अवकल बीजगणित: Difference between revisions

From Vigyanwiki
Line 2: Line 2:
{{about|algebraic study of differential equations|the concept in homological algebra|Differential graded algebra}}
{{about|algebraic study of differential equations|the concept in homological algebra|Differential graded algebra}}


गणित में, विभेदक [[बीजगणित]], मोटे तौर पर, गणित का वह क्षेत्र है जिसमें समाधान की गणना किए बिना [[अंतर समीकरण|विभेदक समीकरण]] और संक्रियक के गुणों को प्राप्त करने के मद्देनजर बीजगणित के रूप में विभेदक समीकरणों और विभेदक संक्रियक का अध्ययन सम्मिलित है, उसी तरह जैसे [[बहुपद बीजगणित]] का उपयोग किया जाता है।  बीजगणितीय किस्मों का अध्ययन, जो बहुपद समीकरणों की प्रणालियों के समाधान समूह हैं। [[वेइल बीजगणित|वेल बीजगणित]] और ली बीजगणित को विभेदक बीजगणित से संबंधित माना जा सकता है।
गणित में, विभेदक [[बीजगणित]], मोटे तौर पर, गणित का वह क्षेत्र है जिसमें समाधान की गणना किए बिना [[अंतर समीकरण|विभेदक समीकरण]] और संक्रियक के गुणों को प्राप्त करने के मद्देनजर बीजगणित के रूप में विभेदक समीकरणों और विभेदक संक्रियक का अध्ययन सम्मिलित है, उसी तरह जैसे [[बहुपद बीजगणित]] का उपयोग किया जाता है।  बीजगणितीय प्रकारों का अध्ययन, जो बहुपद समीकरणों की प्रणालियों के समाधान समूह हैं। [[वेइल बीजगणित|वेल बीजगणित]] और ली बीजगणित को विभेदक बीजगणित से संबंधित माना जा सकता है।


अधिक विशेष रूप से, विभेदक बीजगणित 1950 में जोसेफ रिट द्वारा पेश किए गए सिद्धांत को संदर्भित करता है, जिसमें विभेदक वलय, विभेदक क्षेत्र और विभेदक बीजगणित वलय, क्षेत्र और बीजगणित हैं जो कि कई व्युत्पत्तियों से सुसज्जित हैं।
अधिक विशेष रूप से, विभेदक बीजगणित 1950 में जोसेफ रिट द्वारा पेश किए गए सिद्धांत को संदर्भित करता है, जिसमें विभेदक वलय, विभेदक क्षेत्र और विभेदक बीजगणित वलय, क्षेत्र और बीजगणित हैं जो कि कई व्युत्पत्तियों से सुसज्जित हैं।
Line 15: Line 15:
===परिभाषा===
===परिभाषा===


<em>व्युत्पत्ति</em>  <math display="inline"> \partial </math>  वलय पर <math display="inline"> \mathcal{R} </math> एक फ़ंक्शन है  <math>\partial : R \to R\,</math> ऐसा कि
<em>व्युत्पत्ति</em>  <math display="inline"> \partial </math>  वलय पर <math display="inline"> \mathcal{R} </math> एक फलन है  <math>\partial : R \to R\,</math> ऐसा कि
<math display=block>\partial(r_1 + r_2) = \partial r_1 + \partial r_2</math>
<math display=block>\partial(r_1 + r_2) = \partial r_1 + \partial r_2</math>
और
और
Line 37: Line 37:
* अगर <math>u_1, \ldots, u_n</math> में इकाइयाँ <math>R</math> हैं, और <math>n_1, \ldots, n_n</math> पूर्णांक हैं, किसी के पास <em>[[लघुगणकीय व्युत्पन्न]] पहचान है:</em> <math display =block> \frac{\delta (u_{1}^{e_{1}} \ldots u_{n}^{e_{n}})}{u_{1}^{e_{1}} \ldots u_{n}^{e_{n}}} = e_{1} \frac{\delta( u_{1} ) }{u_{1}} + \dots + e_{n} \frac{\delta( u_{n} ) }{u_{n}}. </math>
* अगर <math>u_1, \ldots, u_n</math> में इकाइयाँ <math>R</math> हैं, और <math>n_1, \ldots, n_n</math> पूर्णांक हैं, किसी के पास <em>[[लघुगणकीय व्युत्पन्न]] पहचान है:</em> <math display =block> \frac{\delta (u_{1}^{e_{1}} \ldots u_{n}^{e_{n}})}{u_{1}^{e_{1}} \ldots u_{n}^{e_{n}}} = e_{1} \frac{\delta( u_{1} ) }{u_{1}} + \dots + e_{n} \frac{\delta( u_{n} ) }{u_{n}}. </math>
===उच्च क्रम व्युत्पत्तियाँ===
===उच्च क्रम व्युत्पत्तियाँ===
एक <em>व्युत्पत्ति संचालिका</em> या <em>उच्च क्रम व्युत्पत्ति</em>{{citation needed|reason=It is unclear what is the common name in the literature|date=March 2023}} कई व्युत्पत्तियों की [[कार्य संरचना|संरचना]] है। जैसा कि एक विभेदक वलय की व्युत्पत्तियों को परिवर्तित किया जाना चाहिए, व्युत्पत्तियों का क्रम तात्पर्य नहीं रखता है, और एक व्युत्पत्ति संक्रियक को इस प्रकार लिखा जा सकता है<math display= block> \delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n},</math>जहाँ <math>\delta_1, \ldots, \delta_n</math> विचाराधीन व्युत्पत्तियां हैं, <math>e_1, \ldots, e_n</math> गैर-ऋणात्मक पूर्णांक हैं, और किसी व्युत्पत्ति का घातांक यह दर्शाता है कि संक्रियक में यह व्युत्पत्ति कितनी बार बनाई गई है।
एक <em>व्युत्पत्ति संचालिका</em> या <em>उच्च क्रम व्युत्पत्ति</em>{{citation needed|reason=It is unclear what is the common name in the literature|date=March 2023}} कई व्युत्पत्तियों की [[कार्य संरचना|संरचना]] है। जैसा कि एक विभेदक वलय की व्युत्पत्तियों को परिवर्तित किया जाना चाहिए, व्युत्पत्तियों का क्रम तात्पर्य नहीं रखता है, और एक व्युत्पत्ति संक्रियक को इस प्रकार लिखा जा सकता है<math display= block> \delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n},</math>जहाँ <math>\delta_1, \ldots, \delta_n</math> विचाराधीन व्युत्पत्तियां हैं, <math>e_1, \ldots, e_n</math> अतिरिक्त-ऋणात्मक पूर्णांक हैं, और किसी व्युत्पत्ति का घातांक यह दर्शाता है कि संक्रियक में यह व्युत्पत्ति कितनी बार बनाई गई है।




योग <math>o=e_1+ \cdots +e_n</math> व्युत्पत्ति का क्रम कहलाता है। अगर <math>o=1</math> व्युत्पत्ति संचालिका मूल व्युत्पत्तियों में से एक है। अगर <math>o=0</math>, एक में पहचान फ़ंक्शन होता है, जिसे सामान्यतः क्रम शून्य का अद्वितीय व्युत्पत्ति संक्रियक माना जाता है। इन सम्मेलनों के साथ, व्युत्पत्ति संचालक विचाराधीन व्युत्पत्ति के समूह पर एक मुक्त क्रमविनिमेय मोनोइड बनाते हैं।
योग <math>o=e_1+ \cdots +e_n</math> व्युत्पत्ति का क्रम कहलाता है। अगर <math>o=1</math> व्युत्पत्ति संचालिका मूल व्युत्पत्तियों में से एक है। अगर <math>o=0</math>, एक में पहचान फलन होता है, जिसे सामान्यतः क्रम शून्य का अद्वितीय व्युत्पत्ति संक्रियक माना जाता है। इन सम्मेलनों के साथ, व्युत्पत्ति संचालक विचाराधीन व्युत्पत्ति के समूह पर एक मुक्त क्रमविनिमेय मोनोइड बनाते हैं।


किसी तत्व का व्युत्पन्न <math>x</math> विभेदक वलय <math>x</math> का व्युत्पत्ति संक्रियक का अनुप्रयोग  है अर्थात्, उपरोक्त संकेतन <math>\delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n}(x).</math> के साथ है,  एक <em>उचित व्युत्पन्न</em>  सकारात्मक क्रम का व्युत्पन्न है।{{sfn|Kolchin |1973}}{{rp|58–59}}
किसी तत्व का व्युत्पन्न <math>x</math> विभेदक वलय <math>x</math> का व्युत्पत्ति संक्रियक का अनुप्रयोग  है अर्थात्, उपरोक्त संकेतन <math>\delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n}(x).</math> के साथ है,  एक <em>उचित व्युत्पन्न</em>  सकारात्मक क्रम का व्युत्पन्न है।{{sfn|Kolchin |1973}}{{rp|58–59}}
Line 49: Line 49:
विभेदक आदर्श का <em>मूलांक</em>  बीजगणितीय आदर्श के रूप में उसके मूलांक के समान होता है, अर्थात, वलय तत्वों का समूह जिनकी आदर्श में शक्ति होती है। विभेदक आदर्श का मूलांक भी विभेदक आदर्श है। रेडिकल या पूर्ण विभेदक आदर्श विभेदक आदर्श है जो इसके रेडिकल के बराबर होता है।{{sfn|Sit|2002}}{{rp|3–4}} एक अभाज्य विभेदक आदर्श एक विभेदक विचारधारा है जो सामान्य अर्थों में अभाज्य आदर्श है; अर्थात्, यदि कोई उत्पाद आदर्श से संबंधित है, तो कम से कम एक कारक आदर्श से संबंधित है। एक अभाज्य विभेदक आदर्श हमेशा एक मूल विभेदक आदर्श होता है।
विभेदक आदर्श का <em>मूलांक</em>  बीजगणितीय आदर्श के रूप में उसके मूलांक के समान होता है, अर्थात, वलय तत्वों का समूह जिनकी आदर्श में शक्ति होती है। विभेदक आदर्श का मूलांक भी विभेदक आदर्श है। रेडिकल या पूर्ण विभेदक आदर्श विभेदक आदर्श है जो इसके रेडिकल के बराबर होता है।{{sfn|Sit|2002}}{{rp|3–4}} एक अभाज्य विभेदक आदर्श एक विभेदक विचारधारा है जो सामान्य अर्थों में अभाज्य आदर्श है; अर्थात्, यदि कोई उत्पाद आदर्श से संबंधित है, तो कम से कम एक कारक आदर्श से संबंधित है। एक अभाज्य विभेदक आदर्श हमेशा एक मूल विभेदक आदर्श होता है।


रिट की एक खोज यह है कि, हालांकि बीजगणित का शास्त्रीय सिद्धांत विभेदक आदर्शों के लिए काम नहीं करता है, लेकिन इसका एक बड़ा हिस्सा कट्टरपंथी विभेदक आदर्शों तक बढ़ाया जा सकता है, और यह उन्हें विभेदक बीजगणित में मौलिक बनाता है।
रिट की एक खोज यह है कि, हालांकि बीजगणित का उत्कृष्ट सिद्धांत विभेदक आदर्शों के लिए काम नहीं करता है, लेकिन इसका एक बड़ा हिस्सा कट्टरपंथी विभेदक आदर्शों तक बढ़ाया जा सकता है, और यह उन्हें विभेदक बीजगणित में मौलिक बनाता है।


