकारी देकर इंटरकनेक्ट प्रतिरोध की गणना की जाती है: परतों केसेट पर इनपुट बहुभुज के रूप में डिज़ाइन का शीर्ष दृश्य लेआउट; उपकरणों और पिनों केसेट के लिए मैपिंग (एक लेआउट बनाम योजनाबद्ध रन से), और परतों की प्रतिरोधकता सहित इन परतों कीक्रॉस सेक्शनल समझ होती है इस जानकारी का उपयोग लेआउट उप-तारों कासेट बनाने के लिए किया जाता है, जिसने तारों के विभिन्न उप-भागों के बीच प्रतिरोध जोड़ा है। उपरोक्त इंटरकनेक्ट कैपेसिटेंस को उप-नोड्स के बीच आनुपातिक विधि से विभाजित और साझा किया जाता है। ध्यान दें कि इंटरकनेक्ट कैपेसिटेंस के विपरीत, इंटरकनेक्ट रेजिस्टेंस को इन परजीवी प्रतिरोधों को रखने के लिए परिपथ तत्वों के बीच सब-नोड्स जोड़ने की आवश्यकता होती है। यह निकाले गए आउटपुट नेटलिस्ट के आकार को बहुत बढ़ा सकता है और अतिरिक्त सिमुलेशन समस्याएं उत्पन्न कर सकता है।


== इंटरकनेक्ट इंडक्शन एक्सट्रैक्शन ==
== इंटरकनेक्ट प्रतिरोध निष्कर्षण                                                                                                  ==
 
{{Empty section|date=July 2010}}


== उपकरण और विक्रेता ==
== उपकरण और विक्रेता ==
उपकरण निम्नलिखित व्यापक श्रेणियों में आते हैं।
उपकरण निम्नलिखित व्यापक श्रेणियों में आते हैं।
*[[फील्ड सॉल्वर]] शारीरिक रूप से सटीक समाधान प्रदान करते हैं। वे मैक्सवेल के समीकरणों को सीधे हल करके विद्युत चुम्बकीय मापदंडों की गणना करते हैं। उच्च गणना बोझ के कारण वे केवल बहुत छोटे डिज़ाइन या डिज़ाइन के कुछ हिस्सों पर लागू होते हैं।
*[[फील्ड सॉल्वर]] भौतिक रूप से स्पष्ट समाधान प्रदान करते हैं। वे मैक्सवेल के समीकरणों को सीधे हल करके विद्युत चुम्बकीय मापदंडों की गणना करते हैं। उच्च गणना भार के कारण वे केवल बहुत छोटे डिज़ाइन या डिज़ाइन के कुछ भाग पर प्रयुक्त होते हैं।
*पूर्ण आधुनिक एकीकृत सर्किट डिजाइनों के लिए परजीवी निकालने के लिए पैटर्न मिलान तकनीकों के साथ अनुमानित समाधान ही एकमात्र संभव तरीका है।
*पूर्ण आधुनिक एकीकृत परिपथ डिजाइनों के लिए परजीवी निकालने के लिए पैटर्न मिलान विधियों के साथ अनुमानित समाधान ही एकमात्र संभव विधि है।
 
=== [[ANSYS|एएनएसवाईएस]] क्यू3डी एक्सट्रैक्टर ===
<!-- please add here only notable ones, with potential Wikipedia articles-->
एएनएसवाईएस क्यू3डी एक्सट्रैक्टर कैपेसिटिव, कंडक्टेंस, इंडक्शन और रेजिस्टेंस मैट्रिसेस की गणना करने के लिए मोमेंट्स (इंटीग्रल इक्वेशन) और फईएमएस की विधि का उपयोग करता है। यह इंटीग्रल समीकरणों के समाधान में तेजी लाने के लिए [[ फास्ट मल्टीपोल विधि |फास्ट मल्टीपोल विधि]] (एफएमएम) का उपयोग करता है। सॉल्वर के आउटपुट में करंट और वोल्टेज डिस्ट्रीब्यूशन, सीजी और आरएल मैट्रिसेस सम्मिलित हैं।<ref>[http://www.rle.mit.edu/cpg/ MIT Computational Prototyping Group]</ref><ref>[http://www.ansys.com/Products/Simulation+Technology/Electromagnetics/Signal+Integrity/ANSYS+Q3D+Extractor ANSYS Q3D Extractor]</ref>
 
