तार्किक तुल्यता: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
[[तर्क]] और गणित में, कथन <math>p</math> और <math>q</math> इन्हें तार्किक रूप से समतुल्य कहा जाता है यदि प्रत्येक [[मॉडल (तर्क)]] में उनका सत्य मान समान हो।<ref>{{Cite book|title=गणितीय तर्क का परिचय|url=https://archive.org/details/introductiontoma00mend|url-access=limited|last=Mendelson|first=Elliott|authorlink = Elliott Mendelson|year=1979|edition=2|pages=[https://archive.org/details/introductiontoma00mend/page/n63 56]|isbn=9780442253073}}</ref> <math>p</math> और <math>q</math> की तार्किक तुल्यता को कभी-कभी <math>p \equiv q</math>, या <math>p :: q</math>, <math>\textsf{E}pq</math>, के रूप में व्यक्त किया जाता है <math>p \iff q</math>, उपयोग किए जा रहे नोटेशन पर निर्भर करता है। | [[तर्क]] और गणित में, कथन <math>p</math> और <math>q</math> इन्हें तार्किक रूप से समतुल्य कहा जाता है यदि प्रत्येक [[मॉडल (तर्क)]] में उनका सत्य मान समान हो।<ref>{{Cite book|title=गणितीय तर्क का परिचय|url=https://archive.org/details/introductiontoma00mend|url-access=limited|last=Mendelson|first=Elliott|authorlink = Elliott Mendelson|year=1979|edition=2|pages=[https://archive.org/details/introductiontoma00mend/page/n63 56]|isbn=9780442253073}}</ref> <math>p</math> और <math>q</math> की तार्किक तुल्यता को कभी-कभी <math>p \equiv q</math>, या <math>p :: q</math>, <math>\textsf{E}pq</math>, के रूप में व्यक्त किया जाता है <math>p \iff q</math>, उपयोग किए जा रहे नोटेशन पर निर्भर करता है। | ||
यद्पि, इन प्रतीकों का उपयोग [[भौतिक तुल्यता]] के लिए भी किया जाता है, इसलिए उचित व्याख्या संदर्भ पर निर्भर करेगी। तार्किक तुल्यता भौतिक तुल्यता से भिन्न है, यद्पि दोनों अवधारणाएँ आंतरिक रूप से संबंधित हैं। | |||
==तार्किक तुल्यताएँ== | ==तार्किक तुल्यताएँ== |
Revision as of 10:45, 6 July 2023
तर्क और गणित में, कथन और इन्हें तार्किक रूप से समतुल्य कहा जाता है यदि प्रत्येक मॉडल (तर्क) में उनका सत्य मान समान हो।[1] और की तार्किक तुल्यता को कभी-कभी , या , , के रूप में व्यक्त किया जाता है , उपयोग किए जा रहे नोटेशन पर निर्भर करता है।
यद्पि, इन प्रतीकों का उपयोग भौतिक तुल्यता के लिए भी किया जाता है, इसलिए उचित व्याख्या संदर्भ पर निर्भर करेगी। तार्किक तुल्यता भौतिक तुल्यता से भिन्न है, यद्पि दोनों अवधारणाएँ आंतरिक रूप से संबंधित हैं।
तार्किक तुल्यताएँ
तर्क में, कई सामान्य तार्किक तुल्यताएँ उपस्थित होती हैं और इन्हें अक्सर कानूनों या गुणों के रूप में सूचीबद्ध किया जाता है। निम्नलिखित तालिकाएँ इनमें से कुछ को दर्शाती हैं।
सामान्य तार्किक तुल्यताएँ
समानक | नाम |
---|---|
पहचान कानून | |
प्रभुत्व कानून | |
निरर्थक या तनातनी कानून | |
दोहरा निषेध कानून | |
क्रमविनिमेय कानून | |
सहयोगी कानून | |
वितरणात्मक कानून | |
डी मॉर्गन के नियम | |
अवशोषण नियम | |
निषेध कानून |
सशर्त कथनों से युक्त तार्किक तुल्यताएँ
तार्किक तुल्यताएं जिसमें द्विकंडीशनल शामिल हैं
उदाहरण
तर्क में
निम्नलिखित कथन तार्किक रूप से समतुल्य हैं:
- अगर लिसा डेनमार्क में है, तो वह यूरोप में है (फॉर्म का एक बयान)। ).
- अगर लिसा यूरोप में नहीं है, तो वह डेनमार्क में नहीं है (फॉर्म का एक बयान)। ).
वाक्यात्मक रूप से, (1) और (2) विरोधाभास और दोहरे निषेध के नियमों के माध्यम से एक दूसरे से व्युत्पन्न हैं। शब्दार्थ की दृष्टि से, (1) और (2) बिल्कुल समान मॉडल (व्याख्या, मूल्यांकन) में सत्य हैं; अर्थात्, जिनमें या तो लिसा डेनमार्क में है, गलत है या लिसा यूरोप में है, सत्य है।
(ध्यान दें कि इस उदाहरण में, शास्त्रीय तर्क को मान लिया गया है। कुछ गैर-शास्त्रीय तर्क (1) और (2) को तार्किक रूप से समतुल्य नहीं मानते हैं।)
भौतिक तुल्यता से संबंध
तार्किक तुल्यता भौतिक तुल्यता से भिन्न है। सूत्रों और तार्किक रूप से समतुल्य हैं यदि और केवल यदि उनकी भौतिक तुल्यता का विवरण () एक तनातनी है।[2] की भौतिक तुल्यता और (अक्सर इस प्रकार लिखा जाता है ) स्वयं उसी औपचारिक प्रणाली में एक और कथन है और . यह कथन इस विचार को व्यक्त करता है' अगर और केवल अगर ' . विशेष रूप से, का सत्य मूल्य एक मॉडल से दूसरे मॉडल में बदल सकते हैं।
दूसरी ओर, यह दावा कि दो सूत्र तार्किक रूप से समतुल्य हैं, धातुभाषा में एक बयान है, जो दो बयानों के बीच संबंध व्यक्त करता है और . कथन तार्किक रूप से समतुल्य हैं यदि, प्रत्येक मॉडल में, उनका सत्य मान समान हो।
यह भी देखें
- तार्किक परिणाम
- समसंतोषजनकता
- अगर और केवल अगर
- तार्किक द्विशर्तीय
- तार्किक समानता
- गणितीय संचालक (यूनिकोड ब्लॉक)#ब्लॉक|≡ आईएफएफ प्रतीक (यू+2261 इसके समान)
- गणितीय संचालक (यूनिकोड ब्लॉक)#ब्लॉक|∷ a से b है 'जैसा' c से d प्रतीक है (U+2237 अनुपात)
- तीर (यूनिकोड_ब्लॉक)#ब्लॉक|⇔ ब्लैकबोर्ड बोल्ड बाईकंडीशनल (u+21d4 बायां दायां दोहरा तीर)
- तीर (प्रतीक)#तीर_इन_यूनिकोड|↔ द्विदिशीय तीर (u+2194 बायां दायां तीर)
संदर्भ
- ↑ Mendelson, Elliott (1979). गणितीय तर्क का परिचय (2 ed.). pp. 56. ISBN 9780442253073.
- ↑ Copi, Irving; Cohen, Carl; McMahon, Kenneth (2014). तर्क का परिचय (New International ed.). Pearson. p. 348.