विभेदक आदर्शों के किसी भी परिवार का प्रतिच्छेदन एक विभेदक आदर्श है, और मूल विभेदक आदर्शों के किसी भी परिवार का प्रतिच्छेदन एक मूल विभेदक आदर्श है।{{sfn|Kolchin |1973}}{{rp|61–62}}
विभेदक आदर्शों के किसी भी परिवार का प्रतिच्छेदन एक विभेदक आदर्श है, और मूल विभेदक आदर्शों के किसी भी परिवार का प्रतिच्छेदन एक मूल विभेदक आदर्श है।{{sfn|Kolchin |1973}}{{rp|61–62}}
Line 57: Line 57:
द्वारा उत्पन्न विभेदक आदर्श <math>S</math> के तत्वों के परिमित रैखिक संयोजनों का समुच्चय है <math>S</math> और इन तत्वों के किसी भी क्रम के व्युत्पन्न; इसे आमतौर पर इस रूप में दर्शाया जाता है <math>[S].</math> कब <math>S</math> परिमित है, <math>[S]</math> आमतौर पर बीजीय आदर्श के रूप में [[अंतिम रूप से उत्पन्न आदर्श]] नहीं होता है।
द्वारा उत्पन्न विभेदक आदर्श <math>S</math> के तत्वों के परिमित रैखिक संयोजनों का समुच्चय है <math>S</math> और इन तत्वों के किसी भी क्रम के व्युत्पन्न; इसे आमतौर पर इस रूप में दर्शाया जाता है <math>[S].</math> कब <math>S</math> परिमित है, <math>[S]</math> आमतौर पर बीजीय आदर्श के रूप में [[अंतिम रूप से उत्पन्न आदर्श]] नहीं होता है।


द्वारा उत्पन्न मौलिक विभेदक आदर्श <math>S</math> सामान्यतः के रूप में दर्शाया जाता है <math>\{S\}.</math> अन्य दो मामलों की तरह इसके तत्व को चित्रित करने का कोई ज्ञात तरीका नहीं है।
द्वारा उत्पन्न मौलिक विभेदक आदर्श <math>S</math> सामान्यतः के रूप में दर्शाया जाता है <math>\{S\}.</math> अन्य दो वाद की तरह इसके तत्व को चित्रित करने का कोई ज्ञात तरीका नहीं है।


==विभेदक बहुपद==
==विभेदक बहुपद==
Line 72: Line 72:
दूसरा तथ्य यह है कि यदि क्षेत्र <math>K</math> इसमें परिमेय संख्याओं का क्षेत्र, विभेदक बहुपदों के वलय सम्मिलित हैं <math>K</math> मूल विभेदक आदर्शों पर [[आरोही श्रृंखला की स्थिति]] को संतुष्ट करें। यह रिट का प्रमेय इसके सामान्यीकरण से निहित है, जिसे कभी-कभी <em>रिट-रौडेनबश आधार प्रमेय</em> भी कहा जाता है जो दावा करता है कि यदि <math>R</math> एक <em>रिट बीजगणित</em> है (वह, एक विभेदक वलय है जिसमें तर्कसंगत संख्याओं का क्षेत्र सम्मिलित है),{{sfn|Kaplansky|1976}}{{rp|12}} जो कट्टरपंथी विभेदक आदर्शों पर आरोही श्रृंखला की स्थिति को संतुष्ट करता है, फिर विभेदक बहुपद की वलय <math>R\{y\}</math> एक ही संपत्ति को संतुष्ट करता है (प्रमेय को पुनरावृत्त रूप से लागू करके एक व्यक्ति अविभाज्य से बहुभिन्नरूपी मामले में गुजरता है)।{{sfn|Kaplansky|1976}}{{rp|45,48}}{{rp|56–57}}{{sfn|Kolchin |1973}}{{rp|126–129}}
दूसरा तथ्य यह है कि यदि क्षेत्र <math>K</math> इसमें परिमेय संख्याओं का क्षेत्र, विभेदक बहुपदों के वलय सम्मिलित हैं <math>K</math> मूल विभेदक आदर्शों पर [[आरोही श्रृंखला की स्थिति]] को संतुष्ट करें। यह रिट का प्रमेय इसके सामान्यीकरण से निहित है, जिसे कभी-कभी <em>रिट-रौडेनबश आधार प्रमेय</em> भी कहा जाता है जो दावा करता है कि यदि <math>R</math> एक <em>रिट बीजगणित</em> है (वह, एक विभेदक वलय है जिसमें तर्कसंगत संख्याओं का क्षेत्र सम्मिलित है),{{sfn|Kaplansky|1976}}{{rp|12}} जो कट्टरपंथी विभेदक आदर्शों पर आरोही श्रृंखला की स्थिति को संतुष्ट करता है, फिर विभेदक बहुपद की वलय <math>R\{y\}</math> एक ही संपत्ति को संतुष्ट करता है (प्रमेय को पुनरावृत्त रूप से लागू करके एक व्यक्ति अविभाज्य से बहुभिन्नरूपी मामले में गुजरता है)।{{sfn|Kaplansky|1976}}{{rp|45,48}}{{rp|56–57}}{{sfn|Kolchin |1973}}{{rp|126–129}}


इस नोथेरियन संपत्ति का तात्पर्य है कि, विभेदक बहुपद की एक वलय में, प्रत्येक कट्टरपंथी विभेदक आदर्श परिमित रूप से उत्पन्न होता है, इस अर्थ में कि यह सबसे छोटा कट्टरपंथी विभेदक आदर्श है जिसमें बहुपद का एक सीमित समूह होता है।{{sfn|Marker|2000}} यह जनरेटर के ऐसे सीमित समूह द्वारा एक कट्टरपंथी विभेदक आदर्श का प्रतिनिधित्व करने और इन आदर्शों के साथ कंप्यूटिंग की अनुमति देता है। हालाँकि, बीजगणितीय मामले की कुछ सामान्य गणनाओं को बढ़ाया नहीं जा सकता है। विशेष रूप से दो रेडिकल विभेदक आदर्शों की समानता के रेडिकल विभेदक आदर्श में किसी तत्व की सदस्यता का परीक्षण करने के लिए कोई एल्गोरिदम ज्ञात नहीं है।
इस नोथेरियन संपत्ति का तात्पर्य है कि, विभेदक बहुपद की एक वलय में, प्रत्येक कट्टरपंथी विभेदक आदर्श परिमित रूप से उत्पन्न होता है, इस अर्थ में कि यह सबसे छोटा कट्टरपंथी विभेदक आदर्श है जिसमें बहुपद का एक सीमित समूह होता है।{{sfn|Marker|2000}} यह जनरेटर के ऐसे सीमित समूह द्वारा एक कट्टरपंथी विभेदक आदर्श का प्रतिनिधित्व करने और इन आदर्शों के साथ कंप्यूटिंग की अनुमति देता है। हालाँकि, बीजगणितीय मामले की कुछ सामान्य गणनाओं को बढ़ाया नहीं जा सकता है। विशेष रूप से दो रेडिकल विभेदक आदर्शों की समानता के रेडिकल विभेदक आदर्श में किसी तत्व की सदस्यता का परीक्षण करने के लिए कोई कलन विधि ज्ञात नहीं है।


नोथेरियन संपत्ति का एक और परिणाम यह है कि एक कट्टरपंथी विभेदक आदर्श को विशिष्ट रूप से प्रधान विभेदक आदर्शों की एक सीमित संख्या के प्रतिच्छेदन के रूप में व्यक्त किया जा सकता है, जिसे आदर्श के <em>आवश्यक प्रधान घटक</em> कहा जाता है।{{sfn|Hubert|2002}}{{rp|8}} <!--
नोथेरियन संपत्ति का एक और परिणाम यह है कि एक कट्टरपंथी विभेदक आदर्श को विशिष्ट रूप से प्रधान विभेदक आदर्शों की एक सीमित संख्या के प्रतिच्छेदन के रूप में व्यक्त किया जा सकता है, जिसे आदर्श के <em>आवश्यक प्रधान घटक</em> कहा जाता है।{{sfn|Hubert|2002}}{{rp|8}} <!--
Line 84: Line 84:


==उन्मूलन विधियाँ==
==उन्मूलन विधियाँ==
<em>[[उन्मूलन सिद्धांत]]</em> एल्गोरिदम हैं जो विभेदक समीकरणों के समूह से डेरिवेटिव के एक निर्दिष्ट समूह को प्राथमिकता से हटा देते हैं, जो आमतौर पर विभेदक समीकरणों के समूह को बेहतर ढंग से समझने और हल करने के लिए किया जाता है।
<em>[[उन्मूलन सिद्धांत]]</em> कलन विधि हैं जो विभेदक समीकरणों के समूह से व्युत्पन्न के एक निर्दिष्ट समूह को प्राथमिकता से हटा देते हैं, जो आमतौर पर विभेदक समीकरणों के समूह को बेहतर ढंग से समझने और हल करने के लिए किया जाता है।


उन्मूलन विधियों की श्रेणियों में <em>वू की विशेषता समूह विधियों की विधि</em>, विभेदक ग्रोबनेर आधार | ग्रोबनेर आधार विधियां और [[परिणामी]] आधारित विधियां सम्मिलित हैं।{{sfn|Kolchin |1973}}{{sfn|Li|Yuan|2019}}{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{sfn|Mansfield|1991}}{{sfn|Ferro|2005}}{{sfn|Chardin|1991}}{{sfn|Wu |2005b}}
उन्मूलन विधियों की श्रेणियों में <em>वू की विशेषता समूह विधियों की विधि</em>, विभेदक ग्रोबनेर आधार | ग्रोबनेर आधार विधियां और [[परिणामी]] आधारित विधियां सम्मिलित हैं।{{sfn|Kolchin |1973}}{{sfn|Li|Yuan|2019}}{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{sfn|Mansfield|1991}}{{sfn|Ferro|2005}}{{sfn|Chardin|1991}}{{sfn|Wu |2005b}}


उन्मूलन एल्गोरिदम में उपयोग किए जाने वाले सामान्य संचालन में सम्मिलित हैं 1) रैंकिंग व्युत्पन्न, बहुपद और बहुपद समूह, 2) एक बहुपद के प्रमुख व्युत्पन्न, प्रारंभिक और पृथक्करण की पहचान करना, 3) बहुपद कमी, और 4) विशेष बहुपद समूह बनाना।
उन्मूलन कलन विधि में उपयोग किए जाने वाले सामान्य संचालन में सम्मिलित हैं 1) श्रेणी व्युत्पन्न, बहुपद और बहुपद समूह, 2) एक बहुपद के प्रमुख व्युत्पन्न, प्रारंभिक और पृथक्करण की पहचान करना, 3) बहुपद कमी, और 4) विशेष बहुपद समूह बनाना।