 
=== [[ANSYS]] Q3D एक्सट्रैक्टर ===
ANSYS Q3D एक्सट्रैक्टर कैपेसिटिव, कंडक्टेंस, इंडक्शन और रेजिस्टेंस मैट्रिसेस की गणना करने के लिए मोमेंट्स (इंटीग्रल इक्वेशन) और FEMs की विधि का उपयोग करता है। यह इंटीग्रल समीकरणों के समाधान में तेजी लाने के लिए [[ फास्ट मल्टीपोल विधि ]] (FMM) का उपयोग करता है। सॉल्वर के आउटपुट में करंट और वोल्टेज डिस्ट्रीब्यूशन, CG और RL मैट्रिसेस शामिल हैं।<ref>[http://www.rle.mit.edu/cpg/ MIT Computational Prototyping Group]</ref><ref>[http://www.ansys.com/Products/Simulation+Technology/Electromagnetics/Signal+Integrity/ANSYS+Q3D+Extractor ANSYS Q3D Extractor]</ref>
 
 
=== फास्टकैप, फास्टहेनरी ===
=== फास्टकैप, फास्टहेनरी ===
FastCap और FastHenry, MIT (मैसाचुसेट्स इंस्टीट्यूट ऑफ टेक्नोलॉजी) से समाई, और अधिष्ठापन और प्रतिरोध के लिए दो मुक्त परजीवी निकालने वाले उपकरण हैं। कई वैज्ञानिक लेखों में उद्धृत, वे अपने क्षेत्र में सुनहरे संदर्भ माने जाते हैं। स्रोत कोड, [[साथ]] ही दर्शक और संपादक के साथ विंडोज बाइनरी संस्करण [http://www.fastfieldsolvers.com FastFieldSolvers] से स्वतंत्र रूप से उपलब्ध हैं।<ref>[http://www.rle.mit.edu/cpg/ MIT Computational Prototyping Group]</ref><ref>[http://www.fastfieldsolvers.com FastFieldSolvers]</ref>
फास्टकैप और फास्टहेनरी, एमआईटी (मैसाचुसेट्स इंस्टीट्यूट ऑफ टेक्नोलॉजी) से समाई, और अधिष्ठापन और प्रतिरोध के लिए दो मुक्त परजीवी निकालने वाले उपकरण हैं। कई वैज्ञानिक लेखों में उद्धृत, वे अपने क्षेत्र में सुनहरे संदर्भ माने जाते हैं। स्रोत कोड, [[साथ]] ही दर्शक और संपादक के साथ विंडोज बाइनरी संस्करण [http://www.fastfieldsolvers.com फ़ास्टफ़ील्डसॉल्वर] से स्वतंत्र रूप से उपलब्ध हैं।<ref>[http://www.rle.mit.edu/cpg/ MIT Computational Prototyping Group]</ref><ref>[http://www.fastfieldsolvers.com FastFieldSolvers]</ref>
 
 
=== फास्टर कैप ===
=== फास्टर कैप ===
FasterCap, [http://www.fastfieldsolvers.com FastFieldSolvers] से, एक मुक्त, ओपन सोर्स कैपेसिटेंस फील्ड सॉल्वर है, जो विंडोज और लिनक्स ओएस के लिए उपलब्ध है, टुकड़े-वार-स्थिर, जटिल पारगम्यता परावैद्युत मीडिया में एम्बेडेड प्रवाहकीय संरचनाओं का अनुकरण करने में सक्षम है। , स्वचालित जाल शोधन क्षमता और इन-कोर/आउट-ऑफ-कोर सॉल्वर इंजन।
[http://www.fastfieldsolvers.com फ़ास्टफ़ील्डसॉल्वर]की ओर से फास्टरकैप, एक स्वतंत्र, ओपन सोर्स कैपेसिटेंस फील्ड सॉल्वर है, जो विंडोज और लिनक्स ओएस के लिए उपलब्ध है, जो टुकड़ा-वार-स्थिरांक, जटिल पारगम्यता परावैद्युत मीडिया, स्वचालित जाल शोधन क्षमता और इन-कोर/आउट -ऑफ-कोर सॉल्वर इंजन में एम्बेडेड प्रवाहकीय संरचनाओं का अनुकरण करने में सक्षम है।


