क्रमविनिमेय वलय
गणित में, क्रम विनिमेय वलय में गुणन संक्रिया क्रमविनिमेय होती है। क्रमविनिमेय वलयों के अध्ययन को क्रमविनिमेय बीजगणित कहा जाता है। पूरक रूप से, गैर विनिमेय बीजगणित वलय गुणों का अध्ययन है जो क्रमविनिमेय वलय के लिए विशिष्ट नहीं हैं। यह अंतर क्रमविनिमेय वलय के मूलभूत गुणों की उच्च संख्या से उत्पन्न होता है जो गैर विनिमेय वलय तक विस्तारित नहीं होते हैं।
Algebraic structure → Ring theory Ring theory |
---|
![]() |
परिभाषा और पहले उदाहरण
वलय एक समुच्चय है(गणित) जो दो द्विआधारी संक्रिया से सुसज्जित है, यानी वलय के किसी भी दो तत्व को एक तिहाई से जोड़ता है। उन्हें जोड़ और गुणा कहा जाता है और सामान्यतः तथा " ", उदाहरण तथा हैI वलय बनाने के लिए इन दो परिचालनों को कई गुणों को पूरा करना पड़ता है: वलय को एबेलियन समूह के साथ-साथ गुणन के तहत एकाभ होना चाहिए, जहां गुणा अतिरिक्त रूप से वितरित होता है, अर्थात।, . जोड़ और गुणा के लिए तत्समक तत्व निरूपित किए गए हैं तथा , क्रमश।
यदि गुणन क्रमविनिमेय है, अर्थात
पहला उदाहरण
महत्वपूर्ण उदाहरण, और कुछ महत्वपूर्ण अर्थों में, पूर्णांकों का वलय जोड़ और गुणा के दो संक्रियाओं के साथ है। चूँकि पूर्णांकों का गुणन क्रमविनिमेय संक्रिया है, यह क्रमविनिमेय वलय है। इसे सामान्यतः जर्मन शब्द ज़ाहलेन(नंबर) के संक्षिप्त नाम के रूप में दर्शाया जाता है।
क्षेत्र(गणित) क्रमविनिमेय वलय है जहाँ और प्रत्येक गैर-शून्य तत्व व्युत्क्रमणीय है, यानी, गुणक व्युत्क्रम है जैसे कि इसलिए, परिभाषा के अनुसार, कोई भी क्षेत्र क्रमविनिमेय वलय है। परिमेय संख्या, वास्तविक संख्या और जटिल संख्याएँ क्षेत्र बनाती हैं।
यदि दी गई क्रमविनिमेय वलय है, तो चर में सभी बहुपदों का समुच्चय है जिनके गुणांक में हैं बहुपद वलय बनाता है, जिसे निरूपित किया जाता है। वही कई चरों के लिए सही है।
यदि कुछ सांस्थितिक समष्टि है, उदाहरण के लिए कुछ का उपसमुच्चय, वास्तविक- या जटिल-मान सतत फलन क्रमविनिमेय वलय बनाता है। अलग-अलग या पूर्णसममितिक फलन के लिए भी यही सच है, जब दो अवधारणाओं को परिभाषित किया जाता है, जैसे कि जटिल बहुसंखयक है।
विभाज्यता
क्षेत्रों के विपरीत, जहां प्रत्येक अशून्य तत्व गुणात्मक रूप से व्युत्क्रमणीय होता है, वलय के लिए विभाज्यता की अवधारणा अधिक समृद्ध होती है। तत्व वलय का को इकाई कहा जाता है यदि इसमें गुणक व्युत्क्रम होता है। अन्य विशेष प्रकार का तत्व शून्य विभाजक है, अर्थात एक तत्व ऐसा है कि वलय का गैर-शून्य तत्व विद्यमान है जैसे कि अगर के पास कोई गैर-शून्य शून्य विभाजक नहीं है, तो इसे पूर्णांकीय प्रांत(या प्रक्षेत्र) कहा जाता है। एक तत्व संतोषजनक किसी धनात्मक पूर्णांक के लिए शून्य तत्व कहा जाता है।
स्थानीयकरण
वलय का स्थानीयकरण ऐसी प्रक्रिया है जिसमें कुछ तत्वों को प्रतीप्य कर दिया जाता है, यानी गुणक व्युत्क्रम को वलय में जोड़ दिया जाता है। निश्चित रूप , का गुणात्मक रूप से बंद उपसमुच्चय है(अर्थात जब भी तो ऐसा है ) तो पर का स्थानीयकरण, या हर के साथ भिन्नों का वलय, सामान्यतः प्रतीकों के होते हैं
कुछ नियमों के अधीन जो परिमेय संख्याओं से परिचित निरस्तीकरण की निराकरण करते हैं। वास्तव में, इस भाषा में , का सभी शून्येतर पूर्णांकों पर स्थानीयकरण है। यह निर्माण के बजाय किसी भी पूर्णांकीय प्रांत के लिए काम करता है। स्थानीयकरण क्षेत्र है, जिसे का भागफल क्षेत्र कहा जाता है।
