ज़ारिस्की टोपोलॉजी: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Topology on prime ideals and algebraic varieties}} | {{Short description|Topology on prime ideals and algebraic varieties}} | ||
[[File:Quintic polynomial.svg|thumb|[[एफ़िन विमान]] पर ज़ारिस्कीसांस्थिति में, बहुपद का यह ग्राफ़ | [[File:Quintic polynomial.svg|thumb|[[एफ़िन विमान]] पर ज़ारिस्कीसांस्थिति में, बहुपद का यह ग्राफ़ सवृत है।]][[बीजगणितीय ज्यामिति]] और [[क्रमविनिमेय बीजगणित]] में, '''ज़ारिस्की सांस्थिति''' एक [[टोपोलॉजी (संरचना)|सांस्थिति (संरचना)]] है जिसे मुख्य रूप से इसके [[बंद सेट|सवृत समूहों]] द्वारा परिभाषित किया जाता है। यह उन सांस्थिति से बहुत अलग है जो सामान्यतौर पर [[वास्तविक विश्लेषण]] या [[जटिल विश्लेषण]] में उपयोग की जाती हैं; विशेष रूप से, यह [[हॉसडॉर्फ़ स्थान]] नहीं है।{{sfn|Hulek|2003|loc=1.1.1.|p=19}} इस [[टोपोलॉजी|सांस्थिति]] को मुख्य रूप से [[ऑस्कर ज़ारिस्की]] द्वारा प्रस्तुत किया गया था और बाद में इसे [[टोपोलॉजी|सांस्थिति]] समष्टि (जिसे वलय का वर्णक्रम कहा जाता है) के [[प्रमुख आदर्श|प्रमुख आदर्शों]] के समूह बनाने के लिए सामान्यीकृत किया गया था। | ||
ज़ारिस्की सांस्थिति [[बीजगणितीय विविधता]] का अध्ययन करने के लिए सांस्थिति के उपकरणों का उपयोग करने की अनुमति देती है, तब भी जब अंतर्निहित क्षेत्र (गणित) [[टोपोलॉजिकल क्षेत्र|सांस्थिति क्षेत्र]] नहीं है। यह [[योजना सिद्धांत]] के मूल विचारों में से एक है, जो किसी को [[ कई गुना |कई गुना]] सिद्धांत के समान सम्बंधित प्रकार को एक साथ जोड़कर सामान्य बीजगणितीय प्रकार का निर्माण करने की अनुमति देता है, जहां [[चार्ट (टोपोलॉजी)|चार्ट (सांस्थिति)]] को एक साथ जोड़कर अनेक निर्माण किया जाता है, वास्तविक सम्बंधित रिक्त स्थान का | ज़ारिस्की सांस्थिति [[बीजगणितीय विविधता]] का अध्ययन करने के लिए सांस्थिति के उपकरणों का उपयोग करने की अनुमति देती है, तब भी जब अंतर्निहित क्षेत्र (गणित) [[टोपोलॉजिकल क्षेत्र|सांस्थिति क्षेत्र]] नहीं है। यह [[योजना सिद्धांत]] के मूल विचारों में से एक है, जो किसी को [[ कई गुना |कई गुना]] सिद्धांत के समान सम्बंधित प्रकार को एक साथ जोड़कर सामान्य बीजगणितीय प्रकार का निर्माण करने की अनुमति देता है, जहां [[चार्ट (टोपोलॉजी)|चार्ट (सांस्थिति)]] को एक साथ जोड़कर अनेक निर्माण किया जाता है, वास्तविक सम्बंधित रिक्त स्थान का विवृत उपसमुच्चय हैं। | ||
बीजीय प्रकार की ज़ारिस्की सांस्थिति वह सांस्थिति है जिसके | बीजीय प्रकार की ज़ारिस्की सांस्थिति वह सांस्थिति है जिसके सवृत समूह के प्रकार के [[बीजगणितीय सेट|बीजगणितीय समूह]] होते हैं।{{sfn|Hulek|2003|loc=1.1.1.|p=19}} [[जटिल संख्या]]ओं पर बीजगणितीय विविधता के कथन में, ज़ारिस्की सांस्थिति सामान्य सांस्थिति की तुलना में अधिक मोटे होती है, क्योंकि प्रत्येक बीजगणितीय समूह सामान्य सांस्थिति के लिए सवृत होता है। | ||
एक क्रमविनिमेय वलय के प्रमुख आदर्शों के समूह के लिए ज़ारिस्की सांस्थिति का सामान्यीकरण हिल्बर्ट के नलस्टेलेंसत्ज़ से होता है, जो बीजगणितीय रूप से | एक क्रमविनिमेय वलय के प्रमुख आदर्शों के समूह के लिए ज़ारिस्की सांस्थिति का सामान्यीकरण हिल्बर्ट के नलस्टेलेंसत्ज़ से होता है, जो बीजगणितीय रूप से सवृत क्षेत्र पर परिभाषित सम्बंधित विविधता के बिंदुओं और इसके [[नियमित कार्य|नियमित फलन]] के वलय के [[अधिकतम आदर्श|अधिकतम आदर्शों]] के बीच विशेषण सामान्यीकरण स्थापित करता है। यह क्रमविनिमेय वलय के अधिकतम आदर्शों के समूह पर ज़ारिस्की सांस्थिति को सांस्थिति के रूप में परिभाषित करने का सुझाव देता है, जैसे कि अधिकतम आदर्शों का समूह सवृत हो जाता है यदि और केवल तभी जब यह सभी अधिकतम आदर्शों का समूह होता है जिसमें दिया गया आदर्श होता है। [[ग्रोथेंडिक]] के योजना सिद्धांत का अन्य मूल विचार बिंदुओं के रूप में न केवल अधिकतम आदर्शों के अनुरूप सामान्य बिंदुओं पर विचार करना है, अपितु सभी (अघुलनशील) बीजगणितीय प्रकारों पर भी विचार करना है, जो प्रमुख आदर्शों के अनुरूप हैं। इस प्रकार क्रमविनिमेय वलय के प्रमुख आदर्शों (वर्णक्रम) के समूह पर ''''ज़ारिस्की सांस्थिति'''<nowiki/>' ऐसी सांस्थिति है कि प्रमुख आदर्शों का समूह सवृत हो जाता है केवल तभी जब यह सभी प्रमुख आदर्शों का समूह हो जिसमें एक निश्चित आदर्श होता है। | ||
== | ==ज़ारिस्की सांस्थिति का प्रकार == | ||