=== स्टारआरसी ===
=== स्टारआरसी ===
[[Synopsys]] (पहले [[Avanti Corporation]] से) से StarRC एक सार्वभौमिक पैरासिटिक्स एक्सट्रैक्टर टूल है जो इलेक्ट्रॉनिक डिज़ाइन की पूरी श्रृंखला के लिए लागू होता है।<ref>[http://www.synopsys.com/Tools/Implementation/SignOff/Pages/StarRC-ds.aspx StarRC]</ref>
[[Synopsys|सिनॉप्सिस]] (पूर्व में अवंती से) का स्टारआरसी एक सार्वभौमिक परजीवी निकालने वाला उपकरण है जो इलेक्ट्रॉनिक डिजाइनों की पूरी श्रृंखला के लिए प्रयुक्त होता है।<ref>[http://www.synopsys.com/Tools/Implementation/SignOff/Pages/StarRC-ds.aspx StarRC]</ref>
 
 
=== क्वांटस ===
=== क्वांटस ===
[[ताल डिजाइन सिस्टम]] से क्वांटस डिजिटल और एनालॉग डिज़ाइन दोनों के लिए परजीवी निकालने वाला उपकरण है और पोस्टलेआउट सत्यापन के लिए डिज़ाइन तैयार करने के लिए परजीवी निष्कर्षण जांच की जानी चाहिए।<ref>[https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/silicon-signoff/quantus-qrc-extraction-solution.html Quantus QRC Extraction Solution]</ref>
[[ताल डिजाइन सिस्टम]] से क्वांटस डिजिटल और एनालॉग डिज़ाइन दोनों के लिए परजीवी निकालने वाला उपकरण है और पोस्टले आउट सत्यापन के लिए डिज़ाइन तैयार करने के लिए परजीवी निष्कर्षण जांच की जानी चाहिए।<ref>[https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/silicon-signoff/quantus-qrc-extraction-solution.html Quantus QRC Extraction Solution]</ref>
 
 
=== क्विककैप ===
=== क्विककैप ===
Synopsys का QuickCap NX डिजिटल और एनालॉग डिज़ाइन दोनों के लिए एक परजीवी एक्सट्रैक्टर टूल है।<ref>[http://www.synopsys.com/Tools/Implementation/SignOff/Pages/quickcap-nx-ds.aspx QuickCap]</ref> यह रैंडम लॉजिक कॉर्पोरेशन के राल्फ इवरसन द्वारा विकसित क्विककैप पर आधारित था, जिसे मैग्मा और सिनॉप्सिस द्वारा अधिग्रहित किया गया था।
सिनॉप्सिस का क्विककैप एनएक्स डिजिटल और एनालॉग डिज़ाइन दोनों के लिएपरजीवी एक्सट्रैक्टर टूल है।<ref>[http://www.synopsys.com/Tools/Implementation/SignOff/Pages/quickcap-nx-ds.aspx QuickCap]</ref> यह रैंडम लॉजिक कॉर्पोरेशन के राल्फ इवरसन द्वारा विकसित क्विककैप पर आधारित था, जिसे मैग्मा और सिनॉप्सिस द्वारा अधिग्रहित किया गया था।
 
=== कैलिबर xACT3D ===
Mentor ग्राफ़िक्स का कैलिबर xACT3D डिजिटल और एनालॉग डिज़ाइन दोनों के लिए एक परजीवी एक्सट्रैक्टर टूल है।<ref>[http://www.mentor.com/products/ic_nanometer_design/verification-signoff/circuit-verification/calibre-xact/upload/calibre_xact-datasheet.pdf Calibre xACT3D]</ref> यह PexRC पर आधारित था जिसे Pextra Corporation के वांगकी किउ और वीपिंग शि द्वारा विकसित किया गया था, जिसे Mentor द्वारा अधिग्रहित किया गया था।
 
=== CapExt ===
CapExt AS से CapExt Gerber फ़ाइलों के आधार पर PCBs से समाई निकालने के लिए एक परजीवी चिमटा उपकरण है।<ref>[http://www.capext.com CapExt]</ref>