पूर्णता और मापदंड
अनिवार्य रूप से क्रमविनिमेय वलय के लिए निम्न में से कई धारणाएं विद्यमान हैं, लेकिन परिभाषाएं और गुण सामान्यतः अधिक जटिल होते हैं। उदाहरण के लिए, क्रमविनिमेय वलय में सभी पूर्णता स्वतः ही दो-पक्षीय पूर्णता होते हैं| दो-पक्षीय, जो स्थिति को काफी सरल करता है।
मापदंड
वलय मापांक क्षेत्र के लिए सदिश समष्टि के समान है। अर्थात्, मापदंड में तत्वों को जोड़ा जा सकता है, उन्हें के तत्वों से गुणा किया जा सकता है, जो सदिश समष्टि के समान स्वयंसिद्धों के अधीन है।
सदिश समष्टि की तुलना में मापदंड का अध्ययन महत्वपूर्ण रूप से अधिक सम्मिलित है, क्योंकि ऐसे मापदंड हैं जिनका कोई आधार नहीं है, अर्थात, रैखिक स्पंदन को सम्मिलित नहीं करते हैं जिनके तत्व रैखिक रूप से स्वतंत्र हैं। मापदंड जिसका आधार होता है, उसे मुक्त मापदंड कहा जाता है, और मुक्त मापदंड के सबमॉड्यूल को मुक्त होने की जरूरत नहीं है।
परिमित प्रकार का मापदंड जिसमें परिमित सीमा समुच्चय होता है। परिमित प्रकार के मापदंड रैखिक बीजगणित में परिमित-आयामी सदिश समष्टि की भूमिका के समान क्रमविनिमेय वलय के सिद्धांत में मौलिक भूमिका निभाते हैं। विशेष रूप से, नोथेरियन वलय है(नीचे § नोथेरियन रिंग्सभी देखें) को वलय के रूप में परिभाषित किया जा सकता है जैसे कि परिमित प्रकार के मापदंड का प्रत्येक सबमॉड्यूल भी परिमित प्रकार का होता है।
पूर्णता
वलय के पूर्णता के सबमॉड्यूल, यानी, इसमें निहित मापदंड हैं। अधिक विस्तार से, एक पूर्णता , का गैर-रिक्त उपसमुच्चय है, जैसे कि सभी में , और , हैं दोनों तथा में हैं। विभिन्न अनुप्रयोगों के लिए, वलय के पूर्णता को समझना विशेष महत्व का है, लेकिन अक्सर सामान्य रूप से मापदंड का अध्ययन करके आगे बढ़ता है।
किसी भी वलय की दो पूर्णता होते हैं, अर्थात् शून्य पूर्णता तथा पूरी वलय । यदि क्षेत्र है, तो ये दो पूर्णता ही ठीक हैं। किसी भी उपसमुच्चय को देखते हुए का(जहाँ कुछ सूची समुच्चय है), द्वारा उत्पन्न किया गया पूर्णता सबसे छोटा पूर्णता है जिसमें सम्मिलित है। समतुल्य रूप से, यह परिमित रैखिक संयोजन द्वारा दिया जाता है
प्रमुख पूर्णता प्रक्षेत्र
यदि में एक ही तत्व होता है, तो द्वारा उत्पन्न पूर्णता में के गुणक होते हैं, अर्थात, यानी फॉर्म के तत्व स्वच्छंद तत्वों के लिए है। ऐसे पूर्णता को अभाज्य पूर्णता कहा जाता है। यदि प्रत्येक गुणजगुण अभाज्य गुणजावली है, को अभाज्य पूर्णता वलय कहा जाता है, दो महत्वपूर्ण मामले हैं तथा , क्षेत्र पर बहुपद वलय है। ये दोनों अतिरिक्त प्रक्षेत्र हैं, इसलिए इन्हें प्रमुख पूर्णता प्रक्षेत्र कहा जाता है।
सामान्य वलय के विपरीत, प्रमुख पूर्णता प्रक्षेत्र के लिए, व्यक्तिगत तत्वों के गुण पूरी तरह से वलय के गुणों से दृढ़ता से बंधे होते हैं। उदाहरण के लिए, कोई भी प्रमुख पूर्णता प्रक्षेत्र एकमात्र गुणनखण्ड प्रक्षेत्र(यूएफडी) है, जिसका मतलब है कि कोई भी तत्व अलघुकरणीय तत्व का गुणन है, अनोखे तरीके से(गुणन खंड को क्रम बदल करने तक)। यहां, प्रक्षेत्र में तत्व को उत्पाद के रूप में व्यक्त करने का एकमात्र तरीका अलघुकरणीय कहा जाता है
तत्व प्रमुख तत्व है यदि जब भी किसी उत्पाद को विभाजित करता है , विभाजित या को करता है। प्रक्षेत्र में, अभाज्य होने का अर्थ है अलघुकरणीय होना। विशिष्ट गुणनखंडन प्रक्षेत्र में विलोम सत्य है, लेकिन सामान्य रूप से असत्य है।