===रैंकिंग डेरिवेटिव===
===श्रेणी व्युत्पन्न===
डेरिवेटिव की <em>रैंकिंग</em> एक [[कुल ऑर्डर|कुल क्रम]] और एक <em>स्वीकार्य क्रम</em> है, जिसे इस प्रकार परिभाषित किया गया है:{{sfn|Kolchin |1973}}{{rp|75–76}}{{sfn|Gao|Van der Hoeven|Yuan|Zhang|2009}}{{rp|1141}}{{sfn|Hubert|2002}}{{rp|10}}
व्युत्पन्न की <em>श्रेणी</em> एक [[कुल ऑर्डर|कुल क्रम]] और एक <em>स्वीकार्य क्रम</em> है, जिसे इस प्रकार परिभाषित किया गया है:{{sfn|Kolchin |1973}}{{rp|75–76}}{{sfn|Gao|Van der Hoeven|Yuan|Zhang|2009}}{{rp|1141}}{{sfn|Hubert|2002}}{{rp|10}}
: <math display="inline"> \forall p \in \Theta Y, \ \forall \theta_\mu \in \Theta : \theta_\mu p > p. </math>
: <math display="inline"> \forall p \in \Theta Y, \ \forall \theta_\mu \in \Theta : \theta_\mu p > p. </math>
: <math display="inline"> \forall p,q \in \Theta Y, \ \forall \theta_\mu \in \Theta : p \ge q \Rightarrow \theta_\mu p \ge \theta_\mu q. </math>
: <math display="inline"> \forall p,q \in \Theta Y, \ \forall \theta_\mu \in \Theta : p \ge q \Rightarrow \theta_\mu p \ge \theta_\mu q. </math>
प्रत्येक व्युत्पन्न में एक पूर्णांक ट्यूपल होता है, और [[एकपदी क्रम]] व्युत्पन्न के पूर्णांक ट्यूपल को रैंक करके व्युत्पन्न को रैंक करता है। पूर्णांक टपल विभेदक अनिश्चित, व्युत्पन्न के बहु-सूचकांक की पहचान करता है और व्युत्पन्न के क्रम की पहचान कर सकता है। रैंकिंग के प्रकारों में सम्मिलित हैं:{{sfn|Ferro|Gerdt|2003}}{{rp|83}}
प्रत्येक व्युत्पन्न में एक पूर्णांक ट्यूपल होता है, और [[एकपदी क्रम]] व्युत्पन्न के पूर्णांक ट्यूपल को रैंक करके व्युत्पन्न को रैंक करता है। पूर्णांक टपल विभेदक अनिश्चित, व्युत्पन्न के बहु-सूचकांक की पहचान करता है और व्युत्पन्न के क्रम की पहचान कर सकता है। श्रेणी के प्रकारों में सम्मिलित हैं:{{sfn|Ferro|Gerdt|2003}}{{rp|83}}
* <em>क्रमबद्ध रैंकिंग</em>: <math> \forall y_i, y_j \in Y, \ \forall \theta_\mu, \theta_\nu \in \Theta \ : \ \operatorname{ord}(\theta_\mu) \ge \operatorname{ord}(\theta_\nu) \Rightarrow \theta_\mu y_i \ge \theta_\nu y_j</math>
* <em>क्रमबद्ध श्रेणी</em>: <math> \forall y_i, y_j \in Y, \ \forall \theta_\mu, \theta_\nu \in \Theta \ : \ \operatorname{ord}(\theta_\mu) \ge \operatorname{ord}(\theta_\nu) \Rightarrow \theta_\mu y_i \ge \theta_\nu y_j</math>
* <em>उन्मूलन रैंकिंग</em>: <math>\forall y_i, y_j \in Y, \ \forall \theta_\mu, \theta_\nu \in \Theta \ : \ y_i \ge y_j \Rightarrow \theta_\mu y_i \ge \theta_\nu y_j</math>
* <em>उन्मूलन श्रेणी</em>: <math>\forall y_i, y_j \in Y, \ \forall \theta_\mu, \theta_\nu \in \Theta \ : \ y_i \ge y_j \Rightarrow \theta_\mu y_i \ge \theta_\nu y_j</math>
इस उदाप्रत्येकण में, पूर्णांक टुपल विभेदक अनिश्चित और व्युत्पन्न के बहु-सूचकांक और [[शब्दकोषीय क्रम]] की पहचान करता है, <math display="inline"> \ge_\text{lex}</math>, व्युत्पन्न की रैंक निर्धारित करता है।{{sfn|Wu |2005a}}{{rp|4}}
इस उदाप्रत्येकण में, पूर्णांक टुपल विभेदक अनिश्चित और व्युत्पन्न के बहु-सूचकांक और [[शब्दकोषीय क्रम]] की पहचान करता है, <math display="inline"> \ge_\text{lex}</math>, व्युत्पन्न की रैंक निर्धारित करता है।{{sfn|Wu |2005a}}{{rp|4}}
: <math>\eta(\delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n}(y_j))= (j, e_1, \ldots, e_n) </math>.  
: <math>\eta(\delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n}(y_j))= (j, e_1, \ldots, e_n) </math>.  
Line 114: Line 114:


===कमी===
===कमी===
<em>आंशिक रूप से कम</em> (<em>आंशिक सामान्य रूप</em>) बहुपद <math display="inline">q</math> बहुपद के संबंध में <math display="inline">p</math> इंगित करता है कि ये बहुपद गैर-जमीनी क्षेत्र तत्व हैं, <math display="inline"> p,q \in \mathcal{K} \{ Y \} \setminus \mathcal{K}</math>, और <math>q</math> का कोई उचित व्युत्पन्न नहीं है <math> u_p</math>.{{sfn|Kolchin |1973}}{{rp|75}}{{sfn|Ferro|Gerdt|2003}}{{rp|84}}{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{rp|159}}
<em>आंशिक रूप से कम</em> (<em>आंशिक सामान्य रूप</em>) बहुपद <math display="inline">q</math> बहुपद के संबंध में <math display="inline">p</math> इंगित करता है कि ये बहुपद अतिरिक्त-जमीनी क्षेत्र तत्व हैं, <math display="inline"> p,q \in \mathcal{K} \{ Y \} \setminus \mathcal{K}</math>, और <math>q</math> का कोई उचित व्युत्पन्न नहीं है <math> u_p</math>.{{sfn|Kolchin |1973}}{{rp|75}}{{sfn|Ferro|Gerdt|2003}}{{rp|84}}{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{rp|159}}


आंशिक रूप से कम किया गया बहुपद <math display="inline">q</math> बहुपद के संबंध में <math display="inline">p</math> बन जाता है
आंशिक रूप से कम किया गया बहुपद <math display="inline">q</math> बहुपद के संबंध में <math display="inline">p</math> बन जाता है
Line 125: Line 125:




===रैंकिंग बहुपद समूह===
===श्रेणी बहुपद समूह===
तय करना <math display="inline">A</math> यदि अग्रणी डेरिवेटिव की रैंक है तो यह एक <em>विभेदक श्रृंखला</em> है <math display="inline">u_{A_{1}} < \dots < u_{A_{m}} </math> और <math display="inline">\forall i, \ A_{i}</math> के संबंध में कम किया गया है <math display="inline">A_{i+1}</math>{{sfn|Li|Yuan|2019}}{{rp|294}}
तय करना <math display="inline">A</math> यदि अग्रणी व्युत्पन्न की रैंक है तो यह एक <em>विभेदक श्रृंखला</em> है <math display="inline">u_{A_{1}} < \dots < u_{A_{m}} </math> और <math display="inline">\forall i, \ A_{i}</math> के संबंध में कम किया गया है <math display="inline">A_{i+1}</math>{{sfn|Li|Yuan|2019}}{{rp|294}}


स्वतः कम किए गए समूह <math display="inline">A</math> और <math display="inline">B</math> प्रत्येक में क्रमबद्ध बहुपद तत्व होते हैं। यह प्रक्रिया समान रूप से अनुक्रमित जोड़े की तुलना करके दो स्वचालित समूहों को रैंक करती है
स्वतः कम किए गए समूह <math display="inline">A</math> और <math display="inline">B</math> प्रत्येक में क्रमबद्ध बहुपद तत्व होते हैं। यह प्रक्रिया समान रूप से अनुक्रमित जोड़े की तुलना करके दो स्वचालित समूहों को रैंक करती है
Line 136: Line 136:


===बहुपद समुच्चय===
===बहुपद समुच्चय===
एक <em>विशेषता समूह</em> <math display="inline">C</math> आदर्श के सभी स्वतः कम किए गए उपसमुच्चय के बीच [[आर्ग मैक्स]] स्वतः कम किए गए उपसमुच्चय है जिनके उपसमुच्चय बहुपद विभाजक आदर्श के गैर-सदस्य हैं <math display="inline">\mathcal{I}</math>.{{sfn|Kolchin |1973}}{{rp|82}}
एक <em>विशेषता समूह</em> <math display="inline">C</math> आदर्श के सभी स्वतः कम किए गए उपसमुच्चय के बीच [[आर्ग मैक्स]] स्वतः कम किए गए उपसमुच्चय है जिनके उपसमुच्चय बहुपद विभाजक आदर्श के अतिरिक्त-सदस्य हैं <math display="inline">\mathcal{I}</math>.{{sfn|Kolchin |1973}}{{rp|82}}


<em>डेल्टा बहुपद</em> बहुपद युग्म पर लागू होता है <math display="inline">p,q</math> जिनके नेता एक समान व्युत्पन्न साझा करते हैं, <math display="inline">\theta_{\alpha} u_{p}= \theta_{\beta} u_{q}</math>. बहुपद जोड़ी के अग्रणी व्युत्पन्न के लिए सबसे कम सामान्य व्युत्पन्न संक्रियकहै <math display="inline">\theta_{pq}</math>, और डेल्टा बहुपद है:{{sfn|Kolchin |1973}}{{rp|136}}{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{rp|160}}  
<em>डेल्टा बहुपद</em> बहुपद युग्म पर लागू होता है <math display="inline">p,q</math> जिनके नेता एक समान व्युत्पन्न साझा करते हैं, <math display="inline">\theta_{\alpha} u_{p}= \theta_{\beta} u_{q}</math>. बहुपद जोड़ी के अग्रणी व्युत्पन्न के लिए सबसे कम सामान्य व्युत्पन्न संक्रियकहै <math display="inline">\theta_{pq}</math>, और डेल्टा बहुपद है:{{sfn|Kolchin |1973}}{{rp|136}}{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{rp|160}}  
Line 150: Line 150:




===रोसेनफेल्ड-ग्रोबनेर एल्गोरिदम===
===रोसेनफेल्ड-ग्रोबनेर कलन विधि===
<em>रोसेनफेल्ड-ग्रोबनेर एल्गोरिथ्म</em> नियमित रेडिकल विभेदक आदर्शों के एक सीमित प्रतिच्छेदन के रूप में रेडिकल विभेदक आदर्श को विघटित करता है। विशिष्ट समूहों द्वारा दर्शाए गए ये नियमित विभेदक कट्टरपंथी आदर्श आवश्यक रूप से प्रमुख आदर्श नहीं हैं और प्रतिनिधित्व आवश्यक रूप से [[प्राथमिक अपघटन]] नहीं है।{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{rp|158}}
<em>रोसेनफेल्ड-ग्रोबनेर एल्गोरिथ्म</em> नियमित रेडिकल विभेदक आदर्शों के एक सीमित प्रतिच्छेदन के रूप में रेडिकल विभेदक आदर्श को विघटित करता है। विशिष्ट समूहों द्वारा दर्शाए गए ये नियमित विभेदक कट्टरपंथी आदर्श आवश्यक रूप से प्रमुख आदर्श नहीं हैं और प्रतिनिधित्व आवश्यक रूप से [[प्राथमिक अपघटन]] नहीं है।{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{rp|158}}


<em>सदस्यता समस्या</em> यह निर्धारित करना है कि क्या एक विभेदक बहुपद है <math display="inline">p</math> विभेदक बहुपदों के एक समूह से उत्पन्न आदर्श का एक सदस्य है <math display="inline">S</math>. रोसेनफेल्ड-ग्रोबनेर एल्गोरिदम ग्रोबनेर आधारों के समूह उत्पन्न करता है। एल्गोरिदम यह निर्धारित करता है कि एक बहुपद आदर्श का सदस्य है यदि और केवल तभी जब आंशिक रूप से कम किया गया शेष बहुपद ग्रोबनर आधारों द्वारा उत्पन्न बीजगणितीय आदर्श का सदस्य हो।{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{rp|164}}
<em>सदस्यता समस्या</em> यह निर्धारित करना है कि क्या एक विभेदक बहुपद है <math display="inline">p</math> विभेदक बहुपदों के एक समूह से उत्पन्न आदर्श का एक सदस्य है <math display="inline">S</math>. रोसेनफेल्ड-ग्रोबनेर कलन विधि ग्रोबनेर आधारों के समूह उत्पन्न करता है। कलन विधि यह निर्धारित करता है कि एक बहुपद आदर्श का सदस्य है यदि और केवल तभी जब आंशिक रूप से कम किया गया शेष बहुपद ग्रोबनर आधारों द्वारा उत्पन्न बीजगणितीय आदर्श का सदस्य हो।{{sfn|Boulier|Lazard|Ollivier|Petitot|1995}}{{rp|164}}