=== कैलिबर एक्सएसीटी3डी ===
मेंटर ग्राफ़िक्स का कैलिबर एक्सएसीटी3डी डिजिटल और एनालॉग डिज़ाइन दोनों के लिए परजीवी एक्सट्रैक्टर उपकरण है।<ref>[http://www.mentor.com/products/ic_nanometer_design/verification-signoff/circuit-verification/calibre-xact/upload/calibre_xact-datasheet.pdf Calibre xACT3D]</ref> यह पेक्सआरसी पर आधारित था जिसे पेक्स्ट्रा कॉर्पोरेशन के वांगकी किउ और वीपिंग शि द्वारा विकसित किया गया था, जिसे मेंटर द्वारा अधिग्रहित किया गया था।


=== कैपएक्स्ट ===
कैपएक्स्ट एएस से कैपएक्स्ट गेरबर फ़ाइलों के आधार पर पीसीबी से कैपेसिटेंस निकालने के लिए एक परजीवी एक्सट्रैक्टर उपकरण है।<ref>[http://www.capext.com CapExt]</ref>
=== फील्डस्केल सेंस ===
=== फील्डस्केल सेंस ===
फील्डस्केल से फील्डस्केल सेंस डीएक्सएफ और गेरबर फाइलों के आधार पर कैपेसिटिव टच सेंसर से नेटलिस्ट प्रारूप में समाई, प्रतिरोध और पूरे आरसी समकक्ष सर्किट को निकालने के लिए एक परजीवी निकालने वाला उपकरण है।<ref>[https://fieldscale.com/ Fieldscale]</ref>
फील्डस्केल से फील्डस्केल सेंस डीएक्सएफ और गेरबर फाइलों के आधार पर कैपेसिटिव टच सेंसर से नेटलिस्ट प्रारूप में समाई, प्रतिरोध और पूरे आरसी समकक्ष परिपथ को निकालने के लिए परजीवी निकालने वाला उपकरण है।<ref>[https://fieldscale.com/ Fieldscale]</ref>
 
 
== यह भी देखें ==
== यह भी देखें ==
* [[मानक परजीवी विनिमय प्रारूप]]
* [[मानक परजीवी विनिमय प्रारूप]]
Line 67: Line 49:
{{Reflist}}
{{Reflist}}


{{DEFAULTSORT:Parasitic Extraction}}[[Category: इलेक्ट्रॉनिक सर्किट सत्यापन]]
{{DEFAULTSORT:Parasitic Extraction}}
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 19/06/2023|Parasitic Extraction]]
[[Category:Created On 19/06/2023]]
[[Category:Machine Translated Page|Parasitic Extraction]]
[[Category:Pages with script errors|Parasitic Extraction]]
[[Category:इलेक्ट्रॉनिक सर्किट सत्यापन|Parasitic Extraction]]

Latest revision as of 13:04, 6 July 2023

इलेक्ट्रॉनिक डिजाइन ऑटोमेशन में, परजीवी निष्कर्षण विद्युत परिपथ के दोनों डिज़ाइन किए गए उपकरणों और आवश्यक वायरिंग इंटरकनेक्ट्स (एकीकृत परिपथ) में परजीवी प्रभाव की गणना है: परजीवी समाई, परजीवी प्रतिरोध और परजीवी अधिष्ठापन, जिसे सामान्यतः परजीवी उपकरण, परजीवी घटक कहा जाता है।

परजीवी निष्कर्षण का प्रमुख उद्देश्य परिपथ का स्पष्ट एनालॉग मॉडल बनाना है, जिससे विस्तृत सिमुलेशन वास्तविक डिजिटल और एनालॉग परिपथ प्रतिक्रियाओं का अनुकरण कर सकता है। डिजिटल परिपथ प्रतिक्रियाओं का उपयोग अधिकांशतः सिग्नल विलंब और लोडिंग गणना के लिए डेटाबेस को पॉप्युलेट करने के लिए किया जाता है जैसे: समय विश्लेषण; पावर ऑप्टिमाइज़ेशन (ईडीए) परिपथ सिमुलेशन; और संकेत अखंडता विश्लेषण एनालॉग परिपथ अधिकांशतः विस्तृत परीक्षण बेंच में चलाए जाते हैं यह इंगित करने के लिए कि क्या अतिरिक्त निकाले गए परजीवी अभी भी डिज़ाइन किए गए परिपथ को को कार्य करने की अनुमति देंगे या नहीं देते है