प्राचीन बीजगणितीय ज्यामिति में (अर्थात, बीजगणितीय ज्यामिति का वह भाग जिसमें कोई [[योजना (गणित)]] का उपयोग नहीं करता है, जिसे 1960 के आसपास ग्रोथेंडिक द्वारा प्रस्तुत किया गया था), ज़ारिस्की सांस्थिति को बीजगणितीय प्रकारों पर परिभाषित किया गया है।{{sfn|Mumford|1999}} ज़रिस्की सांस्थिति, विविधता के बिंदुओं पर परिभाषित, सांस्थिति ऐसी है कि सवृत समूह विविधता का बीजगणितीय समूह है। चूंकि सबसे प्राथमिक बीजगणितीय किस्में सम्बंधित प्रकार और प्रक्षेप्य प्रकार हैं, इसलिए दोनों अर्थों में इस परिभाषा को अधिक स्पष्ट बनाना उपयोगी है। हम मानते हैं कि हम एक निश्चित, बीजगणितीय रूप से सवृत क्षेत्र k पर काम कर रहे हैं (प्राचीन बीजगणितीय ज्यामिति में, k सामान्यतौर पर जटिल संख्याओं का क्षेत्र है)। | |||
=== | ===सम्बंधित प्रकार=== | ||
सबसे पहले, हम | सबसे पहले, हम सम्बंधित समष्टि पर सांस्थिति को परिभाषित करते हैं <math>\mathbb{A}^n,</math> गठित {{mvar|n}}-के तत्वों के टुपल्स {{mvar|k}} होता है। सांस्थिति को इसके विवृत समूहों के बदले में इसके सवृत समूहों को निर्दिष्ट करके परिभाषित किया गया है, और इन्हें <math>\mathbb{A}^n</math> सभी बीजगणितीय समूहों के रूप में लिया जाता है| अर्थात् सवृत समूह प्रकार के होते हैं | ||
<math display="block">V(S) = \{x \in \mathbb{A}^n \mid f(x) = 0, \forall f \in S\}</math> | <math display="block">V(S) = \{x \in \mathbb{A}^n \mid f(x) = 0, \forall f \in S\}</math> | ||
जहाँ S, k के ऊपर n चरों में बहुपदों का कोई समुच्चय है। यह दिखाने के लिए | जहाँ S, k के ऊपर n चरों में बहुपदों का कोई समुच्चय है। यह दिखाने के लिए सीधा सत्यापन है कि: | ||
* | * V(S) = V((S)), जहां (S) S के तत्वों द्वारा उत्पन्न [[आदर्श (रिंग सिद्धांत)|आदर्श (वलय सिद्धांत)]] है; | ||
* बहुपद I, J के किन्हीं दो आदर्शों के लिए हमारे पास है | * बहुपद I, J के किन्हीं दो आदर्शों के लिए हमारे पास है | ||
*# <math>V(I) \cup V(J)\,=\,V(IJ);</math> | *# <math>V(I) \cup V(J)\,=\,V(IJ);</math> | ||
*# <math>V(I) \cap V(J)\,=\,V(I + J).</math> | *# <math>V(I) \cap V(J)\,=\,V(I + J).</math> | ||
यह इस प्रकार है कि | यह इस प्रकार है कि समूह V(S) के परिमित समूह और अपने ढंग से प्रतिच्छेद भी इस रूप के होते हैं, जिससे कि ये समूह सांस्थिति के सवृत समूह बनाते हैं (समकक्ष, उनके पूरक, D(S) को चिह्नित करते हैं और संस्थिति के प्रकार ही प्रमुख विवृत समूह कहलाते हैं)। यह ज़ारिस्की सांस्थिति <math>\mathbb{A}^n</math> पर है | यदि <math>\mathbb{A}^n</math> समान रूप से, यह जांचा जा सकता है कि: | ||
यदि <math>\mathbb{A}^n | |||
* | * सम्बंधित समन्वय वलय के तत्व <math display="block">A(X)\,=\,k[x_1, \dots, x_n]/I(X)</math> <math>k[x_1, \dots, x_n]</math> के तत्वों की तरह ही X पर भी कार्य करता है, <math>\mathbb{A}^n</math>पर कार्यों के रूप में कार्य करें; यहाँ, I(X) X पर लुप्त होने वाले सभी बहुपदों का आदर्श है। | ||
* बहुपद S के किसी भी | * बहुपद S के किसी भी समूहों के लिए, T को A(X) में उनकी छवियों का समूह होने देना है। फिर X का उपसमुच्चय <math display="block">V'(T) = \{x \in X \mid f(x) = 0, \forall f \in T\}</math> (ये चिन्ह मानक नहीं हैं) V(S) के X के साथ प्रतिच्छेद के बराबर है। | ||
यह स्थापित करता है कि उपरोक्त समीकरण, स्पष्ट रूप से | यह स्थापित करता है कि उपरोक्त समीकरण, स्पष्ट रूप से सवृत की परिभाषा का सामान्यीकरण स्थापित करता है <math>\mathbb{A}^n</math> उपरोक्त, किसी भी सम्बंधित प्रकार पर ज़ारिस्की सांस्थिति को परिभाषित करता है। | ||
===प्रक्षेपी | ===प्रक्षेपी प्रकार === | ||
उस | उस n-आयामी [[प्रक्षेप्य स्थान]] को याद करें <math>\mathbb{P}^n</math> में अशून्य बिंदुओं के तुल्यता वर्गों के समूह के रूप में परिभाषित किया गया है <math>\mathbb{A}^{n + 1}</math> दो बिंदुओं की पहचान करके जो k में अदिश गुणज से भिन्न होते हैं। बहुपद वलय के तत्व <math>k[x_0, \dots, x_n]</math> कार्य क्रियान्वित नहीं हैं <math>\mathbb{P}^n</math> क्योंकि किसी भी बिंदु के कई प्रतिनिधि होते हैं जो बहुपद में अलग-अलग मान उत्पन्न करते हैं; चूँकि, [[सजातीय बहुपद|सजातीय बहुपदों]] के लिए किसी दिए गए प्रक्षेप्य बिंदु पर अशून्य या शून्य मान होने की स्थिति अच्छी तरह से परिभाषित है क्योंकि अदिश गुणक बहुपद से बाहर हैं। इसलिए, यदि S सजातीय बहुपदों का कोई समुच्चय है तो हम उचित रूप से इसके बारे में बात कर सकते हैं | ||
:<math>V(S) = \{x \in \mathbb{P}^n \mid f(x) = 0, \forall f \in S\}.</math> | :<math>V(S) = \{x \in \mathbb{P}^n \mid f(x) = 0, \forall f \in S\}.</math> | ||
उपरोक्त समान तथ्य इन | उपरोक्त समान तथ्य इन समूहों के लिए स्थापित किए जा सकते हैं, सिवाय इसके कि आदर्श शब्द को [[सजातीय आदर्श]] वाक्यांश द्वारा प्रतिस्थापित किया जाना चाहिए, जिससे कि V(S), सजातीय बहुपदों के समूह S के लिए, <math>\mathbb{P}^n</math> सांस्थिति को परिभाषित करता है। जैसा कि ऊपर बताया गया है, इन समूहों के पूरकों को D(S) दर्शाया गया है, या, यदि भ्रम उत्पन्न होने की संभावना है, तो D′(S) दर्शाया गया है। | ||