रोसेनफेल्ड-ग्रोबनेर एल्गोरिदम विभेदक समीकरणों के समाधान के [[टेलर श्रृंखला]] विस्तार बनाने की सुविधा प्रदान करता है।{{sfn|Boulier|Lazard|Ollivier|Petitot|2009b}}
रोसेनफेल्ड-ग्रोबनेर कलन विधि विभेदक समीकरणों के समाधान के [[टेलर श्रृंखला]] विस्तार बनाने की सुविधा प्रदान करता है।{{sfn|Boulier|Lazard|Ollivier|Petitot|2009b}}


==उदाप्रत्येकण==
==उदाहारण==


===विभेदक क्षेत्र===
===विभेदक क्षेत्र===
उदाप्रत्येकण 1: <math display="inline">(\operatorname{Mer}(\operatorname{f}(y), \partial_{y} )</math> एकल <em>मानक व्युत्पत्ति</em> के साथ विभेदक [[मेरोमोर्फिक फ़ंक्शन]] क्षेत्रहै।
उदहारण 1: <math display="inline">(\operatorname{Mer}(\operatorname{f}(y), \partial_{y} )</math> एकल <em>मानक व्युत्पत्ति</em> के साथ विभेदक [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फलन]] क्षेत्र है।


उदाप्रत्येकण 2: <math display="inline">(\mathbb{C} \{ y \}, (1+3 \cdot y + y^{2}) \cdot \partial_{y} ) </math> व्युत्पत्ति के रूप में एक विभेदक संक्रियकके साथ एक विभेदक क्षेत्र है।
उदहारण 2: <math display="inline">(\mathbb{C} \{ y \}, (1+3 \cdot y + y^{2}) \cdot \partial_{y} ) </math> व्युत्पत्ति के रूप में एक विभेदक संक्रियक के साथ एक विभेदक क्षेत्र है।


===व्युत्पत्ति===
===व्युत्पत्ति===
परिभाषित करना <math display="inline">E^{a}(p(y))=p(y+a)</math> <em>[[शिफ्ट ऑपरेटर|शिफ्ट]]</em> संक्रियकके रूप में <math display="inline">E^{a}</math> बहुपद के लिए <math display="inline">p(y)</math>.
परिभाषित करना <math display="inline">E^{a}(p(y))=p(y+a)</math> <em>[[शिफ्ट ऑपरेटर|शिफ्ट]]</em> संक्रियक <math display="inline">E^{a}</math> के रूप में <math display="inline">p(y)</math> बहुपद के लिए है। .


एक शिफ्ट-इनवेरिएंट संक्रियक<math display="inline">T</math> शिफ्ट संक्रियकके साथ आवागमन: <math display="inline">E^{a} \circ T=T \circ E^{a}</math>.
एक शिफ्ट-इनवेरिएंट संक्रियक <math display="inline">T</math> शिफ्ट संक्रियक के साथ आवागमन करता है  <math display="inline">E^{a} \circ T=T \circ E^{a}</math>.


<em>[[पिंचरले व्युत्पन्न]]</em>, शिफ्ट-इनवेरिएंट संक्रियककी व्युत्पत्ति <math display="inline">T</math>, है <math display="inline">T^{\prime} = T \circ y - y \circ T </math>.{{sfn|Rota|Kahaner|Odlyzko|1973}}{{rp|694}}
<em>[[पिंचरले व्युत्पन्न]]</em>, शिफ्ट-इनवेरिएंट संक्रियक की व्युत्पत्ति <math display="inline">T</math>, है <math display="inline">T^{\prime} = T \circ y - y \circ T </math>.{{sfn|Rota|Kahaner|Odlyzko|1973}}{{rp|694}}


===स्थिरांक===
===स्थिरांक===
पूर्णांकों का वलय है <math>(\mathbb{Z}. \delta)</math>, और प्रत्येक पूर्णांक एक स्थिरांक है।
पूर्णांकों का वलय <math>(\mathbb{Z}. \delta)</math> है, और प्रत्येक पूर्णांक एक स्थिरांक है।
* 1 की व्युत्पत्ति शून्य है. <math display="inline"> \delta(1)=\delta(1 \cdot 1)=\delta(1) \cdot 1 + 1 \cdot \delta(1) = 2 \cdot \delta(1) \Rightarrow \delta(1)=0</math>.
* 1 की व्युत्पत्ति शून्य है. <math display="inline"> \delta(1)=\delta(1 \cdot 1)=\delta(1) \cdot 1 + 1 \cdot \delta(1) = 2 \cdot \delta(1) \Rightarrow \delta(1)=0</math>
* भी, <math> \delta(m+1)=\delta(m)+\delta(1)=\delta(m) \Rightarrow \delta(m+1)=\delta(m) </math>.
* <math> \delta(m+1)=\delta(m)+\delta(1)=\delta(m) \Rightarrow \delta(m+1)=\delta(m) </math> भी है।
* प्रेरण द्वारा, <math> \delta(1)=0 \ \wedge \ \delta(m+1)= \delta(m) \Rightarrow \forall \ m \in \mathbb{Z}, \ \delta(m)=0 </math>.
* <math> \delta(1)=0 \ \wedge \ \delta(m+1)= \delta(m) \Rightarrow \forall \ m \in \mathbb{Z}, \ \delta(m)=0 </math> प्रेरण द्वारा है।


परिमेय संख्याओं का क्षेत्र है <math>(\mathbb{Q}. \delta)</math>, और प्रत्येक परिमेय संख्या एक स्थिरांक है।
परिमेय संख्याओं का क्षेत्र <math>(\mathbb{Q}. \delta)</math> है , और प्रत्येक परिमेय संख्या एक स्थिरांक है।
* प्रत्येक परिमेय संख्या पूर्णांकों का भागफल होती है।
* प्रत्येक परिमेय संख्या पूर्णांकों का भागफल होती है।
: <math> \forall r \in \mathbb{Q}, \ \exists \ a \in \mathbb{Z}, \ b \in \mathbb{Z}/ \{ 0 \}, \ r=\frac{a}{b} </math>
: <math> \forall r \in \mathbb{Q}, \ \exists \ a \in \mathbb{Z}, \ b \in \mathbb{Z}/ \{ 0 \}, \ r=\frac{a}{b} </math>
Line 183: Line 183:
: <math> \delta (r)= \delta \left ( \frac{a}{b} \right ) = \frac{\delta(a) \cdot b - a \cdot \delta(b)}{b^{2}}=0 </math>.
: <math> \delta (r)= \delta \left ( \frac{a}{b} \right ) = \frac{\delta(a) \cdot b - a \cdot \delta(b)}{b^{2}}=0 </math>.


===डिफरेंशियल सबवलय===
===विभेदक सबवलय===
स्थिरांक <em>स्थिरांक के उप-समूह</em> का निर्माण करते हैं <math display="inline">(\mathbb{C}, \partial_{y}) \subset (\mathbb{C} \{ y \}, \partial_{y}) </math>.{{sfn|Kolchin |1973}}{{rp|60}}
स्थिरांक, स्थिरांकों के उपवलय <math display="inline">(\mathbb{C}, \partial_{y}) \subset (\mathbb{C} \{ y \}, \partial_{y}) </math> का निर्माण करते हैं।{{sfn|Kolchin |1973}}{{rp|60}}


===विभेदक आदर्श===
===विभेदक आदर्श===
तत्व <math display="inline">\exp(y)</math> बस विभेदक आदर्श उत्पन्न करता है <math display="inline"> [\exp(y)] </math> विभेदक वलय में <math display="inline">(\mathbb{C} \{ y, \exp(y) \}, \partial_{y})  
<math display="inline">\exp(y)</math>तत्व <math display="inline"> [\exp(y)] </math> विभेदक वलय में <math display="inline">(\mathbb{C} \{ y, \exp(y) \}, \partial_{y})  
</math>.{{sfn|Sit|2002}}{{rp|4}}
</math>.{{sfn|Sit|2002}} विभेदकआदर्श उत्पन्न करता है।.{{sfn|Sit|2002}}{{rp|4}}


===एक विभेदक वलय पर बीजगणित===
===एक विभेदक वलय पर बीजगणित===
पहचान वाली कोई भी वलय एक है <math display="inline">\operatorname{\mathcal{Z}-}</math>बीजगणित.{{sfn|Dummit|Foote|2004}}{{rp|343}} इस प्रकार एक विभेदक वलय है <math display="inline">\operatorname{\mathcal{Z}-}</math>बीजगणित
पहचान वाली कोई भी वलय <math display="inline">\operatorname{\mathcal{Z}-}</math>बीजगणित एक है।{{sfn|Dummit|Foote|2004}}{{rp|343}} इस प्रकार एक विभेदक वलय <math display="inline">\operatorname{\mathcal{Z}-}</math>बीजगणित है।


अगर वलय <math display="inline">\mathcal{R}</math> यूनिटल वलय के केंद्र का एक उपवलय है <math display="inline">\mathcal{M}</math>, तब <math display="inline">\mathcal{M}</math> एक <math display="inline">\operatorname{\mathcal{R}-}</math>बीजगणित{{sfn|Dummit|Foote|2004}}{{rp|343}} इस प्रकार, एक विभेदक वलय अपने विभेदक उपवलय पर एक बीजगणित है। यह बीजगणित की उसके उप-अंगूठे पर <em>प्राकृतिक संरचना</em> है।{{sfn|Kolchin |1973}}{{rp|75}}
अगर वलय <math display="inline">\mathcal{R}</math> यूनिटल वलय के केंद्र <math display="inline">\mathcal{M}</math> का एक उपवलय है , तब <math display="inline">\mathcal{M}</math> एक <math display="inline">\operatorname{\mathcal{R}-}</math>बीजगणित है।{{sfn|Dummit|Foote|2004}}{{rp|343}} इस प्रकार, एक विभेदक वलय अपने विभेदक उपवलय पर एक बीजगणित है। यह बीजगणित की उसके उप-वलय पर <em>प्राकृतिक संरचना</em> है।{{sfn|Kolchin |1973}}{{rp|75}}


===विशेष और सामान्य बहुपद===
===विशेष और सामान्य बहुपद===
अँगूठी <math display="inline">(\mathbb{Q} \{ y, z \}, \partial_y) </math> अघुलनशील बहुपद हैं, <math display="inline">p</math> (सामान्य, वर्गमुक्त) और <math display="inline">q</math> (विशेष, आदर्श जनरेटर)
वलय <math display="inline">(\mathbb{Q} \{ y, z \}, \partial_y) </math> असमानेय बहुपद हैं, <math display="inline">p</math> (सामान्य, वर्गमुक्त) और <math display="inline">q</math> (विशेष, आदर्श जनरेटर)हैं।
: <math display="inline"> \partial_y(y)=1, \ \partial_y(z)=1+z^2, \ z=\tan(y)</math> : <math display="inline">p(y)=1+y^2, \ \partial_y(p)=2 \cdot y,\ \gcd(p, \partial_y(p))=1</math>
: <math display="inline"> \partial_y(y)=1, \ \partial_y(z)=1+z^2, \ z=\tan(y)</math> : <math display="inline">p(y)=1+y^2, \ \partial_y(p)=2 \cdot y,\ \gcd(p, \partial_y(p))=1</math>
: <math display="inline">q(z)=1+z^2, \ \partial_y(q)=2 \cdot z \cdot (1+z^2),\ \gcd(q, \partial_{y}(q))=q</math>
: <math display="inline">q(z)=1+z^2, \ \partial_y(q)=2 \cdot z \cdot (1+z^2),\ \gcd(q, \partial_{y}(q))=q</math>
===बहुपद===
===बहुपद===


====रैंकिंग====
====श्रेणी====
अँगूठी <math display="inline">(\mathbb{Q} \{ y_{1}, y_{2} \}, \delta)</math> व्युत्पन्न है <math display="inline">\delta(y_{1})=y_{1}^{\prime}</math> और <math display="inline">\delta(y_{2})=y_{2}^{\prime}</math> * प्रत्येक व्युत्पन्न को पूर्णांक टपल में मैप करें: <math display="inline">\eta( \delta^{(i_{2})}(y_{i_{1}}) )=(i_{1}, i_{2})</math>.
वलय <math display="inline">(\mathbb{Q} \{ y_{1}, y_{2} \}, \delta)</math> व्युत्पन्न है <math display="inline">\delta(y_{1})=y_{1}^{\prime}</math> और <math display="inline">\delta(y_{2})=y_{2}^{\prime}</math> * प्रत्येक व्युत्पन्न को पूर्णांक टपल में मैप करें: <math display="inline">\eta( \delta^{(i_{2})}(y_{i_{1}}) )=(i_{1}, i_{2})</math>.
* रैंक डेरिवेटिव और पूर्णांक टुपल्स: <math display="inline"> y_{2}^{\prime \prime} \ (2,2) > y_{2}^{\prime} \ (2,1) > y_{2} \ (2,0) > y_{1}^{\prime \prime} \ (1,2) > y_{1}^{\prime} \ (1,1) > y_{1} \ (1,0) </math>.
* श्रेणी व्युत्पन्न और पूर्णांक टुपल्स: <math display="inline"> y_{2}^{\prime \prime} \ (2,2) > y_{2}^{\prime} \ (2,1) > y_{2} \ (2,0) > y_{1}^{\prime \prime} \ (1,2) > y_{1}^{\prime} \ (1,1) > y_{1} \ (1,0) </math>.


