हॉसडॉर्फ माप: Difference between revisions
No edit summary |
|||
Line 12: | Line 12: | ||
को परिभाषित करें जहां न्यूनतम <math>S</math> के सभी गणनीय आवरण पर समुच्चय <math>U_i\subset X</math> संतोषजनक <math> \operatorname{diam} U_i<\delta</math> से अधिक है।. | को परिभाषित करें जहां न्यूनतम <math>S</math> के सभी गणनीय आवरण पर समुच्चय <math>U_i\subset X</math> संतोषजनक <math> \operatorname{diam} U_i<\delta</math> से अधिक है।. | ||
ध्यान दें कि <math>H^d_\delta(S)</math>, <math>\delta</math> में | ध्यान दें कि <math>H^d_\delta(S)</math>, <math>\delta</math> में एकलय न बढ़ने वाला है क्योंकि <math>\delta</math> जितना बड़ा होगा, समुच्चयों के उतने ही अधिक संग्रह की अनुमति होगी, जिससे न्यूनतम बड़ा नहीं होगा। इस प्रकार, <math>\lim_{\delta\to 0}H^d_\delta(S)</math> का अस्तित्व है लेकिन अनंत हो सकता है। मान लीजिए | ||
:<math> H^d(S):=\sup_{\delta>0} H^d_\delta(S)=\lim_{\delta\to 0}H^d_\delta(S).</math> | :<math> H^d(S):=\sup_{\delta>0} H^d_\delta(S)=\lim_{\delta\to 0}H^d_\delta(S).</math> | ||
Line 21: | Line 21: | ||
==हॉसडॉर्फ माप के गुण== | ==हॉसडॉर्फ माप के गुण== | ||
ध्यान दें कि यदि d एक धनात्मक पूर्णांक है, तो | ध्यान दें कि यदि d एक धनात्मक पूर्णांक है, तो <math>\R^d</math> का d-आयामी हॉसडॉर्फ माप सामान्य डी-आयामी लेबेस्ग माप <math>\lambda_d</math> का पुनः पैमाना है, जिसे सामान्यीकृत किया जाता है ताकि इकाई घन का लेबेस्ग माप [0,1]<sup>d</sup> हो। 1. वास्तव में, किसी भी बोरेल समुच्चय E के लिए, | ||
:<math> \lambda_d(E) = 2^{-d} \alpha_d H^d(E),</math> | :<math> \lambda_d(E) = 2^{-d} \alpha_d H^d(E),</math> | ||
जहां α<sub>''d''</sub> इकाई | जहां α<sub>''d''</sub> इकाई डी-बॉल का आयतन है;इसे यूलर के गामा फ़ंक्शन <math>\alpha_d =\frac{\Gamma\left(\frac12\right)^d}{\Gamma\left(\frac{d}{2}+1\right)} =\frac{\pi^{d/2}}{\Gamma\left(\frac{d}{2}+1\right)}</math> का उपयोग करके व्यक्त किया जा सकता है। | ||
: | : | ||
यह | यह <math> \lambda_d(E) = \beta_d H^d(E)</math> है जहां <math>\beta_d</math> इकाई व्यास डी-बॉल का आयतन है। | ||
'टिप्पणी'। कुछ लेखक हॉसडॉर्फ माप की परिभाषा को यहां चुनी गई परिभाषा से थोड़ा अलग अपनाते हैं, अंतर यह है कि | 'टिप्पणी'। कुछ लेखक हॉसडॉर्फ माप की परिभाषा को यहां चुनी गई परिभाषा से थोड़ा अलग अपनाते हैं, अंतर यह है कि ऊपर परिभाषित मान <math>H^d(E)</math> को कारक <math>\beta_d = 2^{-d} \alpha_d</math> से गुणा किया जाता है, ताकि हॉसडॉर्फ डी-आयामी माप यूक्लिडियन अंतरिक्ष के मामले में लेबेस्ग माप के साथ बिल्कुल मेल खाता हो। | ||
==हौसडॉर्फ़ आयाम के साथ संबंध== | ==हौसडॉर्फ़ आयाम के साथ संबंध== | ||
यह पता चला है कि <math>H^d(S)</math> अधिकतम एक के लिए एक सीमित, गैर-शून्य मान हो सकता है <math>d</math>. अर्थात्, हॉसडॉर्फ माप एक निश्चित आयाम के ऊपर किसी भी मान के लिए शून्य है और एक निश्चित आयाम के नीचे अनंत है, इस विचार के अनुरूप है कि एक रेखा का क्षेत्र शून्य है और 2डी आकार की लंबाई कुछ अर्थों में अनंत है। यह हॉसडॉर्फ़ आयाम की कई संभावित समकक्ष परिभाषाओं में से एक की ओर ले जाता है: | यह पता चला है कि <math>H^d(S)</math> अधिकतम एक के लिए एक सीमित, गैर-शून्य मान हो सकता है <math>d</math>. अर्थात्, हॉसडॉर्फ माप एक निश्चित आयाम के ऊपर किसी भी मान के लिए शून्य है और एक निश्चित आयाम के नीचे अनंत है, इस विचार के अनुरूप है कि एक रेखा का क्षेत्र शून्य है और 2डी आकार की लंबाई कुछ अर्थों में अनंत है। यह हॉसडॉर्फ़ आयाम की कई संभावित समकक्ष परिभाषाओं में से एक की ओर ले जाता है: | ||