प्रक्षेपि ज़ारिस्की सांस्थिति को प्रक्षेपि बीजगणितीय समूहों के लिए परिभाषित किया गया है, जैसे कि सबंधित उपसमष्टि सांस्थिति लेकर, सबंधित बीजगणितीय समूहों के लिए परिभाषित किया गया है। इसी प्रकार, यह दिखाया जा सकता है कि इस सांस्थिति को उपरोक्त सूत्र के अनुसार, प्रक्षेप्य समन्वय वलय के तत्वों के समूह द्वारा आंतरिक रूप से परिभाषित किया गया है। | |||
===गुण=== | ===गुण=== | ||
ज़ारिस्की सांस्थिति की एक महत्वपूर्ण गुण यह है कि उनके पास एक [[आधार (टोपोलॉजी)]] है जिसमें सरल तत्व सम्मिलित हैं, अर्थात् {{math|''D''(''f'')}} व्यक्तिगत बहुपदों ''f'' के लिए (या प्रक्षेप्य प्रकारों, सजातीय बहुपदों के लिए) होता है। ये आधार बनाते हैं जो ऊपर दिए गए दो ज़ारिस्की-सवृत समूहों के प्रतिच्छेद के सूत्र से अनुसरण करता है (इसे जनक द्वारा उत्पन्न {{math|(''S'')}} प्रमुख आदर्शों पर बार-बार क्रियन्वित करता है) | इस आधार में विवृत समुच्चय को विशिष्ट या मूल मुक्त समुच्चय कहा जाता है। इस गुण का महत्व विशेष रूप से [[एफ़िन योजना|सम्बंधित योजना]] की परिभाषा में इसके उपयोग से उत्पन्न होता है। | |||
हिल्बर्ट के आधार प्रमेय और [[नोथेरियन अंगूठी]] के कुछ प्राथमिक गुणों के अनुसार, प्रत्येक | हिल्बर्ट के आधार प्रमेय और [[नोथेरियन अंगूठी|नोथेरियन वलय]] के कुछ प्राथमिक गुणों के अनुसार, प्रत्येक सम्बंधित या प्रक्षेप्य समन्वय वलय नोथेरियन है। परिणामस्वरूप, ज़ारिस्की सांस्थिति के साथ सम्बंधित या प्रक्षेपी समष्टि [[नोथेरियन टोपोलॉजिकल स्पेस|नोथेरियन टोपोलॉजिकल समष्टि]] हैं, जिसका अर्थ है कि इन समष्टि का कोई भी सवृत उपसमुच्चय [[ सघन स्थान |सघन स्थान]] है। | ||
चूँकि, परिमित बीजगणितीय समूहों को छोड़कर, कोई भी बीजगणितीय समूह कभी भी हॉसडॉर्फ समष्टि नहीं होता है। पुराने संस्थितिकी साहित्य इसलिए आधुनिक अर्थों में सघनता को बीजगणितीय ज्यामिति में अर्ध सघनता कहा जाता है। चूँकि, हर बिंदु (a<sub>1</sub>, ..., a<sub>n</sub>) बहुपद x<sub>1</sub> का शून्य समुच्चय है- a<sub>1</sub>, ..., x<sub>n</sub>- a<sub>n</sub>, अंक सवृत हैं और इसलिए प्रत्येक प्रकार T<sub>1</sub> स्थान को संतुष्ट करती है | | |||
प्रकारों का प्रत्येक [[नियमित मानचित्र (बीजगणितीय ज्यामिति)]] ज़ारिस्की सांस्थिति में निरंतर कार्य (संस्थिति) है। वास्तव में, ज़ारिस्की सांस्थिति (सबसे कम विवृत समूह के साथ) सबसे कमजोर सांस्थिति है | जिसमें यह सत्य है और जिसमें बिंदु सवृत हैं। इसे यह देखकर सरलता से सत्यापित किया जा सकता है कि ज़ारिस्की-सवृत समूह बहुपद फलन द्वारा 0 की व्युत्क्रम छवियों के प्रतिच्छेद हैं, जिन्हें <math>\mathbb{A}^1</math> नियमित मानचित्र माना जाता है | | |||
==वलय का वर्णक्रम== | |||
आधुनिक बीजगणितीय ज्यामिति में, बीजगणितीय विविधता को अधिकांशतः इसकी संबद्ध योजना (गणित) द्वारा दर्शाया जाता है, जो [[टोपोलॉजिकल स्पेस|संस्थितिकी समष्टि]] (अतिरिक्त संरचनाओं से सुसज्जित) है जो स्थानीय रूप से वलय के वर्णक्रम के लिए होमोमोर्फिक है।{{sfn|Dummit|Foote|2004}} क्रमविनिमेय वलय A का वर्णक्रम दर्शाया गया है {{math| वर्णक्रम ''A''}}, ''A'' के प्रमुख आदर्शों का समूह है, जो '''''<nowiki/>'ज़ारिस्की सांस्थिति'''''' से सुसज्जित है, जिसके लिए सवृत समूह हैं | | |||
== | |||
आधुनिक बीजगणितीय ज्यामिति में, | |||
:<math>V(I) = \{P \in \operatorname{Spec}A \mid P \supset I\}</math> | :<math>V(I) = \{P \in \operatorname{Spec}A \mid P \supset I\}</math> | ||
जहां मैं | जहां मैं आदर्श हूं | | ||
प्राचीन चित्र के साथ संबंध देखने के लिए, ध्यान दें कि बहुपदों के किसी भी समूह S (बीजगणितीय रूप से सवृत क्षेत्र पर) के लिए, यह हिल्बर्ट के नुलस्टलेसट्ज़ से निम्नानुसार है कि V(S) के बिंदु (पुराने अर्थ में) बिल्कुल टुपल्स हैं (a<sub>1</sub>, ..., a<sub>n</sub>) इस प्रकार कि बहुपद x द्वारा उत्पन्न आदर्श x<sub>1</sub> <sup>_</sup> a<sub>1</sub>,....x<sub>n</sub> <sup>_</sup> a<sub>n</sub> है; इसके अतिरिक्त, ये अधिकतम आदर्श हैं और कमज़ोर नुलस्टलेसट्ज़ द्वारा, किसी भी सम्बंधित समन्वय वलय का आदर्श अधिकतम होता है सिर्फ यह इस रूप का हो। इस प्रकार, V(S) S युक्त अधिकतम आदर्शों के समान है। वर्णक्रम को परिभाषित करने में ग्रोथेंडिक का नवीनीकरण अधिकतम आदर्शों को सभी प्रमुख आदर्शों के साथ प्रतिस्थापित करना था; इस सूत्रीकरण में इस अवलोकन को वलय के वर्णक्रम में सवृत समूह की परिभाषा के लिए सामान्यीकृत करना स्वाभाविक है। | |||