====अग्रणी व्युत्पन्न और प्रारंभिक====
====अग्रणी व्युत्पन्न और प्रारंभिक====
<span style= color:red >अग्रणी व्युत्पन्न</span>, और <span style= color:blue >प्रारंभिक</span> हैं:
<span style= color:red >अग्रणी व्युत्पन्न</span>, और <span style= color:blue >प्रारंभिक</span> हैं:
: <math display="inline"> p={\color{Blue} (y_{1}+ y_{1}^{\prime})} \cdot ({\color{Red} y_{2}^{\prime \prime}})^{2} + 3 \cdot y_{1}^{2} \cdot {\color{Red}y_{2}^{\prime \prime}} + (y_{1}^{\prime})^{2} </math> : <math display="inline"> q={\color{Blue}(y_{1}+ 3 \cdot y_{1}^{\prime})} \cdot {\color{Red} y_{2}^{\prime \prime}} + y_{1} \cdot y_{2}^{\prime} + (y_{1}^{\prime})^{2} </math> : <math display="inline"> r= {\color{Blue} (y_{1}+3)} \cdot ({\color{Red} y_{1}^{\prime \prime}})^{2} + y_{1}^{2} \cdot {\color{Red} y_{1}^{\prime \prime}}+ 2 \cdot y_{1} </math>
: <math display="inline"> p={\color{Blue} (y_{1}+ y_{1}^{\prime})} \cdot ({\color{Red} y_{2}^{\prime \prime}})^{2} + 3 \cdot y_{1}^{2} \cdot {\color{Red}y_{2}^{\prime \prime}} + (y_{1}^{\prime})^{2} </math> : <math display="inline"> q={\color{Blue}(y_{1}+ 3 \cdot y_{1}^{\prime})} \cdot {\color{Red} y_{2}^{\prime \prime}} + y_{1} \cdot y_{2}^{\prime} + (y_{1}^{\prime})^{2} </math> : <math display="inline"> r= {\color{Blue} (y_{1}+3)} \cdot ({\color{Red} y_{1}^{\prime \prime}})^{2} + y_{1}^{2} \cdot {\color{Red} y_{1}^{\prime \prime}}+ 2 \cdot y_{1} </math>
====विभाजक====
====विभाजक====
: <math display="inline"> S_{p}= 2 \cdot (y_{1}+ y_{1}^{\prime}) \cdot y_{2}^{\prime \prime} + 3 \cdot y_{1}^{2}</math>.  
: <math display="inline"> S_{p}= 2 \cdot (y_{1}+ y_{1}^{\prime}) \cdot y_{2}^{\prime \prime} + 3 \cdot y_{1}^{2}</math>.  
: <math display="inline"> S_{q}= y_{1}+ 3 \cdot y_{1}^{\prime}</math>
: <math display="inline"> S_{q}= y_{1}+ 3 \cdot y_{1}^{\prime}</math>
: <math display="inline"> S_{r}= 2 \cdot (y_{1}+3) \cdot y_{1}^{\prime \prime} + y_{1}^{2}</math>
: <math display="inline"> S_{r}= 2 \cdot (y_{1}+3) \cdot y_{1}^{\prime \prime} + y_{1}^{2}</math>
====स्वचालित समूह====
====स्वचालित समूह====
* ऑटोरेड्यूस्ड समूह हैं <math display="inline">\{ p, r \}</math> और <math display="inline"> \{ q, r \}</math>. प्रत्येक समूह एक अलग बहुपद अग्रणी व्युत्पन्न के साथ त्रिकोणीय है।
* स्वचालित समूह <math display="inline">\{ p, r \}</math> और <math display="inline"> \{ q, r \}</math>हैं. प्रत्येक समूह एक अलग बहुपद अग्रणी व्युत्पन्न के साथ त्रिकोणीय है।
* गैर-स्वचालित समूह <math display="inline"> \{ p, q \} </math> केवल आंशिक रूप से कम किया गया है <math display="inline">p</math> इसके संबंध में <math display="inline">q</math>; यह समुच्चय गैर-त्रिकोणीय है क्योंकि बहुपदों का अग्रणी अवकलज समान है।
* अतिरिक्त-स्वचालित समूह <math display="inline"> \{ p, q \} </math> केवल आंशिक रूप से कम किया गया है <math display="inline">p</math> इसके संबंध <math display="inline">q</math> में ; यह समुच्चय अतिरिक्त-त्रिकोणीय है क्योंकि बहुपदों का अग्रणी विभेदक समान है।


==अनुप्रयोग==
==अनुप्रयोग==


===प्रतीकात्मक एकीकरण ===
===प्रतीकात्मक एकीकरण ===
प्रतीकात्मक एकीकरण बहुपदों और उनके डेरिवेटिव जैसे प्रत्येक्मिट रिडक्शन, सीज़िचोव्स्की एल्गोरिदम, लैजार्ड-रियोबू-ट्रेजर एल्गोरिदम, होरोविट्ज़-ओस्ट्रोग्रैडस्की एल्गोरिदम, स्क्वायरफ्री फैक्टराइजेशन और विशेष और सामान्य बहुपदों को विभाजित करने वाले फैक्टराइजेशन से जुड़े एल्गोरिदम का उपयोग करता है।{{sfn|Bronstein|2005}}{{rp|41, 51, 53,102, 299,309}}
प्रतीकात्मक एकीकरण बहुपदों और उनके व्युत्पन्न जैसे प्रत्येक्मिटमें कमी, सीज़िचोव्स्की कलन विधि, लैजार्ड-रियोबू-ट्रेजर कलन विधि, होरोविट्ज़-ओस्ट्रोग्रैडस्की कलन विधि, वर्गमुक्त गुणनखंडन और विशेष और सामान्य बहुपदों को विभाजित करने वाले गुणनखंडन से जुड़े कलन विधि का उपयोग करता है।{{sfn|Bronstein|2005}}{{rp|41, 51, 53,102, 299,309}}


===विभेदक समीकरण===
===विभेदक समीकरण===
विभेदक बीजगणित यह निर्धारित कर सकता है कि विभेदक बहुपद समीकरणों के एक समूह का कोई समाधान है या नहीं। कुल क्रम रैंकिंग बीजगणितीय बाधाओं की पहचान कर सकती है। एक उन्मूलन रैंकिंग यह निर्धारित कर सकती है कि स्वतंत्र चर का एक या चयनित समूह विभेदक समीकरणों को व्यक्त कर सकता है या नहीं। त्रिकोणीय अपघटन और उन्मूलन क्रम का उपयोग करके, चरण-वार विधि में एक समय में एक विभेदक अनिश्चित विभेदक समीकरणों को हल करना संभव हो सकता है। एक अन्य दृष्टिकोण ज्ञात समाधान प्रपत्र के साथ विभेदक समीकरणों का एक वर्ग बनाना है; किसी अवकल समीकरण को उसके वर्ग से मिलाने से समीकरण के समाधान की पहचान हो जाती है। [[समीकरणों की विभेदक-बीजगणितीय प्रणाली]] | समीकरणों की विभेदक-बीजगणितीय प्रणाली के संख्यात्मक एकीकरण की सुविधा के लिए विधियाँ उपलब्ध हैं।{{sfn|Hubert|2002}}{{rp|41–47}}
विभेदक बीजगणित यह निर्धारित कर सकता है कि विभेदक बहुपद समीकरणों के एक समूह का कोई समाधान है या नहीं है। कुल श्रेणी क्रम बीजगणितीय बाधाओं की पहचान कर सकती है। एक उन्मूलन श्रेणी यह निर्धारित कर सकती है कि स्वतंत्र चर का एक या चयनित समूह विभेदक समीकरणों को व्यक्त कर सकता है या नहीं सकता है। त्रिकोणीय अपघटन और उन्मूलन क्रम का उपयोग करके, चरण-वार विधि में एक समय में एक विभेदक अनिश्चित विभेदक समीकरणों को हल करना संभव हो सकता है। एक अन्य दृष्टिकोण ज्ञात समाधान प्रपत्र के साथ विभेदक समीकरणों का एक वर्ग बनाना है जो की किसी विभेदक समीकरण को उसके वर्ग से मिलाने से समीकरण के समाधान की पहचान हो जाती है। [[समीकरणों की विभेदक-बीजगणितीय प्रणाली]] के संख्यात्मक एकीकरण की सुविधा के लिए विधियाँ उपलब्ध हैं।{{sfn|Hubert|2002}}{{rp|41–47}}
 
कैओस सिद्धांत के साथ अतिरिक्त-रेखीय गतिशील प्रणालियों के एक अध्ययन में, शोधकर्ताओं ने विभेदक समीकरणों को एकल स्थान चर से जुड़े सामान्य विभेदक समीकरणों में कम करने के लिए विभेदक उन्मूलन का उपयोग किया। वे अधिकतर वाद में सफल रहे, और इससे अनुमानित समाधान विकसित करने, कैओस सिद्धांत का कुशलतापूर्वक मूल्यांकन करने और [[ल्यपुनोव समारोह|लाइपापुनोव कार्यों]] का निर्माण करने में मदद मिली।{{sfn|Harrington|VanGorder|2017}} शोधकर्ताओं ने जैव रासायनिक प्रतिक्रियाओं के लिए कोशिका जीव विज्ञान, [[शारीरिक रूप से आधारित फार्माकोकाइनेटिक मॉडलिंग|पूरक जैव रसायन प्रतिरूप]], [[पैरामीटर|प्राचल]] अनुमान और [[स्थिर अवस्था (रसायन विज्ञान)|स्थिर अवस्था]] अर्ध-स्थिर अवस्था सन्निकटन (QSSA) को समझने के लिए विभेदक उन्मूलन लागू किया है।{{sfn|Boulier|2007}}{{sfn|Boulier|Lemaire| 2009a}}विभेदक ग्रोबनेर आधारों का उपयोग करते हुए, शोधकर्ताओं ने अतिरिक्त-रेखीय विभेदक समीकरणों के अतिरिक्त-उत्कृष्ट समरूपता गुणों की जांच की है।{{sfn|Clarkson|Mansfield|1994}} अन्य अनुप्रयोगों में नियंत्रण सिद्धांत, प्रतिरूप सिद्धांत और बीजगणितीय ज्यामिति सम्मिलित हैं।{{sfn|Diop|1992}}{{sfn|Marker|2000}}{{sfn|Buium|1994}} विभेदक बीजगणित विभेदक-विभेदक समीकरणों पर भी लागू होता है।{{sfn|Gao|Van der Hoeven|Yuan|Zhang|2009}}
 