पृष्ठभूमि

प्रारंभिक एकीकृत परिपथो में तारों का प्रभाव नगण्य था, और तारों को परिपथ के विद्युत तत्वों के रूप में नहीं माना जाता था। चूंकि, 0.5-माइक्रोमीटर प्रौद्योगिकी के नीचे नोड प्रतिरोध और इंटरकनेक्ट की धारिता ने परिपथ के प्रदर्शन पर महत्वपूर्ण प्रभाव डालना प्रारंभ कर दिया था।[1] संकुचन अर्धचालक उपकरण निर्माण प्रौद्योगिकियों के साथ इंटरकनेक्ट्स के अधिष्ठापन प्रभाव भी महत्वपूर्ण हो गए थे।

इंटरकनेक्ट परजीवी के प्रमुख प्रभावों में सम्मिलित हैं: समूह विलंब और चरण विलंब, संकेत ध्वनि, पावर नेटवर्क डिजाइन (आईसी) आईआर ड्रॉप (वोल्टेज का प्रतिरोधी घटक)।

इंटरकनेक्ट कैपेसिटेंस एक्सट्रैक्शन

इंटरकनेक्ट कैपेसिटेंस की गणना निष्कर्षण उपकरण को निम्नलिखित जानकारी देकर की जाती है: परतों के सेट पर इनपुट बहुभुज के रूप में डिज़ाइन का शीर्ष दृश्य ले आउट; उपकरणों और पिनों के सेट के लिए मैपिंग (एक लेआउट बनाम योजनाबद्ध रन से), और इन परतों की क्रॉस सेक्शनल समझ होती है। इस जानकारी का उपयोग लेआउट तारों कासेट बनाने के लिए किया जाता है जिसमें कैपेसिटर जोड़े गए हैं जहां इनपुट बहुभुज और क्रॉस सेक्शनल संरचना इंगित करती है। आउटपुट नेटलिस्ट में इनपुट नेट का वही सेट होता है जो इनपुट डिजाइन नेटलिस्ट में होता है और इन नेट के बीच परजीवी कैपेसिटर उपकरण जोड़ता है।

इंटरकनेक्ट प्रतिरोध निष्कर्षण

निष्कर्षण उपकरण को निम्नलिखित जानकारी देकर इंटरकनेक्ट प्रतिरोध की गणना की जाती है: परतों केसेट पर इनपुट बहुभुज के रूप में डिज़ाइन का शीर्ष दृश्य लेआउट; उपकरणों और पिनों केसेट के लिए मैपिंग (एक लेआउट बनाम योजनाबद्ध रन से), और परतों की प्रतिरोधकता सहित इन परतों कीक्रॉस सेक्शनल समझ होती है इस जानकारी का उपयोग लेआउट उप-तारों कासेट बनाने के लिए किया जाता है, जिसने तारों के विभिन्न उप-भागों के बीच प्रतिरोध जोड़ा है। उपरोक्त इंटरकनेक्ट कैपेसिटेंस को उप-नोड्स के बीच आनुपातिक विधि से विभाजित और साझा किया जाता है। ध्यान दें कि इंटरकनेक्ट कैपेसिटेंस के विपरीत, इंटरकनेक्ट रेजिस्टेंस को इन परजीवी प्रतिरोधों को रखने के लिए परिपथ तत्वों के बीच सब-नोड्स जोड़ने की आवश्यकता होती है। यह निकाले गए आउटपुट नेटलिस्ट के आकार को बहुत बढ़ा सकता है और अतिरिक्त सिमुलेशन समस्याएं उत्पन्न कर सकता है।

इंटरकनेक्ट प्रतिरोध निष्कर्षण

उपकरण और विक्रेता

उपकरण निम्नलिखित व्यापक श्रेणियों में आते हैं।

  • फील्ड सॉल्वर भौतिक रूप से स्पष्ट समाधान प्रदान करते हैं। वे मैक्सवेल के समीकरणों को सीधे हल करके विद्युत चुम्बकीय मापदंडों की गणना करते हैं। उच्च गणना भार के कारण वे केवल बहुत छोटे डिज़ाइन या डिज़ाइन के कुछ भाग पर प्रयुक्त होते हैं।
  • पूर्ण आधुनिक एकीकृत परिपथ डिजाइनों के लिए परजीवी निकालने के लिए पैटर्न मिलान विधियों के साथ अनुमानित समाधान ही एकमात्र संभव विधि है।