एक और | एक और प्रकार, संभवतः मूल के समान, आधुनिक परिभाषा की व्याख्या करने के लिए यह आभास करना है कि A के तत्वों को वास्तव में A के प्रमुख आदर्शों पर फलन के रूप में सोचा जा सकता है; अर्थात्, वर्णक्रम A पर फलन करता है। बस, किसी भी अभाज्य आदर्श P में संगत [[अवशेष क्षेत्र|शेष क्षेत्र]] होता है, जो भागफल A/P के अंशों का क्षेत्र होता है, और A के किसी भी तत्व का इस शेष क्षेत्र में प्रतिबिंब होता है। इसके अतिरिक्त, जो तत्व वास्तव में P में हैं, वे बिल्कुल वही हैं जिनका प्रतिबिंब P पर लुप्त हो जाता है। इसलिए यदि हम A के किसी तत्व a से जुड़े मानचित्र के बारे में सोचते हैं: | ||
:<math>e_a \colon \bigl(P \in \operatorname{Spec}A \bigr) \mapsto \left(\frac{a \; \bmod P}{1} \in \operatorname{Frac}(A/P)\right)</math> | :<math>e_a \colon \bigl(P \in \operatorname{Spec}A \bigr) \mapsto \left(\frac{a \; \bmod P}{1} \in \operatorname{Frac}(A/P)\right)</math> | ||
( | (a का मूल्यांकन), जो प्रत्येक बिंदु को वहां के शेष क्षेत्र में अपना प्रतिबिंब निर्दिष्ट करता है, वर्णक्रम A पर फलन के रूप में (जिसके मान, स्वीकार्य रूप से, अलग-अलग बिंदुओं पर अलग-अलग क्षेत्रों में स्थित हैं), तो हमारे पास है | ||
:<math>e_a(P)=0 \Leftrightarrow P \in V(a)</math> | :<math>e_a(P)=0 \Leftrightarrow P \in V(a)</math> | ||
अधिक सामान्यतः, किसी भी आदर्श I के लिए V(I) वह सामान्य | अधिक सामान्यतः, किसी भी आदर्श I के लिए V(I) वह सामान्य समूह है जिस पर I के सभी कार्य लुप्त हो जाते हैं, जो अकारिक रूप से प्राचीन परिभाषा के समान है। वास्तव में, वे इस अर्थ में सहमत हैं कि जब A कुछ बीजगणितीय रूप से सवृत क्षेत्र k पर बहुपदों की वलय है, तो A के अधिकतम आदर्शों को (जैसा कि पिछले पैराग्राफ में बात की गई है) k के तत्वों के n-टुपल्स, उनके शेष क्षेत्र के साथ पहचाना जाता है। केवल k हैं, और मूल्यांकन मानचित्र वास्तव में संबंधित n-टुपल्स पर बहुपदों का मूल्यांकन हैं। जैसा कि ऊपर दिखाया गया है, प्राचीन परिभाषा अनिवार्य रूप से आधुनिक परिभाषा है जिसमें केवल अधिकतम आदर्शों पर विचार किया जाता है, इससे पता चलता है कि फलन के शून्य समूह के रूप में आधुनिक परिभाषा की व्याख्या प्राचीन परिभाषा से सहमत है जहां वे दोनों समझ में आते हैं। | ||
जिस तरह | जिस तरह वर्णक्रम सम्बंधित प्रकार की जगह लेता है, उसी तरह प्रोज निर्माण आधुनिक बीजगणितीय ज्यामिति में प्रक्षेपी प्रकारों की जगह लेता है। प्राचीन अर्थ की तरह, सम्बंधित प्रक्षेपी परिभाषा में जाने के लिए हमें केवल आदर्श को सजातीय आदर्श से बदलने की आवश्यकता है, चूँकि अप्रासंगिक अधिकतम आदर्श से जुड़ी एक जटिलता है, जिसकी चर्चा उद्धृत लेख में की गई है। | ||
===उदाहरण=== | ===उदाहरण=== | ||
[[Image:Spec Z.png|thumb| | [[Image:Spec Z.png|thumb|272x272px|दाएं का वर्णक्रम]]* स्पेक k, क्षेत्र का वर्णक्रम (गणित) k तत्व वाला संस्थितिक समष्टि है। | ||
* विशिष्टता ℤ, [[पूर्णांक]] | * विशिष्टता ℤ, [[पूर्णांक|पूर्णांकों]] के वर्णक्रम में प्रत्येक [[अभाज्य संख्या]] p के लिए अधिकतम आदर्श (p) ⊂ ℤ के अनुरूप सवृत बिंदु होता है, और शून्य के अनुरूप सिमित [[सामान्य बिंदु]] आदर्श (0) (अर्थात, जिसका समापन संपूर्ण स्थान होता है) होता है | तो वर्णक्रम ℤ के सवृत उपसमुच्चय वास्तव में संपूर्ण स्थान और सवृत बिंदुओं के परिमित समूह हैं। | ||
* विशिष्ट k[t], | * विशिष्ट k[t], क्षेत्र (गणित) k पर [[बहुपद वलय]] का वर्णक्रम: ऐसी बहुपद वलय को [[प्रमुख आदर्श डोमेन]] के रूप में जाना जाता है और अपरिवर्तनीय बहुपद k[t] के प्रमुख तत्व हैं। यदि k [[बीजगणितीय रूप से बंद|बीजगणितीय रूप से सवृत]] है, उदाहरण के लिए जटिल संख्याओं का क्षेत्र, तो अस्थिर बहुपद अपरिवर्तनीय है और यदि यह रैखिक है, तो k के कुछ तत्व a के लिए t - a के रूप में होता है। तो, वर्णक्रम में k के प्रत्येक तत्व के लिए सवृत बिंदु और एक सामान्य बिंदु होता है, जो शून्य आदर्श के अनुरूप होता है, और सवृत बिंदुओं का समूह ज़ारिस्की सांस्थिति से सुसज्जित [[एफ़िन लाइन|सम्बंधित रेखा]] k के साथ [[होम्योमॉर्फिक]] होता है। इस समरूपता के कारण, कुछ लेखक [[एफ़िन लाइन|सम्बंधित रेखा]] को k[t] का वर्णक्रम कहते हैं। यदि k को बीजगणितीय रूप से सवृत नहीं किया गया है, उदाहरण के लिए [[वास्तविक संख्या]]ओं का क्षेत्र, तो अरैखिक अपरिवर्तनीय बहुपदों के अस्तित्व के कारण चित्र अधिक जटिल हो जाता है। इस कथन में, वर्णक्रम में प्रत्येक मोनिक बहुपद अपरिवर्तनीय बहुपद के लिए सवृत बिंदु होता है, और शून्य आदर्श के अनुरूप एक सामान्य बिंदु होता है। उदाहरण के लिए, ℝ[t] के वर्णक्रम में सवृत बिंदु (x - a) सम्मिलित हैं, ℝ में a के लिए, सवृत बिंदु (x)<sup>2</sup> + px + q) जहां p, q ℝ में हैं और ऋणात्मक [[विभेदक]] p<sup>2</sup> − 4q < 0 के साथ हैं, और अंत में सामान्य बिंदु (0) होता है। किसी भी क्षेत्र के लिए, वर्णक्रम k[t] के सवृत उपसमुच्चय सवृत बिंदुओं और संपूर्ण स्थान के परिमित समूह हैं। (यह इस तथ्य से उत्पन्न होता है कि k[t] प्रमुख आदर्श डोमेन है, और, प्रमुख आदर्श डोमेन में, जिन प्रमुख आदर्शों में एक आदर्श होता है, वे आदर्श के जनक के अभाज्य गुणनखंडन के प्रमुख कारक होते हैं)। | ||