== व्युत्पत्तियों के साथ बीजगणित ==
 
=== विभेदक श्रेणीबद्ध सदिश स्थान ===
 
== चुनौतीपूर्ण समस्याएँ ==
रिट समस्या पूछती है कि क्या कोई कलन विधि है जो यह निर्धारित करता है कि क्या प्रमुख विभेदक आदर्श में दूसरा प्रमुख विभेदक आदर्श होता है जब विशेषता समूह दोनों आदर्शों की पहचान करते हैं।
 
कोल्चिन कैटेनरी अनुमान में कहा गया है
 


कैओस सिद्धांत के साथ गैर-रेखीय गतिशील प्रणालियों के एक अध्ययन में, शोधकर्ताओं ने विभेदक समीकरणों को एकल राज्य चर से जुड़े सामान्य विभेदक समीकरणों में कम करने के लिए विभेदक उन्मूलन का उपयोग किया। वे ज्यादातर मामलों में सफल रहे, और इससे अनुमानित समाधान विकसित करने, अराजकता का कुशलतापूर्वक मूल्यांकन करने और [[ल्यपुनोव समारोह]] का निर्माण करने में मदद मिली।{{sfn|Harrington|VanGorder|2017}} शोधकर्ताओं ने जैव रासायनिक प्रतिक्रियाओं के लिए कोशिका जीव विज्ञान, [[शारीरिक रूप से आधारित फार्माकोकाइनेटिक मॉडलिंग]], [[पैरामीटर]] अनुमान और [[स्थिर अवस्था (रसायन विज्ञान)]]|अर्ध-स्थिर अवस्था सन्निकटन (QSSA) को समझने के लिए विभेदक उन्मूलन लागू किया है।{{sfn|Boulier|2007}}{{sfn|Boulier|Lemaire| 2009a}} विभेदक ग्रोबनेर आधारों का उपयोग करते हुए, शोधकर्ताओं ने गैर-रेखीय प्रणाली | गैर-रेखीय विभेदक समीकरणों के गणित गुणों में गैर-शास्त्रीय समरूपता की जांच की है।{{sfn|Clarkson|Mansfield|1994}} अन्य अनुप्रयोगों में नियंत्रण सिद्धांत, मॉडल सिद्धांत और बीजगणितीय ज्यामिति सम्मिलित हैं।{{sfn|Diop|1992}}{{sfn|Marker|2000}}{{sfn|Buium|1994}} अवकल बीजगणित अवकल-विभेदक समीकरणों पर भी लागू होता है।{{sfn|Gao|Van der Hoeven|Yuan|Zhang|2009}}<!--
जैकोबी बाध्य अनुमान एक विभेदक प्रकार के अपरिवर्तनीय घटक के क्रम के लिए ऊपरी सीमा की चिंता करता है। बहुपद के आदेश जैकोबी संख्या निर्धारित करते हैं, और अनुमान यह है कि जैकोबी संख्या इस सीमा को निर्धारित करती है।<!--


== रैखिक विभेदक बीजगणित ==
== रैखिक विभेदक बीजगणित ==

Revision as of 20:51, 9 July 2023

गणित में, विभेदक बीजगणित, मोटे तौर पर, गणित का वह क्षेत्र है जिसमें समाधान की गणना किए बिना विभेदक समीकरण और संक्रियक के गुणों को प्राप्त करने के मद्देनजर बीजगणित के रूप में विभेदक समीकरणों और विभेदक संक्रियक का अध्ययन सम्मिलित है, उसी तरह जैसे बहुपद बीजगणित का उपयोग किया जाता है। बीजगणितीय प्रकारों का अध्ययन, जो बहुपद समीकरणों की प्रणालियों के समाधान समूह हैं। वेल बीजगणित और ली बीजगणित को विभेदक बीजगणित से संबंधित माना जा सकता है।

अधिक विशेष रूप से, विभेदक बीजगणित 1950 में जोसेफ रिट द्वारा पेश किए गए सिद्धांत को संदर्भित करता है, जिसमें विभेदक वलय, विभेदक क्षेत्र और विभेदक बीजगणित वलय, क्षेत्र और बीजगणित हैं जो कि कई व्युत्पत्तियों से सुसज्जित हैं।

विभेदक क्षेत्र का एक प्राकृतिक उदाप्रत्येकण जटिल संख्याओं पर एक चर में तर्कसंगत कार्यों का क्षेत्र है, जहां व्युत्पत्ति के संबंध में भेदभाव है। अधिक सामान्यतः प्रत्येक विभेदक समीकरण को समीकरण में दिखाई देने वाले (ज्ञात) कार्यों द्वारा उत्पन्न विभेदक क्षेत्र पर विभेदक बीजगणित के एक तत्व के रूप में देखा जा सकता है।

इतिहास

जोसेफ रिट ने विभेदक बीजगणित विकसित किया क्योंकि उन्होंने विभेदक समीकरणों की प्रणालियों को विभिन्न विहित रूपों में कम करने के प्रयासों को एक असंतोषजनक दृष्टिकोण के रूप में देखा। हालाँकि, बीजगणितीय उन्मूलन विधियों और बीजगणितीय मैनिफोल्ड सिद्धांत की सफलता ने रिट को विभेदक समीकरणों के लिए एक समान दृष्टिकोण पर विचार करने के लिए प्रेरित किया।[1]: iii–iv  उनके प्रयासों से एक प्रारंभिक पेपर मैनिफोल्ड्स ऑफ फंक्शन्स डिफाइन्ड बाय सिस्टम्स ऑफ अलजेब्रिक डिफरेंशियल इक्वेशन और 2 किताबें, डिफरेंशियल इक्वेशन फ्रॉम द अलजेब्रिक स्टैंडपॉइंट और डिफरेंशियल अलजेब्रा प्रकाशित हुईं।। उन्हें>.[2][1][3] रिट के छात्र एलिस कल्चेन ने इस क्षेत्र को आगे बढ़ाया और डिफरेंशियल अलजेब्रा एंड अलजेब्रिक ग्रुप्स प्रकाशित किया।[4]

विभेदक वलय

परिभाषा

व्युत्पत्ति वलय पर एक फलन है ऐसा कि

और

(लीबनिज़ उत्पाद नियम),

प्रत्येक और में के लिए

व्युत्पत्ति पूर्णांकों पर रैखिक मानचित्र है क्योंकि ये सर्वसमिकाएं संकेत देती हैं और एक विभेदक वलय एक क्रमविनिमेय वलय है एक या अधिक व्युत्पत्तियों से सुसज्जित जो जोड़ीदार रूप से आवागमन करती हैं; वह है,

व्युत्पत्तियों की प्रत्येक जोड़ी और प्रत्येक के लिए है।[4]: 58–59  जब केवल एक ही व्युत्पत्ति होती है तो सामान्यतः एक साधारण विभेदक वलय की बात की जाती है; अन्यथा, कोई आंशिक विभेदक वलय की बात करता है

विभेदक क्षेत्र विभेदक वलय है जो एक क्षेत्र भी है। एक विभेदक बीजगणित एक विभेदक क्षेत्र पर एक विभेदक वलय है जिसमें सम्मिलित है एक सबवलय के रूप में जैसे कि प्रतिबंध की व्युत्पत्तियों का की व्युत्पत्ति के बराबर (एक अधिक सामान्य परिभाषा नीचे दी गई है, जो उस स्थिति के लिए पर्याप्त है एक क्षेत्र नहीं है, और अनिवार्य रूप से समतुल्य है जब एक क्षेत्र है.)

विट बीजगणित विभेदक वलय है जिसमें परिमेय संख्याओं का क्षेत्र सम्मिलित होता है। समान रूप से, यह एक विभेदक बीजगणित है तब से इसे एक विभेदक क्षेत्र के रूप में माना जा सकता है जिस पर प्रत्येक व्युत्पत्ति शून्य कार्य है।

एक विभेदक वलय के स्थिरांक तत्व हैं ऐसा है कि प्रत्येक व्युत्पत्ति के लिए, एक विभेदक वलय के स्थिरांक एक उपवलय बनाते हैं और एक भिन्न क्षेत्र के स्थिरांक एक उपक्षेत्र बनाते हैं।[4]: 58–60  स्थिरांक का यह अर्थ एक स्थिर कार्य की अवधारणा को सामान्यीकृत करता है, और इसे स्थिरांक (गणित) के सामान्य अर्थ के साथ भ्रमित नहीं किया जाना चाहिए।

मूल सूत्र

निम्नलिखित पहचान में, एक विभेदक वलय की व्युत्पत्ति है [5]: 76 

  • अगर और में एक स्थिरांक है (वह है, ), तब
  • अगर और में एक इकाई (वलय सिद्धांत) है तब
  • अगर एक अऋणात्मक पूर्णांक है और तब
  • अगर में इकाइयाँ हैं, और पूर्णांक हैं, किसी के पास लघुगणकीय व्युत्पन्न पहचान है:

उच्च क्रम व्युत्पत्तियाँ

एक व्युत्पत्ति संचालिका या उच्च क्रम व्युत्पत्ति[citation needed] कई व्युत्पत्तियों की संरचना है। जैसा कि एक विभेदक वलय की व्युत्पत्तियों को परिवर्तित किया जाना चाहिए, व्युत्पत्तियों का क्रम तात्पर्य नहीं रखता है, और एक व्युत्पत्ति संक्रियक को इस प्रकार लिखा जा सकता है

जहाँ विचाराधीन व्युत्पत्तियां हैं, अतिरिक्त-ऋणात्मक पूर्णांक हैं, और किसी व्युत्पत्ति का घातांक यह दर्शाता है कि संक्रियक में यह व्युत्पत्ति कितनी बार बनाई गई है।


योग व्युत्पत्ति का क्रम कहलाता है। अगर व्युत्पत्ति संचालिका मूल व्युत्पत्तियों में से एक है। अगर , एक में पहचान फलन होता है, जिसे सामान्यतः क्रम शून्य का अद्वितीय व्युत्पत्ति संक्रियक माना जाता है। इन सम्मेलनों के साथ, व्युत्पत्ति संचालक विचाराधीन व्युत्पत्ति के समूह पर एक मुक्त क्रमविनिमेय मोनोइड बनाते हैं।

किसी तत्व का व्युत्पन्न विभेदक वलय का व्युत्पत्ति संक्रियक का अनुप्रयोग है अर्थात्, उपरोक्त संकेतन के साथ है, एक उचित व्युत्पन्न सकारात्मक क्रम का व्युत्पन्न है।[4]: 58–59 

विभेदक आदर्श

विभेदक आदर्श विभेदक वलय वलय का एक आदर्श है जो वलय की व्युत्पत्ति के तहत बंद (स्थिर) है; वह है, प्रत्येक व्युत्पत्ति के लिए और प्रत्येक है। विभेदक आदर्श को उचित कहा जाता है यदि वह संपूर्ण वलय नहीं है। भ्रम से बचने के लिए, एक आदर्श जो विभेदक आदर्श नहीं है, उसे कभी-कभी बीजगणितीय आदर्श कहा जाता है।

विभेदक आदर्श का मूलांक बीजगणितीय आदर्श के रूप में उसके मूलांक के समान होता है, अर्थात, वलय तत्वों का समूह जिनकी आदर्श में शक्ति होती है। विभेदक आदर्श का मूलांक भी विभेदक आदर्श है। रेडिकल या पूर्ण विभेदक आदर्श विभेदक आदर्श है जो इसके रेडिकल के बराबर होता है।[6]: 3–4  एक अभाज्य विभेदक आदर्श एक विभेदक विचारधारा है जो सामान्य अर्थों में अभाज्य आदर्श है; अर्थात्, यदि कोई उत्पाद आदर्श से संबंधित है, तो कम से कम एक कारक आदर्श से संबंधित है। एक अभाज्य विभेदक आदर्श हमेशा एक मूल विभेदक आदर्श होता है।