:<math>\dim_{\mathrm{Haus}}(S)=\inf\{d\ge 0:H^d(S)=0\}=\sup\{d\ge 0:H^d(S)=\infty\},</math> | :<math>\dim_{\mathrm{Haus}}(S)=\inf\{d\ge 0:H^d(S)=0\}=\sup\{d\ge 0:H^d(S)=\infty\},</math> |
Revision as of 09:24, 9 July 2023
गणित में, हॉसडॉर्फ़ माप क्षेत्र और आयतन की पारंपरिक धारणाओं का गैर-पूर्णांक आयामों, विशेष रूप से भग्न और उनके हॉसडॉर्फ़ आयामों का सामान्यीकरण है। यह एक प्रकार का बाहरी माप है, जिसका नाम फ़ेलिक्स हॉसडॉर्फ़ के नाम पर रखा गया है, जो कि में या, अधिक सामान्यतः, किसी भी मीट्रिक स्थान में प्रत्येक समुच्चय के लिए [0,∞] में एक संख्या निर्दिष्ट करता है।
शून्य-आयामी हॉसडॉर्फ माप समुच्चय में अंकों की संख्या है (यदि समुच्चय परिमित है) या ∞ यदि समुच्चय अनंत है। इसी तरह, एक साधारण वक्र का एक-आयामी हॉसडॉर्फ माप वक्र की लंबाई के बराबर है, और के लेबेस्ग-मापने योग्य उपसमुच्चय का द्वि-आयामी हॉसडॉर्फ़ माप समुच्चय के क्षेत्रफल के समानुपाती है। इस प्रकार, हॉसडॉर्फ माप की अवधारणा लेब्सेग माप और इसकी गिनती, लंबाई और क्षेत्र की धारणाओं को सामान्यीकृत करती है। यह आयतन को भी सामान्यीकृत करता है। वास्तव में, किसी भी d ≥ 0 के लिए d-आयामी हॉसडॉर्फ माप हैं, जो आवश्यक रूप से एक पूर्णांक नहीं है। ये माप ज्यामितीय माप सिद्धांत में मौलिक हैं। वे हार्मोनिक विश्लेषण या संभावित सिद्धांत में स्वाभाविक रूप से प्रकट होते हैं।
परिभाषा
मान लीजिए एक मीट्रिक स्थान है। किसी भी उपसमुच्चय के लिए , मान लीजिए कि इसके व्यास को निरूपित करता है, जो कि
- है।
मान लीजिए कि , का कोई उपसमुच्चय है और एक वास्तविक संख्या है।
को परिभाषित करें जहां न्यूनतम के सभी गणनीय आवरण पर समुच्चय संतोषजनक से अधिक है।.
ध्यान दें कि , में एकलय न बढ़ने वाला है क्योंकि जितना बड़ा होगा, समुच्चयों के उतने ही अधिक संग्रह की अनुमति होगी, जिससे न्यूनतम बड़ा नहीं होगा। इस प्रकार, का अस्तित्व है लेकिन अनंत हो सकता है। मान लीजिए
यह देखा जा सकता है कि एक बाहरी माप है (अधिक सटीक रूप से, यह एक मीट्रिक बाहरी माप है)। कैराथोडोरी के विस्तार प्रमेय के अनुसार, कैराथोडोरी-मापने योग्य समुच्चय के σ-क्षेत्र पर इसका प्रतिबंध एक माप है। इसे का -आयामी हॉसडॉर्फ माप कहा जाता है। मीट्रिक बाहरी माप गुण के कारण, के सभी बोरेल उपसमुच्चय मापने योग्य हैं।
उपरोक्त परिभाषा में आवरण में समुच्चय स्वेच्छाचारी हैं। फिर भी, हमें आवरण समुच्चय को खुला या बंद करने की आवश्यकता हो सकती है, या मानक स्थानों में भी उत्तल होना चाहिए, जिससे समान संख्याएँ प्राप्त होंगी, इसलिए समान माप होगा। में आवरण समुच्चय को गोलक तक सीमित रखने से माप बदल सकते हैं लेकिन मापे गए समुच्चय का आयाम नहीं बदलता है।
हॉसडॉर्फ माप के गुण
ध्यान दें कि यदि d एक धनात्मक पूर्णांक है, तो का d-आयामी हॉसडॉर्फ माप सामान्य डी-आयामी लेबेस्ग माप का पुनः पैमाना है, जिसे सामान्यीकृत किया जाता है ताकि इकाई घन का लेबेस्ग माप [0,1]d हो। 1. वास्तव में, किसी भी बोरेल समुच्चय E के लिए,
जहां αd इकाई डी-बॉल का आयतन है;इसे यूलर के गामा फ़ंक्शन का उपयोग करके व्यक्त किया जा सकता है।
यह है जहां इकाई व्यास डी-बॉल का आयतन है।
'टिप्पणी'। कुछ लेखक हॉसडॉर्फ माप की परिभाषा को यहां चुनी गई परिभाषा से थोड़ा अलग अपनाते हैं, अंतर यह है कि ऊपर परिभाषित मान को कारक से गुणा किया जाता है, ताकि हॉसडॉर्फ डी-आयामी माप यूक्लिडियन अंतरिक्ष के मामले में लेबेस्ग माप के साथ बिल्कुल मेल खाता हो।
हौसडॉर्फ़ आयाम के साथ संबंध
यह पता चला है कि अधिकतम एक के लिए एक सीमित, गैर-शून्य मान हो सकता है . अर्थात्, हॉसडॉर्फ माप एक निश्चित आयाम के ऊपर किसी भी मान के लिए शून्य है और एक निश्चित आयाम के नीचे अनंत है, इस विचार के अनुरूप है कि एक रेखा का क्षेत्र शून्य है और 2डी आकार की लंबाई कुछ अर्थों में अनंत है। यह हॉसडॉर्फ़ आयाम की कई संभावित समकक्ष परिभाषाओं में से एक की ओर ले जाता है:
हम कहाँ लेते हैं और .