===अतिरिक्त गुण=== | ===अतिरिक्त गुण=== | ||
प्राचीन चित्र से नए तक सांस्थिति में सबसे नाटकीय परिवर्तन यह है कि बिंदु अब आवश्यक रूप से सवृत नहीं हैं; परिभाषा का विस्तार करके, ग्रोथेंडिक ने सामान्य बिंदु प्रस्तुत किए, जो अधिकतम समापन वाले बिंदु हैं, अर्थात न्यूनतम प्रमुख आदर्श हैं। सवृत बिंदु A के अधिकतम आदर्शों के अनुरूप हैं। चूँकि, वर्णक्रम और प्रक्षेप्य वर्णक्रम अभी भी T<sub>0</sub> हैं। रिक्त स्थान: दो बिंदु P, Q दिए गए हैं, जो A के अभाज्य आदर्श हैं, उनमें से कम से कम, मान लीजिए P, में दूसरा सम्मिलित नहीं है। तब D(Q) में P सम्मिलित है, परन्तु निश्चित रूप से, Q नहीं है। | |||
प्राचीन बीजगणितीय ज्यामिति की तरह, कोई भी वर्णक्रम या प्रक्षेपी वर्णक्रम (अर्ध) सघन होता है, और यदि प्रश्न में वलय नोथेरियन है तो स्थान नोथेरियन स्थान है। चूँकि, ये तथ्य विरोधाभासी हैं: हम सामान्यतौर पर[[ जुड़ा हुआ स्थान ]]के अतिरिक्त विवृत समूहों के सघन होने की आशा नहीं करते हैं, और सम्बंधित प्रकारों (उदाहरण के लिए, यूक्लिडियन समष्टि) के लिए हम समष्टि के सघन होने की आशा भी नहीं करते हैं। यह ज़ारिस्की सांस्थिति की ज्यामितीय अनुपयुक्तता का उदाहरण है। ग्रोथेंडिक ने योजना (गणित) (वास्तव में, योजनाओं के रूपवाद) के [[उचित रूपवाद]] की धारणा को परिभाषित करके इस समस्या को सिद्ध किया, जो सघनता के सहज विचार को पुनः प्राप्त करता है: प्रोज उचित है, परन्तु वर्णक्रम उचित नहीं है। | |||
==यह भी देखें== | ==यह भी देखें== | ||
Line 81: | Line 78: | ||
== उद्धरण == | == उद्धरण == | ||
{{reflist}} | {{reflist}} | ||
== संदर्भ == | == संदर्भ == | ||
{{refbegin}} | {{refbegin}} | ||
Line 102: | Line 97: | ||
*{{MathWorld|title=Zariski Topology|urlname=ZariskiTopology|author=Todd Rowland}} | *{{MathWorld|title=Zariski Topology|urlname=ZariskiTopology|author=Todd Rowland}} | ||
{{refend}} | {{refend}} | ||
[[Category:Created On 04/07/2023]] | [[Category:Created On 04/07/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:बीजगणितीय किस्में]] | |||
[[Category:योजना सिद्धांत]] | |||
[[Category:सामान्य टोपोलॉजी]] |
Latest revision as of 19:12, 12 July 2023
बीजगणितीय ज्यामिति और क्रमविनिमेय बीजगणित में, ज़ारिस्की सांस्थिति एक सांस्थिति (संरचना) है जिसे मुख्य रूप से इसके सवृत समूहों द्वारा परिभाषित किया जाता है। यह उन सांस्थिति से बहुत अलग है जो सामान्यतौर पर वास्तविक विश्लेषण या जटिल विश्लेषण में उपयोग की जाती हैं; विशेष रूप से, यह हॉसडॉर्फ़ स्थान नहीं है।[1] इस सांस्थिति को मुख्य रूप से ऑस्कर ज़ारिस्की द्वारा प्रस्तुत किया गया था और बाद में इसे सांस्थिति समष्टि (जिसे वलय का वर्णक्रम कहा जाता है) के प्रमुख आदर्शों के समूह बनाने के लिए सामान्यीकृत किया गया था।
ज़ारिस्की सांस्थिति बीजगणितीय विविधता का अध्ययन करने के लिए सांस्थिति के उपकरणों का उपयोग करने की अनुमति देती है, तब भी जब अंतर्निहित क्षेत्र (गणित) सांस्थिति क्षेत्र नहीं है। यह योजना सिद्धांत के मूल विचारों में से एक है, जो किसी को कई गुना सिद्धांत के समान सम्बंधित प्रकार को एक साथ जोड़कर सामान्य बीजगणितीय प्रकार का निर्माण करने की अनुमति देता है, जहां चार्ट (सांस्थिति) को एक साथ जोड़कर अनेक निर्माण किया जाता है, वास्तविक सम्बंधित रिक्त स्थान का विवृत उपसमुच्चय हैं।
बीजीय प्रकार की ज़ारिस्की सांस्थिति वह सांस्थिति है जिसके सवृत समूह के प्रकार के बीजगणितीय समूह होते हैं।[1] जटिल संख्याओं पर बीजगणितीय विविधता के कथन में, ज़ारिस्की सांस्थिति सामान्य सांस्थिति की तुलना में अधिक मोटे होती है, क्योंकि प्रत्येक बीजगणितीय समूह सामान्य सांस्थिति के लिए सवृत होता है।