एएनएसवाईएस क्यू3डी एक्सट्रैक्टर

एएनएसवाईएस क्यू3डी एक्सट्रैक्टर कैपेसिटिव, कंडक्टेंस, इंडक्शन और रेजिस्टेंस मैट्रिसेस की गणना करने के लिए मोमेंट्स (इंटीग्रल इक्वेशन) और फईएमएस की विधि का उपयोग करता है। यह इंटीग्रल समीकरणों के समाधान में तेजी लाने के लिए फास्ट मल्टीपोल विधि (एफएमएम) का उपयोग करता है। सॉल्वर के आउटपुट में करंट और वोल्टेज डिस्ट्रीब्यूशन, सीजी और आरएल मैट्रिसेस सम्मिलित हैं।[2][3]

फास्टकैप, फास्टहेनरी

फास्टकैप और फास्टहेनरी, एमआईटी (मैसाचुसेट्स इंस्टीट्यूट ऑफ टेक्नोलॉजी) से समाई, और अधिष्ठापन और प्रतिरोध के लिए दो मुक्त परजीवी निकालने वाले उपकरण हैं। कई वैज्ञानिक लेखों में उद्धृत, वे अपने क्षेत्र में सुनहरे संदर्भ माने जाते हैं। स्रोत कोड, साथ ही दर्शक और संपादक के साथ विंडोज बाइनरी संस्करण फ़ास्टफ़ील्डसॉल्वर से स्वतंत्र रूप से उपलब्ध हैं।[4][5]

फास्टर कैप

फ़ास्टफ़ील्डसॉल्वरकी ओर से फास्टरकैप, एक स्वतंत्र, ओपन सोर्स कैपेसिटेंस फील्ड सॉल्वर है, जो विंडोज और लिनक्स ओएस के लिए उपलब्ध है, जो टुकड़ा-वार-स्थिरांक, जटिल पारगम्यता परावैद्युत मीडिया, स्वचालित जाल शोधन क्षमता और इन-कोर/आउट -ऑफ-कोर सॉल्वर इंजन में एम्बेडेड प्रवाहकीय संरचनाओं का अनुकरण करने में सक्षम है।

स्टारआरसी

सिनॉप्सिस (पूर्व में अवंती से) का स्टारआरसी एक सार्वभौमिक परजीवी निकालने वाला उपकरण है जो इलेक्ट्रॉनिक डिजाइनों की पूरी श्रृंखला के लिए प्रयुक्त होता है।[6]

क्वांटस

ताल डिजाइन सिस्टम से क्वांटस डिजिटल और एनालॉग डिज़ाइन दोनों के लिए परजीवी निकालने वाला उपकरण है और पोस्टले आउट सत्यापन के लिए डिज़ाइन तैयार करने के लिए परजीवी निष्कर्षण जांच की जानी चाहिए।[7]

क्विककैप

सिनॉप्सिस का क्विककैप एनएक्स डिजिटल और एनालॉग डिज़ाइन दोनों के लिएपरजीवी एक्सट्रैक्टर टूल है।[8] यह रैंडम लॉजिक कॉर्पोरेशन के राल्फ इवरसन द्वारा विकसित क्विककैप पर आधारित था, जिसे मैग्मा और सिनॉप्सिस द्वारा अधिग्रहित किया गया था।

कैलिबर एक्सएसीटी3डी

मेंटर ग्राफ़िक्स का कैलिबर एक्सएसीटी3डी डिजिटल और एनालॉग डिज़ाइन दोनों के लिए परजीवी एक्सट्रैक्टर उपकरण है।[9] यह पेक्सआरसी पर आधारित था जिसे पेक्स्ट्रा कॉर्पोरेशन के वांगकी किउ और वीपिंग शि द्वारा विकसित किया गया था, जिसे मेंटर द्वारा अधिग्रहित किया गया था।

कैपएक्स्ट

कैपएक्स्ट एएस से कैपएक्स्ट गेरबर फ़ाइलों के आधार पर पीसीबी से कैपेसिटेंस निकालने के लिए एक परजीवी एक्सट्रैक्टर उपकरण है।[10]

फील्डस्केल सेंस

फील्डस्केल से फील्डस्केल सेंस डीएक्सएफ और गेरबर फाइलों के आधार पर कैपेसिटिव टच सेंसर से नेटलिस्ट प्रारूप में समाई, प्रतिरोध और पूरे आरसी समकक्ष परिपथ को निकालने के लिए परजीवी निकालने वाला उपकरण है।[11]

यह भी देखें

संदर्भ