ध्यान दें कि इसकी गारंटी नहीं है कि हॉसडॉर्फ़ माप कुछ d के लिए परिमित और गैर-शून्य होना चाहिए, और वास्तव में हॉसडॉर्फ़ आयाम पर माप अभी भी शून्य हो सकता है; इस मामले में, हॉसडॉर्फ आयाम अभी भी शून्य और अनंत के मापों के बीच एक परिवर्तन बिंदु के रूप में कार्य करता है।
सामान्यीकरण
ज्यामितीय माप सिद्धांत और संबंधित क्षेत्रों में, मिन्कोव्स्की सामग्री का उपयोग अक्सर मीट्रिक माप स्थान के सबसमुच्चय के आकार को मापने के लिए किया जाता है। यूक्लिडियन अंतरिक्ष में उपयुक्त डोमेन के लिए, आकार की दो धारणाएं मेल खाती हैं, सम्मेलनों के आधार पर समग्र सामान्यीकरण तक। अधिक सटीक रूप से, का एक उपसमुच्चय सुधार योग्य समुच्चय कहा जाता है|-अगर यह एक परिबद्ध समुच्चय की छवि है तो इसे सुधारा जा सकता है लिप्सचिट्ज़ फ़ंक्शन के अंतर्गत। अगर , फिर एक बंद की -आयामी मिन्कोव्स्की सामग्री - का सुधार योग्य उपसमुच्चय के बराबर है कई बार -आयामी हॉसडॉर्फ माप (Federer 1969, Theorem 3.2.29).
फ्रैक्टल ज्यामिति में, हॉसडॉर्फ आयाम वाले कुछ फ्रैक्टल शून्य या अनंत हो -आयामी हॉसडॉर्फ माप। उदाहरण के लिए, लगभग निश्चित रूप से समतल एक प्रकार कि गति की छवि में हॉसडॉर्फ़ आयाम 2 है और इसका द्वि-आयामी हॉसडॉर्फ़ माप शून्य है। ऐसे समुच्चयों के आकार को मापने के लिए, हॉसडॉर्फ माप की धारणा पर निम्नलिखित भिन्नता पर विचार किया जा सकता है:
- माप की परिभाषा में से प्रतिस्थापित कर दिया गया है कहाँ क्या कोई मोनोटोन बढ़ता समुच्चय फ़ंक्शन संतोषजनक है
यह हॉसडॉर्फ माप है आयाम फ़ंक्शन के साथ या -हौसडॉर्फ माप. ए -आयामी समुच्चय संतुष्ट कर सकता है लेकिन एक उपयुक्त के साथ गेज फ़ंक्शंस के उदाहरणों में शामिल हैं
पूर्व लगभग निश्चित रूप से सकारात्मक और देता है ब्राउनियन पथ के लिए -परिमित माप कब , और बाद वाला कब .
यह भी देखें
- हॉसडॉर्फ़ आयाम
- ज्यामितीय माप सिद्धांत
- माप सिद्धांत
- बाहरी माप
संदर्भ
- Evans, Lawrence C.; Gariepy, Ronald F. (1992), Measure Theory and Fine Properties of Functions, CRC Press.
- Federer, Herbert (1969), Geometric Measure Theory, Springer-Verlag, ISBN 3-540-60656-4.
- Hausdorff, Felix (1918), "Dimension und äusseres Mass" (PDF), Mathematische Annalen, 79 (1–2): 157–179, doi:10.1007/BF01457179, S2CID 122001234.
- Morgan, Frank (1988), Geometric Measure Theory, Academic Press.
- Rogers, C. A. (1998), Hausdorff measures, Cambridge Mathematical Library (3rd ed.), Cambridge University Press, ISBN 0-521-62491-6
- Szpilrajn, E (1937), "La dimension et la mesure" (PDF), Fundamenta Mathematicae, 28: 81–89, doi:10.4064/fm-28-1-81-89.