एक क्रमविनिमेय वलय के प्रमुख आदर्शों के समूह के लिए ज़ारिस्की सांस्थिति का सामान्यीकरण हिल्बर्ट के नलस्टेलेंसत्ज़ से होता है, जो बीजगणितीय रूप से सवृत क्षेत्र पर परिभाषित सम्बंधित विविधता के बिंदुओं और इसके नियमित फलन के वलय के अधिकतम आदर्शों के बीच विशेषण सामान्यीकरण स्थापित करता है। यह क्रमविनिमेय वलय के अधिकतम आदर्शों के समूह पर ज़ारिस्की सांस्थिति को सांस्थिति के रूप में परिभाषित करने का सुझाव देता है, जैसे कि अधिकतम आदर्शों का समूह सवृत हो जाता है यदि और केवल तभी जब यह सभी अधिकतम आदर्शों का समूह होता है जिसमें दिया गया आदर्श होता है। ग्रोथेंडिक के योजना सिद्धांत का अन्य मूल विचार बिंदुओं के रूप में न केवल अधिकतम आदर्शों के अनुरूप सामान्य बिंदुओं पर विचार करना है, अपितु सभी (अघुलनशील) बीजगणितीय प्रकारों पर भी विचार करना है, जो प्रमुख आदर्शों के अनुरूप हैं। इस प्रकार क्रमविनिमेय वलय के प्रमुख आदर्शों (वर्णक्रम) के समूह पर 'ज़ारिस्की सांस्थिति' ऐसी सांस्थिति है कि प्रमुख आदर्शों का समूह सवृत हो जाता है केवल तभी जब यह सभी प्रमुख आदर्शों का समूह हो जिसमें एक निश्चित आदर्श होता है।
ज़ारिस्की सांस्थिति का प्रकार
प्राचीन बीजगणितीय ज्यामिति में (अर्थात, बीजगणितीय ज्यामिति का वह भाग जिसमें कोई योजना (गणित) का उपयोग नहीं करता है, जिसे 1960 के आसपास ग्रोथेंडिक द्वारा प्रस्तुत किया गया था), ज़ारिस्की सांस्थिति को बीजगणितीय प्रकारों पर परिभाषित किया गया है।[2] ज़रिस्की सांस्थिति, विविधता के बिंदुओं पर परिभाषित, सांस्थिति ऐसी है कि सवृत समूह विविधता का बीजगणितीय समूह है। चूंकि सबसे प्राथमिक बीजगणितीय किस्में सम्बंधित प्रकार और प्रक्षेप्य प्रकार हैं, इसलिए दोनों अर्थों में इस परिभाषा को अधिक स्पष्ट बनाना उपयोगी है। हम मानते हैं कि हम एक निश्चित, बीजगणितीय रूप से सवृत क्षेत्र k पर काम कर रहे हैं (प्राचीन बीजगणितीय ज्यामिति में, k सामान्यतौर पर जटिल संख्याओं का क्षेत्र है)।
सम्बंधित प्रकार
सबसे पहले, हम सम्बंधित समष्टि पर सांस्थिति को परिभाषित करते हैं गठित n-के तत्वों के टुपल्स k होता है। सांस्थिति को इसके विवृत समूहों के बदले में इसके सवृत समूहों को निर्दिष्ट करके परिभाषित किया गया है, और इन्हें सभी बीजगणितीय समूहों के रूप में लिया जाता है| अर्थात् सवृत समूह प्रकार के होते हैं
- V(S) = V((S)), जहां (S) S के तत्वों द्वारा उत्पन्न आदर्श (वलय सिद्धांत) है;
- बहुपद I, J के किन्हीं दो आदर्शों के लिए हमारे पास है
यह इस प्रकार है कि समूह V(S) के परिमित समूह और अपने ढंग से प्रतिच्छेद भी इस रूप के होते हैं, जिससे कि ये समूह सांस्थिति के सवृत समूह बनाते हैं (समकक्ष, उनके पूरक, D(S) को चिह्नित करते हैं और संस्थिति के प्रकार ही प्रमुख विवृत समूह कहलाते हैं)। यह ज़ारिस्की सांस्थिति पर है | यदि समान रूप से, यह जांचा जा सकता है कि:
- सम्बंधित समन्वय वलय के तत्व के तत्वों की तरह ही X पर भी कार्य करता है, पर कार्यों के रूप में कार्य करें; यहाँ, I(X) X पर लुप्त होने वाले सभी बहुपदों का आदर्श है।
- बहुपद S के किसी भी समूहों के लिए, T को A(X) में उनकी छवियों का समूह होने देना है। फिर X का उपसमुच्चय (ये चिन्ह मानक नहीं हैं) V(S) के X के साथ प्रतिच्छेद के बराबर है।
यह स्थापित करता है कि उपरोक्त समीकरण, स्पष्ट रूप से सवृत की परिभाषा का सामान्यीकरण स्थापित करता है उपरोक्त, किसी भी सम्बंधित प्रकार पर ज़ारिस्की सांस्थिति को परिभाषित करता है।
प्रक्षेपी प्रकार
उस n-आयामी प्रक्षेप्य स्थान को याद करें में अशून्य बिंदुओं के तुल्यता वर्गों के समूह के रूप में परिभाषित किया गया है दो बिंदुओं की पहचान करके जो k में अदिश गुणज से भिन्न होते हैं। बहुपद वलय के तत्व कार्य क्रियान्वित नहीं हैं क्योंकि किसी भी बिंदु के कई प्रतिनिधि होते हैं जो बहुपद में अलग-अलग मान उत्पन्न करते हैं; चूँकि, सजातीय बहुपदों के लिए किसी दिए गए प्रक्षेप्य बिंदु पर अशून्य या शून्य मान होने की स्थिति अच्छी तरह से परिभाषित है क्योंकि अदिश गुणक बहुपद से बाहर हैं। इसलिए, यदि S सजातीय बहुपदों का कोई समुच्चय है तो हम उचित रूप से इसके बारे में बात कर सकते हैं
उपरोक्त समान तथ्य इन समूहों के लिए स्थापित किए जा सकते हैं, सिवाय इसके कि आदर्श शब्द को सजातीय आदर्श वाक्यांश द्वारा प्रतिस्थापित किया जाना चाहिए, जिससे कि V(S), सजातीय बहुपदों के समूह S के लिए, सांस्थिति को परिभाषित करता है। जैसा कि ऊपर बताया गया है, इन समूहों के पूरकों को D(S) दर्शाया गया है, या, यदि भ्रम उत्पन्न होने की संभावना है, तो D′(S) दर्शाया गया है।
प्रक्षेपि ज़ारिस्की सांस्थिति को प्रक्षेपि बीजगणितीय समूहों के लिए परिभाषित किया गया है, जैसे कि सबंधित उपसमष्टि सांस्थिति लेकर, सबंधित बीजगणितीय समूहों के लिए परिभाषित किया गया है। इसी प्रकार, यह दिखाया जा सकता है कि इस सांस्थिति को उपरोक्त सूत्र के अनुसार, प्रक्षेप्य समन्वय वलय के तत्वों के समूह द्वारा आंतरिक रूप से परिभाषित किया गया है।
गुण