रिट की एक खोज यह है कि, हालांकि बीजगणित का उत्कृष्ट सिद्धांत विभेदक आदर्शों के लिए काम नहीं करता है, लेकिन इसका एक बड़ा हिस्सा कट्टरपंथी विभेदक आदर्शों तक बढ़ाया जा सकता है, और यह उन्हें विभेदक बीजगणित में मौलिक बनाता है।

विभेदक आदर्शों के किसी भी परिवार का प्रतिच्छेदन एक विभेदक आदर्श है, और मूल विभेदक आदर्शों के किसी भी परिवार का प्रतिच्छेदन एक मूल विभेदक आदर्श है।[4]: 61–62  यह इस प्रकार है, एक उपसमुच्चय दिया गया है एक विभेदक वलय में, इसके द्वारा उत्पन्न तीन आदर्श होते हैं, जो क्रमशः, सभी बीजगणितीय आदर्शों, सभी विभेदक आदर्शों और सभी मौलिक विभेदक आदर्शों के प्रतिच्छेदन होते हैं जिनमें यह सम्मिलित होता है।[4]: 61–62 [7]: 21 

द्वारा उत्पन्न बीजगणितीय आदर्श के तत्वों के परिमित रैखिक संयोजनों का समुच्चय है और आमतौर पर इसे इस रूप में दर्शाया जाता है या द्वारा उत्पन्न विभेदक आदर्श के तत्वों के परिमित रैखिक संयोजनों का समुच्चय है और इन तत्वों के किसी भी क्रम के व्युत्पन्न; इसे आमतौर पर इस रूप में दर्शाया जाता है कब परिमित है, आमतौर पर बीजीय आदर्श के रूप में अंतिम रूप से उत्पन्न आदर्श नहीं होता है।

द्वारा उत्पन्न मौलिक विभेदक आदर्श सामान्यतः के रूप में दर्शाया जाता है अन्य दो वाद की तरह इसके तत्व को चित्रित करने का कोई ज्ञात तरीका नहीं है।

विभेदक बहुपद

एक विभेदक क्षेत्र पर एक विभेदक बहुपद विभेदक समीकरण की अवधारणा का एक औपचारिकीकरण है जैसे कि समीकरण में दिखाई देने वाले ज्ञात कार्य संबंधित हैं और अनिश्चित अज्ञात कार्यों के प्रतीक हैं।

तो चलो एक विभेदक क्षेत्र हो, जो सामान्यतः पर (लेकिन जरूरी नहीं) तर्कसंगत भिन्नों का एक क्षेत्र हो (बहुभिन्नरूपी बहुपदों के भिन्न), व्युत्पत्तियों से सुसज्जित ऐसा है कि और अगर (सामान्य आंशिक व्युत्पन्न)।

वलय को परिभाषित करने के लिए में विभेदक बहुपदों का व्युत्पत्तियों के साथ एक रूप के नए अनिश्चितों की अनंतता का परिचय देता है कहाँ क्या कोई व्युत्पत्ति संचालक क्रम से उच्चतर है 1. इस संकेतन के साथ, इन सभी अनिश्चितों में प्राकृतिक व्युत्पत्तियों के साथ बहुपदों का समुच्चय है (प्रत्येक बहुपद में केवल अनिश्चितों की एक सीमित संख्या सम्मिलित होती है)। विशेषकर, यदि किसी के पास

यहां तक ​​कि जब विभेदक बहुपदों का एक वलय नोथेरियन वलय नहीं है। इससे बहुपद वलय के इस सामान्यीकरण का सिद्धांत कठिन हो जाता है। हालाँकि, दो तथ्य ऐसे सामान्यीकरण की अनुमति देते हैं।

सबसे पहले, विभेदक बहुपद की एक सीमित संख्या में एक साथ अनिश्चित संख्याओं की एक सीमित संख्या सम्मिलित होती है। इसका तात्पर्य यह है कि बहुपदों का प्रत्येक गुण जिसमें बहुपदों की एक सीमित संख्या सम्मिलित होती है, विभेदक बहुपदों के लिए सत्य रहता है। विशेष रूप से, सबसे बड़े सामान्य भाजक मौजूद हैं, और विभेदक बहुपदों की एक वलय एक अद्वितीय गुणनखंडन डोमेन है।

दूसरा तथ्य यह है कि यदि क्षेत्र इसमें परिमेय संख्याओं का क्षेत्र, विभेदक बहुपदों के वलय सम्मिलित हैं मूल विभेदक आदर्शों पर आरोही श्रृंखला की स्थिति को संतुष्ट करें। यह रिट का प्रमेय इसके सामान्यीकरण से निहित है, जिसे कभी-कभी रिट-रौडेनबश आधार प्रमेय भी कहा जाता है जो दावा करता है कि यदि एक रिट बीजगणित है (वह, एक विभेदक वलय है जिसमें तर्कसंगत संख्याओं का क्षेत्र सम्मिलित है),[8]: 12  जो कट्टरपंथी विभेदक आदर्शों पर आरोही श्रृंखला की स्थिति को संतुष्ट करता है, फिर विभेदक बहुपद की वलय एक ही संपत्ति को संतुष्ट करता है (प्रमेय को पुनरावृत्त रूप से लागू करके एक व्यक्ति अविभाज्य से बहुभिन्नरूपी मामले में गुजरता है)।[8]: 45, 48 : 56–57 [4]: 126–129 

इस नोथेरियन संपत्ति का तात्पर्य है कि, विभेदक बहुपद की एक वलय में, प्रत्येक कट्टरपंथी विभेदक आदर्श परिमित रूप से उत्पन्न होता है, इस अर्थ में कि यह सबसे छोटा कट्टरपंथी विभेदक आदर्श है जिसमें बहुपद का एक सीमित समूह होता है।[9] यह जनरेटर के ऐसे सीमित समूह द्वारा एक कट्टरपंथी विभेदक आदर्श का प्रतिनिधित्व करने और इन आदर्शों के साथ कंप्यूटिंग की अनुमति देता है। हालाँकि, बीजगणितीय मामले की कुछ सामान्य गणनाओं को बढ़ाया नहीं जा सकता है। विशेष रूप से दो रेडिकल विभेदक आदर्शों की समानता के रेडिकल विभेदक आदर्श में किसी तत्व की सदस्यता का परीक्षण करने के लिए कोई कलन विधि ज्ञात नहीं है।

नोथेरियन संपत्ति का एक और परिणाम यह है कि एक कट्टरपंथी विभेदक आदर्श को विशिष्ट रूप से प्रधान विभेदक आदर्शों की एक सीमित संख्या के प्रतिच्छेदन के रूप में व्यक्त किया जा सकता है, जिसे आदर्श के आवश्यक प्रधान घटक कहा जाता है।[10]: 8 

उन्मूलन विधियाँ

उन्मूलन सिद्धांत कलन विधि हैं जो विभेदक समीकरणों के समूह से व्युत्पन्न के एक निर्दिष्ट समूह को प्राथमिकता से हटा देते हैं, जो आमतौर पर विभेदक समीकरणों के समूह को बेहतर ढंग से समझने और हल करने के लिए किया जाता है।

उन्मूलन विधियों की श्रेणियों में वू की विशेषता समूह विधियों की विधि, विभेदक ग्रोबनेर आधार | ग्रोबनेर आधार विधियां और परिणामी आधारित विधियां सम्मिलित हैं।[4][11][12][13][14][15][16]

उन्मूलन कलन विधि में उपयोग किए जाने वाले सामान्य संचालन में सम्मिलित हैं 1) श्रेणी व्युत्पन्न, बहुपद और बहुपद समूह, 2) एक बहुपद के प्रमुख व्युत्पन्न, प्रारंभिक और पृथक्करण की पहचान करना, 3) बहुपद कमी, और 4) विशेष बहुपद समूह बनाना।

श्रेणी व्युत्पन्न

व्युत्पन्न की श्रेणी एक कुल क्रम और एक स्वीकार्य क्रम है, जिसे इस प्रकार परिभाषित किया गया है:[4]: 75–76 [17]: 1141 [10]: 10 

प्रत्येक व्युत्पन्न में एक पूर्णांक ट्यूपल होता है, और एकपदी क्रम व्युत्पन्न के पूर्णांक ट्यूपल को रैंक करके व्युत्पन्न को रैंक करता है। पूर्णांक टपल विभेदक अनिश्चित, व्युत्पन्न के बहु-सूचकांक की पहचान करता है और व्युत्पन्न के क्रम की पहचान कर सकता है। श्रेणी के प्रकारों में सम्मिलित हैं:[18]: 83 

  • क्रमबद्ध श्रेणी:
  • उन्मूलन श्रेणी:

इस उदाप्रत्येकण में, पूर्णांक टुपल विभेदक अनिश्चित और व्युत्पन्न के बहु-सूचकांक और शब्दकोषीय क्रम की पहचान करता है, , व्युत्पन्न की रैंक निर्धारित करता है।[19]: 4 

.


अग्रणी व्युत्पन्न, प्रारंभिक और विभाजक

यह मानक बहुपद रूप है: .[4]: 75–76 [19]: 4 

  • नेता या अग्रणी व्युत्पन्न बहुपद का सर्वोच्च रैंक वाला व्युत्पन्न है: .
  • गुणांक प्रमुख व्युत्पन्न सम्मिलित नहीं है .
  • बहुपद की डिग्री बहुपद का अग्रणी व्युत्पन्न का सबसे बड़ा घातांक है: .
  • प्रारंभिक गुणांक है: .
  • रैंक बहुपद की डिग्री तक उठाया गया प्रमुख व्युत्पन्न है: .
  • विभेदक रूप से बंद क्षेत्रव्युत्पन्न है: .

वे समूह को अलग कर देते हैं , प्रारंभिक समूह है और संयुक्त समूह है .[12]: 159 

कमी

आंशिक रूप से कम (आंशिक सामान्य रूप) बहुपद बहुपद के संबंध में इंगित करता है कि ये बहुपद अतिरिक्त-जमीनी क्षेत्र तत्व हैं, , और का कोई उचित व्युत्पन्न नहीं है .[4]: 75 [18]: 84 [12]: 159 

आंशिक रूप से कम किया गया बहुपद बहुपद के संबंध में बन जाता है घटा हुआ (सामान्य रूप) बहुपद इसके संबंध में यदि की डिग्री में की डिग्री से कम है में .[4]: 75 [18]: 84 [12]: 159 

एक autoreduced बहुपद समूह में प्रत्येक बहुपद समूह के प्रत्येक दूसरे बहुपद के संबंध में कम हो जाता है। प्रत्येक स्वतः कम किया गया समूह परिमित है। एक स्वतः कम किया गया समूह त्रिकोणीय अपघटन है जिसका अर्थ है कि प्रत्येक बहुपद तत्व का एक अलग अग्रणी व्युत्पन्न होता है।[6]: 6 [4]: 75 

रिट का न्यूनीकरण एल्गोरिथ्म पूर्णांकों की पहचान करता है और एक विभेदक बहुपद को रूपांतरित करता है निम्न या समान रैंक वाले शेष बहुपद के लिए बहुपद के सबसे बड़े सामान्य भाजक का उपयोग करना यह स्वतः कम किए गए बहुपद समूह के संबंध में कम हो गया है . एल्गोरिथम का पहला चरण इनपुट बहुपद को आंशिक रूप से कम करता है और एल्गोरिथम का दूसरा चरण बहुपद को पूरी तरह से कम करता है। कमी का सूत्र है:[4]: 75 


श्रेणी बहुपद समूह

तय करना यदि अग्रणी व्युत्पन्न की रैंक है तो यह एक विभेदक श्रृंखला है और के संबंध में कम किया गया है [11]: 294 

स्वतः कम किए गए समूह और प्रत्येक में क्रमबद्ध बहुपद तत्व होते हैं। यह प्रक्रिया समान रूप से अनुक्रमित जोड़े की तुलना करके दो स्वचालित समूहों को रैंक करती है दोनों स्वतः कम किए गए समूहों से बहुपद।[4]: 81 

  • और और .
  • अगर वहां एक है ऐसा है कि के लिए और .
  • अगर और के लिए .
  • अगर और के लिए .