ज़ारिस्की सांस्थिति की एक महत्वपूर्ण गुण यह है कि उनके पास एक आधार (टोपोलॉजी) है जिसमें सरल तत्व सम्मिलित हैं, अर्थात् D(f) व्यक्तिगत बहुपदों f के लिए (या प्रक्षेप्य प्रकारों, सजातीय बहुपदों के लिए) होता है। ये आधार बनाते हैं जो ऊपर दिए गए दो ज़ारिस्की-सवृत समूहों के प्रतिच्छेद के सूत्र से अनुसरण करता है (इसे जनक द्वारा उत्पन्न (S) प्रमुख आदर्शों पर बार-बार क्रियन्वित करता है) | इस आधार में विवृत समुच्चय को विशिष्ट या मूल मुक्त समुच्चय कहा जाता है। इस गुण का महत्व विशेष रूप से सम्बंधित योजना की परिभाषा में इसके उपयोग से उत्पन्न होता है।
हिल्बर्ट के आधार प्रमेय और नोथेरियन वलय के कुछ प्राथमिक गुणों के अनुसार, प्रत्येक सम्बंधित या प्रक्षेप्य समन्वय वलय नोथेरियन है। परिणामस्वरूप, ज़ारिस्की सांस्थिति के साथ सम्बंधित या प्रक्षेपी समष्टि नोथेरियन टोपोलॉजिकल समष्टि हैं, जिसका अर्थ है कि इन समष्टि का कोई भी सवृत उपसमुच्चय सघन स्थान है।
चूँकि, परिमित बीजगणितीय समूहों को छोड़कर, कोई भी बीजगणितीय समूह कभी भी हॉसडॉर्फ समष्टि नहीं होता है। पुराने संस्थितिकी साहित्य इसलिए आधुनिक अर्थों में सघनता को बीजगणितीय ज्यामिति में अर्ध सघनता कहा जाता है। चूँकि, हर बिंदु (a1, ..., an) बहुपद x1 का शून्य समुच्चय है- a1, ..., xn- an, अंक सवृत हैं और इसलिए प्रत्येक प्रकार T1 स्थान को संतुष्ट करती है |
प्रकारों का प्रत्येक नियमित मानचित्र (बीजगणितीय ज्यामिति) ज़ारिस्की सांस्थिति में निरंतर कार्य (संस्थिति) है। वास्तव में, ज़ारिस्की सांस्थिति (सबसे कम विवृत समूह के साथ) सबसे कमजोर सांस्थिति है | जिसमें यह सत्य है और जिसमें बिंदु सवृत हैं। इसे यह देखकर सरलता से सत्यापित किया जा सकता है कि ज़ारिस्की-सवृत समूह बहुपद फलन द्वारा 0 की व्युत्क्रम छवियों के प्रतिच्छेद हैं, जिन्हें नियमित मानचित्र माना जाता है |
वलय का वर्णक्रम
आधुनिक बीजगणितीय ज्यामिति में, बीजगणितीय विविधता को अधिकांशतः इसकी संबद्ध योजना (गणित) द्वारा दर्शाया जाता है, जो संस्थितिकी समष्टि (अतिरिक्त संरचनाओं से सुसज्जित) है जो स्थानीय रूप से वलय के वर्णक्रम के लिए होमोमोर्फिक है।[3] क्रमविनिमेय वलय A का वर्णक्रम दर्शाया गया है वर्णक्रम A, A के प्रमुख आदर्शों का समूह है, जो 'ज़ारिस्की सांस्थिति' से सुसज्जित है, जिसके लिए सवृत समूह हैं |
जहां मैं आदर्श हूं |
प्राचीन चित्र के साथ संबंध देखने के लिए, ध्यान दें कि बहुपदों के किसी भी समूह S (बीजगणितीय रूप से सवृत क्षेत्र पर) के लिए, यह हिल्बर्ट के नुलस्टलेसट्ज़ से निम्नानुसार है कि V(S) के बिंदु (पुराने अर्थ में) बिल्कुल टुपल्स हैं (a1, ..., an) इस प्रकार कि बहुपद x द्वारा उत्पन्न आदर्श x1 _ a1,....xn _ an है; इसके अतिरिक्त, ये अधिकतम आदर्श हैं और कमज़ोर नुलस्टलेसट्ज़ द्वारा, किसी भी सम्बंधित समन्वय वलय का आदर्श अधिकतम होता है सिर्फ यह इस रूप का हो। इस प्रकार, V(S) S युक्त अधिकतम आदर्शों के समान है। वर्णक्रम को परिभाषित करने में ग्रोथेंडिक का नवीनीकरण अधिकतम आदर्शों को सभी प्रमुख आदर्शों के साथ प्रतिस्थापित करना था; इस सूत्रीकरण में इस अवलोकन को वलय के वर्णक्रम में सवृत समूह की परिभाषा के लिए सामान्यीकृत करना स्वाभाविक है।
एक और प्रकार, संभवतः मूल के समान, आधुनिक परिभाषा की व्याख्या करने के लिए यह आभास करना है कि A के तत्वों को वास्तव में A के प्रमुख आदर्शों पर फलन के रूप में सोचा जा सकता है; अर्थात्, वर्णक्रम A पर फलन करता है। बस, किसी भी अभाज्य आदर्श P में संगत शेष क्षेत्र होता है, जो भागफल A/P के अंशों का क्षेत्र होता है, और A के किसी भी तत्व का इस शेष क्षेत्र में प्रतिबिंब होता है। इसके अतिरिक्त, जो तत्व वास्तव में P में हैं, वे बिल्कुल वही हैं जिनका प्रतिबिंब P पर लुप्त हो जाता है। इसलिए यदि हम A के किसी तत्व a से जुड़े मानचित्र के बारे में सोचते हैं:
(a का मूल्यांकन), जो प्रत्येक बिंदु को वहां के शेष क्षेत्र में अपना प्रतिबिंब निर्दिष्ट करता है, वर्णक्रम A पर फलन के रूप में (जिसके मान, स्वीकार्य रूप से, अलग-अलग बिंदुओं पर अलग-अलग क्षेत्रों में स्थित हैं), तो हमारे पास है
अधिक सामान्यतः, किसी भी आदर्श I के लिए V(I) वह सामान्य समूह है जिस पर I के सभी कार्य लुप्त हो जाते हैं, जो अकारिक रूप से प्राचीन परिभाषा के समान है। वास्तव में, वे इस अर्थ में सहमत हैं कि जब A कुछ बीजगणितीय रूप से सवृत क्षेत्र k पर बहुपदों की वलय है, तो A के अधिकतम आदर्शों को (जैसा कि पिछले पैराग्राफ में बात की गई है) k के तत्वों के n-टुपल्स, उनके शेष क्षेत्र के साथ पहचाना जाता है। केवल k हैं, और मूल्यांकन मानचित्र वास्तव में संबंधित n-टुपल्स पर बहुपदों का मूल्यांकन हैं। जैसा कि ऊपर दिखाया गया है, प्राचीन परिभाषा अनिवार्य रूप से आधुनिक परिभाषा है जिसमें केवल अधिकतम आदर्शों पर विचार किया जाता है, इससे पता चलता है कि फलन के शून्य समूह के रूप में आधुनिक परिभाषा की व्याख्या प्राचीन परिभाषा से सहमत है जहां वे दोनों समझ में आते हैं।
जिस तरह वर्णक्रम सम्बंधित प्रकार की जगह लेता है, उसी तरह प्रोज निर्माण आधुनिक बीजगणितीय ज्यामिति में प्रक्षेपी प्रकारों की जगह लेता है। प्राचीन अर्थ की तरह, सम्बंधित प्रक्षेपी परिभाषा में जाने के लिए हमें केवल आदर्श को सजातीय आदर्श से बदलने की आवश्यकता है, चूँकि अप्रासंगिक अधिकतम आदर्श से जुड़ी एक जटिलता है, जिसकी चर्चा उद्धृत लेख में की गई है।
उदाहरण
* स्पेक k, क्षेत्र का वर्णक्रम (गणित) k तत्व वाला संस्थितिक समष्टि है।
- विशिष्टता ℤ, पूर्णांकों के वर्णक्रम में प्रत्येक अभाज्य संख्या p के लिए अधिकतम आदर्श (p) ⊂ ℤ के अनुरूप सवृत बिंदु होता है, और शून्य के अनुरूप सिमित सामान्य बिंदु आदर्श (0) (अर्थात, जिसका समापन संपूर्ण स्थान होता है) होता है | तो वर्णक्रम ℤ के सवृत उपसमुच्चय वास्तव में संपूर्ण स्थान और सवृत बिंदुओं के परिमित समूह हैं।
- विशिष्ट k[t], क्षेत्र (गणित) k पर बहुपद वलय का वर्णक्रम: ऐसी बहुपद वलय को प्रमुख आदर्श डोमेन के रूप में जाना जाता है और अपरिवर्तनीय बहुपद k[t] के प्रमुख तत्व हैं। यदि k बीजगणितीय रूप से सवृत है, उदाहरण के लिए जटिल संख्याओं का क्षेत्र, तो अस्थिर बहुपद अपरिवर्तनीय है और यदि यह रैखिक है, तो k के कुछ तत्व a के लिए t - a के रूप में होता है। तो, वर्णक्रम में k के प्रत्येक तत्व के लिए सवृत बिंदु और एक सामान्य बिंदु होता है, जो शून्य आदर्श के अनुरूप होता है, और सवृत बिंदुओं का समूह ज़ारिस्की सांस्थिति से सुसज्जित सम्बंधित रेखा k के साथ होम्योमॉर्फिक होता है। इस समरूपता के कारण, कुछ लेखक सम्बंधित रेखा को k[t] का वर्णक्रम कहते हैं। यदि k को बीजगणितीय रूप से सवृत नहीं किया गया है, उदाहरण के लिए वास्तविक संख्याओं का क्षेत्र, तो अरैखिक अपरिवर्तनीय बहुपदों के अस्तित्व के कारण चित्र अधिक जटिल हो जाता है। इस कथन में, वर्णक्रम में प्रत्येक मोनिक बहुपद अपरिवर्तनीय बहुपद के लिए सवृत बिंदु होता है, और शून्य आदर्श के अनुरूप एक सामान्य बिंदु होता है। उदाहरण के लिए, ℝ[t] के वर्णक्रम में सवृत बिंदु (x - a) सम्मिलित हैं, ℝ में a के लिए, सवृत बिंदु (x)2 + px + q) जहां p, q ℝ में हैं और ऋणात्मक विभेदक p2 − 4q < 0 के साथ हैं, और अंत में सामान्य बिंदु (0) होता है। किसी भी क्षेत्र के लिए, वर्णक्रम k[t] के सवृत उपसमुच्चय सवृत बिंदुओं और संपूर्ण स्थान के परिमित समूह हैं। (यह इस तथ्य से उत्पन्न होता है कि k[t] प्रमुख आदर्श डोमेन है, और, प्रमुख आदर्श डोमेन में, जिन प्रमुख आदर्शों में एक आदर्श होता है, वे आदर्श के जनक के अभाज्य गुणनखंडन के प्रमुख कारक होते हैं)।
अतिरिक्त गुण
प्राचीन चित्र से नए तक सांस्थिति में सबसे नाटकीय परिवर्तन यह है कि बिंदु अब आवश्यक रूप से सवृत नहीं हैं; परिभाषा का विस्तार करके, ग्रोथेंडिक ने सामान्य बिंदु प्रस्तुत किए, जो अधिकतम समापन वाले बिंदु हैं, अर्थात न्यूनतम प्रमुख आदर्श हैं। सवृत बिंदु A के अधिकतम आदर्शों के अनुरूप हैं। चूँकि, वर्णक्रम और प्रक्षेप्य वर्णक्रम अभी भी T0 हैं। रिक्त स्थान: दो बिंदु P, Q दिए गए हैं, जो A के अभाज्य आदर्श हैं, उनमें से कम से कम, मान लीजिए P, में दूसरा सम्मिलित नहीं है। तब D(Q) में P सम्मिलित है, परन्तु निश्चित रूप से, Q नहीं है।
प्राचीन बीजगणितीय ज्यामिति की तरह, कोई भी वर्णक्रम या प्रक्षेपी वर्णक्रम (अर्ध) सघन होता है, और यदि प्रश्न में वलय नोथेरियन है तो स्थान नोथेरियन स्थान है। चूँकि, ये तथ्य विरोधाभासी हैं: हम सामान्यतौर परजुड़ा हुआ स्थान के अतिरिक्त विवृत समूहों के सघन होने की आशा नहीं करते हैं, और सम्बंधित प्रकारों (उदाहरण के लिए, यूक्लिडियन समष्टि) के लिए हम समष्टि के सघन होने की आशा भी नहीं करते हैं। यह ज़ारिस्की सांस्थिति की ज्यामितीय अनुपयुक्तता का उदाहरण है। ग्रोथेंडिक ने योजना (गणित) (वास्तव में, योजनाओं के रूपवाद) के उचित रूपवाद की धारणा को परिभाषित करके इस समस्या को सिद्ध किया, जो सघनता के सहज विचार को पुनः प्राप्त करता है: प्रोज उचित है, परन्तु वर्णक्रम उचित नहीं है।
यह भी देखें
उद्धरण
- ↑ 1.0 1.1 Hulek 2003, p. 19, 1.1.1..
- ↑ Mumford 1999.
- ↑ Dummit & Foote 2004.
संदर्भ
- Dummit, D. S.; Foote, R. (2004). Abstract Algebra (3 ed.). Wiley. pp. 71–72. ISBN 9780471433347.
- Hartshorne, Robin (1977), Algebraic Geometry, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157, OCLC 13348052
- Hulek, Klaus (2003). Elementary Algebraic Geometry. AMS. ISBN 978-0-8218-2952-3.
- Mumford, David (1999) [1967]. The Red Book of Varieties and Schemes. Lecture Notes in Mathematics. Vol. 1358 (expanded, Includes Michigan Lectures (1974) on Curves and their Jacobians ed.). Berlin, New York: Springer-Verlag. doi:10.1007/b62130. ISBN 978-3-540-63293-1. MR 1748380.
- Todd Rowland. "Zariski Topology". MathWorld.