बहुपद समुच्चय

एक विशेषता समूह आदर्श के सभी स्वतः कम किए गए उपसमुच्चय के बीच आर्ग मैक्स स्वतः कम किए गए उपसमुच्चय है जिनके उपसमुच्चय बहुपद विभाजक आदर्श के अतिरिक्त-सदस्य हैं .[4]: 82 

डेल्टा बहुपद बहुपद युग्म पर लागू होता है जिनके नेता एक समान व्युत्पन्न साझा करते हैं, . बहुपद जोड़ी के अग्रणी व्युत्पन्न के लिए सबसे कम सामान्य व्युत्पन्न संक्रियकहै , और डेल्टा बहुपद है:[4]: 136 [12]: 160 

एक सुसंगत समुच्चय एक बहुपद समुच्चय है जो इसके डेल्टा बहुपद युग्मों को शून्य कर देता है।[4]: 136 [12]: 160 

नियमित व्यवस्था और नियमित आदर्श

एक नियमित प्रणाली इसमें विभेदक समीकरणों का एक स्वचालित और सुसंगत समूह सम्मिलित है और एक असमिका समुच्चय समूह के साथ समीकरण समूह के संबंध में कम हो गया।[12]: 160 

नियमित विभेदक आदर्श और नियमित बीजगणितीय आदर्श आदर्श भागफल हैं जो एक नियमित प्रणाली से उत्पन्न होते हैं।[12]: 160  लेज़ार्ड का लेम्मा बताता है कि नियमित विभेदक और नियमित बीजगणितीय आदर्श कट्टरपंथी आदर्श हैं।[20]

  • नियमित विभेदक आदर्श:
  • नियमित बीजगणितीय आदर्श:


रोसेनफेल्ड-ग्रोबनेर कलन विधि

रोसेनफेल्ड-ग्रोबनेर एल्गोरिथ्म नियमित रेडिकल विभेदक आदर्शों के एक सीमित प्रतिच्छेदन के रूप में रेडिकल विभेदक आदर्श को विघटित करता है। विशिष्ट समूहों द्वारा दर्शाए गए ये नियमित विभेदक कट्टरपंथी आदर्श आवश्यक रूप से प्रमुख आदर्श नहीं हैं और प्रतिनिधित्व आवश्यक रूप से प्राथमिक अपघटन नहीं है।[12]: 158 

सदस्यता समस्या यह निर्धारित करना है कि क्या एक विभेदक बहुपद है विभेदक बहुपदों के एक समूह से उत्पन्न आदर्श का एक सदस्य है . रोसेनफेल्ड-ग्रोबनेर कलन विधि ग्रोबनेर आधारों के समूह उत्पन्न करता है। कलन विधि यह निर्धारित करता है कि एक बहुपद आदर्श का सदस्य है यदि और केवल तभी जब आंशिक रूप से कम किया गया शेष बहुपद ग्रोबनर आधारों द्वारा उत्पन्न बीजगणितीय आदर्श का सदस्य हो।[12]: 164 

रोसेनफेल्ड-ग्रोबनेर कलन विधि विभेदक समीकरणों के समाधान के टेलर श्रृंखला विस्तार बनाने की सुविधा प्रदान करता है।[21]

उदाहारण

विभेदक क्षेत्र

उदहारण 1: एकल मानक व्युत्पत्ति के साथ विभेदक मेरोमोर्फिक फलन क्षेत्र है।

उदहारण 2: व्युत्पत्ति के रूप में एक विभेदक संक्रियक के साथ एक विभेदक क्षेत्र है।

व्युत्पत्ति

परिभाषित करना शिफ्ट संक्रियक के रूप में बहुपद के लिए है। .

एक शिफ्ट-इनवेरिएंट संक्रियक शिफ्ट संक्रियक के साथ आवागमन करता है ।.

पिंचरले व्युत्पन्न, शिफ्ट-इनवेरिएंट संक्रियक की व्युत्पत्ति , है ।.[22]: 694 

स्थिरांक

पूर्णांकों का वलय है, और प्रत्येक पूर्णांक एक स्थिरांक है।

  • 1 की व्युत्पत्ति शून्य है.
  • भी है।
  • प्रेरण द्वारा है।

परिमेय संख्याओं का क्षेत्र है , और प्रत्येक परिमेय संख्या एक स्थिरांक है।

  • प्रत्येक परिमेय संख्या पूर्णांकों का भागफल होती है।
  • यह मानते हुए कि पूर्णांकों की व्युत्पत्तियाँ शून्य हैं, भागफल के लिए व्युत्पत्ति सूत्र लागू करें:
.

विभेदक सबवलय

स्थिरांक, स्थिरांकों के उपवलय का निर्माण करते हैं।[4]: 60 

विभेदक आदर्श

तत्व विभेदक वलय में .[6] विभेदकआदर्श उत्पन्न करता है।.[6]: 4 

एक विभेदक वलय पर बीजगणित

पहचान वाली कोई भी वलय बीजगणित एक है।[23]: 343  इस प्रकार एक विभेदक वलय बीजगणित है।

अगर वलय यूनिटल वलय के केंद्र का एक उपवलय है , तब एक बीजगणित है।[23]: 343  इस प्रकार, एक विभेदक वलय अपने विभेदक उपवलय पर एक बीजगणित है। यह बीजगणित की उसके उप-वलय पर प्राकृतिक संरचना है।[4]: 75 

विशेष और सामान्य बहुपद

वलय असमानेय बहुपद हैं, (सामान्य, वर्गमुक्त) और (विशेष, आदर्श जनरेटर)हैं।

 :

बहुपद

श्रेणी

वलय व्युत्पन्न है और * प्रत्येक व्युत्पन्न को पूर्णांक टपल में मैप करें: .

  • श्रेणी व्युत्पन्न और पूर्णांक टुपल्स: .

अग्रणी व्युत्पन्न और प्रारंभिक

अग्रणी व्युत्पन्न, और प्रारंभिक हैं:

 :  :

विभाजक

.

स्वचालित समूह

  • स्वचालित समूह और हैं. प्रत्येक समूह एक अलग बहुपद अग्रणी व्युत्पन्न के साथ त्रिकोणीय है।
  • अतिरिक्त-स्वचालित समूह केवल आंशिक रूप से कम किया गया है इसके संबंध में ; यह समुच्चय अतिरिक्त-त्रिकोणीय है क्योंकि बहुपदों का अग्रणी विभेदक समान है।

अनुप्रयोग

प्रतीकात्मक एकीकरण

प्रतीकात्मक एकीकरण बहुपदों और उनके व्युत्पन्न जैसे प्रत्येक्मिटमें कमी, सीज़िचोव्स्की कलन विधि, लैजार्ड-रियोबू-ट्रेजर कलन विधि, होरोविट्ज़-ओस्ट्रोग्रैडस्की कलन विधि, वर्गमुक्त गुणनखंडन और विशेष और सामान्य बहुपदों को विभाजित करने वाले गुणनखंडन से जुड़े कलन विधि का उपयोग करता है।[5]: 41, 51, 53, 102, 299, 309 

विभेदक समीकरण

विभेदक बीजगणित यह निर्धारित कर सकता है कि विभेदक बहुपद समीकरणों के एक समूह का कोई समाधान है या नहीं है। कुल श्रेणी क्रम बीजगणितीय बाधाओं की पहचान कर सकती है। एक उन्मूलन श्रेणी यह निर्धारित कर सकती है कि स्वतंत्र चर का एक या चयनित समूह विभेदक समीकरणों को व्यक्त कर सकता है या नहीं सकता है। त्रिकोणीय अपघटन और उन्मूलन क्रम का उपयोग करके, चरण-वार विधि में एक समय में एक विभेदक अनिश्चित विभेदक समीकरणों को हल करना संभव हो सकता है। एक अन्य दृष्टिकोण ज्ञात समाधान प्रपत्र के साथ विभेदक समीकरणों का एक वर्ग बनाना है जो की किसी विभेदक समीकरण को उसके वर्ग से मिलाने से समीकरण के समाधान की पहचान हो जाती है। समीकरणों की विभेदक-बीजगणितीय प्रणाली के संख्यात्मक एकीकरण की सुविधा के लिए विधियाँ उपलब्ध हैं।[10]: 41–47 

कैओस सिद्धांत के साथ अतिरिक्त-रेखीय गतिशील प्रणालियों के एक अध्ययन में, शोधकर्ताओं ने विभेदक समीकरणों को एकल स्थान चर से जुड़े सामान्य विभेदक समीकरणों में कम करने के लिए विभेदक उन्मूलन का उपयोग किया। वे अधिकतर वाद में सफल रहे, और इससे अनुमानित समाधान विकसित करने, कैओस सिद्धांत का कुशलतापूर्वक मूल्यांकन करने और लाइपापुनोव कार्यों का निर्माण करने में मदद मिली।[24] शोधकर्ताओं ने जैव रासायनिक प्रतिक्रियाओं के लिए कोशिका जीव विज्ञान, पूरक जैव रसायन प्रतिरूप, प्राचल अनुमान और स्थिर अवस्था अर्ध-स्थिर अवस्था सन्निकटन (QSSA) को समझने के लिए विभेदक उन्मूलन लागू किया है।[25][26]विभेदक ग्रोबनेर आधारों का उपयोग करते हुए, शोधकर्ताओं ने अतिरिक्त-रेखीय विभेदक समीकरणों के अतिरिक्त-उत्कृष्ट समरूपता गुणों की जांच की है।[27] अन्य अनुप्रयोगों में नियंत्रण सिद्धांत, प्रतिरूप सिद्धांत और बीजगणितीय ज्यामिति सम्मिलित हैं।[28][9][7] विभेदक बीजगणित विभेदक-विभेदक समीकरणों पर भी लागू होता है।[17]

व्युत्पत्तियों के साथ बीजगणित

विभेदक श्रेणीबद्ध सदिश स्थान

चुनौतीपूर्ण समस्याएँ

रिट समस्या पूछती है कि क्या कोई कलन विधि है जो यह निर्धारित करता है कि क्या प्रमुख विभेदक आदर्श में दूसरा प्रमुख विभेदक आदर्श होता है जब विशेषता समूह दोनों आदर्शों की पहचान करते हैं।

कोल्चिन कैटेनरी अनुमान में कहा गया है


जैकोबी बाध्य अनुमान एक विभेदक प्रकार के अपरिवर्तनीय घटक के क्रम के लिए ऊपरी सीमा की चिंता करता है। बहुपद के आदेश जैकोबी संख्या निर्धारित करते हैं, और अनुमान यह है कि जैकोबी संख्या इस सीमा को निर्धारित करती है।

  1. 1.0 1.1 Ritt 1932.
  2. Ritt 1930.
  3. Ritt 1950.
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 Kolchin 1973.
  5. 5.0 5.1 Bronstein 2005.
  6. 6.0 6.1 6.2 6.3 Sit 2002.
  7. 7.0 7.1 Buium 1994.
  8. 8.0 8.1 Kaplansky 1976.
  9. 9.0 9.1 Marker 2000.
  10. 10.0 10.1 10.2 Hubert 2002.
  11. 11.0 11.1 Li & Yuan 2019.
  12. 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 Boulier et al. 1995.
  13. Mansfield 1991.
  14. Ferro 2005.
  15. Chardin 1991.
  16. Wu 2005b.
  17. 17.0 17.1 Gao et al. 2009.
  18. 18.0 18.1 18.2 Ferro & Gerdt 2003.
  19. 19.0 19.1 Wu 2005a.
  20. Morrison 1999.
  21. Boulier et al. 2009b.
  22. Rota, Kahaner & Odlyzko 1973.
  23. 23.0 23.1 Dummit & Foote 2004.
  24. Harrington & VanGorder 2017.
  25. Boulier 2007.
  26. Boulier & Lemaire 2009a.
  27. Clarkson & Mansfield 1994.
  28. Diop 1992.