कारक वलय
पूर्णता की परिभाषा ऐसी है कि "विभाजक" out एक और वलय देता है, गुणनखंड वलय /: यह सहसमुच्चय का समुच्चय है संचालन के साथ
पूर्णता उचित है अगर यह पूरी वलय से छोटा है। पूर्णता जो किसी भी उचित पूर्णता में निहित नहीं है, उसे अधिकतम कहा जाता है। पूर्णता अधिकतम होता है यदि और केवल यदि / क्षेत्र हो। शून्य वलय को छोड़कर, किसी भी वलय(पहचान के साथ) में कम से कम एक अधिकतम पूर्णता होता है, यह ज़ोर्न के लेम्मा से आता है।
नोथेरियन वलय
वलय को नोथेरियन कहा जाता है(एमी नोथेर के सम्मान में, जिन्होंने इस अवधारणा को विकसित किया था) यदि प्रत्येक आरोही श्रृंखला की स्थिति
नोथेरियन होना अत्यधिक महत्वपूर्ण परिमितता की स्थिति है, और स्थिति को ज्यामिति में अक्सर होने वाले कई कार्यों के तहत संरक्षित किया जाता है। उदाहरण के लिए, यदि नोथेरियन है, तो बहुपद वलय (हिल्बर्ट के आधार प्रमेय द्वारा), कोई स्थानीयकरण , और कोई भी कारक वलय / है।
कोई भी गैर-नोथेरियन वलय अपने नोथेरियन सबरिंग्स का संघ(समुच्चय सिद्धांत) है। यह तथ्य, जिसे नोथेरियन सन्निकटन के रूप में जाना जाता है, कुछ प्रमेयों को गैर-नोएथेरियन वलय तक विस्तारित करने की अनुमति देता है।
आर्टिनियन वलय
पूर्णता की प्रत्येक अवरोही श्रृंखला होने पर वलय को आर्टिनियन वलय(एमिल आर्टिन के बाद) कहा जाता है
दिखाता है। वास्तव में, हॉपकिंस-लेविट्ज़की प्रमेय द्वारा, प्रत्येक आर्टिनियन वलय नोथेरियन है। अधिक समुचित रूप से, आर्टिनियन वलय को नोथेरियन वलय के रूप में चित्रित किया जा सकता है जिसका क्रुल आयाम शून्य है।
क्रमविनिमेय वलय का वर्णक्रम
अभाज्य पूर्णता
जैसा कि ऊपर बताया गया था, अद्वितीय कारक करण प्रक्षेत्र है। यह अधिक सामान्य वलय के लिए सही नहीं है, जैसा कि बीजगणितियों ने 19वीं शताब्दी में अनुभव किया था। उदाहरण के लिए, में
कोई भी अधिकतम पूर्णता प्रमुख पूर्णता है या अधिक संक्षेप में, प्रमुख है। इसके अलावा, पूर्णता अभाज्य है अगर और केवल अगर कारक वलय पूर्णांकीय प्रांत है। यह प्रमाणित करना कि पूर्णता अभाज्य है, या समतुल्य है कि वलय में कोई शून्य-भाजक नहीं है, यह बहुत कठिन हो सकता है। इसे व्यक्त करने का दूसरा तरीका यह कहना है कि पूरक(समुच्चय सिद्धांत) गुणात्मक रूप से बंद है। स्थानीयकरण अपने स्वयं के अंकन के लिए पर्याप्त महत्वपूर्ण है : इस वलय की केवल अधिकतम गुणजावली है, जिसका नाम है। ऐसे वलय को स्थानिक वलय कहा जाता है।
वर्णक्रम
वलय का वर्णक्रम ,[nb 1] द्वारा चिह्नित , के सभी प्रमुख पूर्णता का समुच्चय है। यह सांस्थिति, जरिस्की सांस्थिति से सुसज्जित है, जो बीजगणितीय गुणों को दर्शाता है: खुले उपसमुच्चय का आधार किसके द्वारा दिया गया है
की व्याख्या एक ऐसे फलन के रूप में करना जो मान f mod p लेता है(अर्थात्, अवशिष्ट क्षेत्र R/p में f की छवि), यह उपसमुच्चय वह स्थान है जहाँ f गैर-शून्य है। वर्णक्रम समुचित अंतर्ज्ञान भी बनाता है कि स्थानीयकरण और कारक केवलय पूरक हैं: प्राकृतिक प्रतिचित्र R → Rf और R → R / fR अनुरूप हैं, उनके ज़ारिस्की सांस्थिति के साथ वलय के स्पेक्ट्रा को समाप्त करने के बाद क्रमशः पूरक खुले और बंद विसर्जन के लिए। . यहां तक कि मूलभूत वलय के लिए, जैसे कि R = Z के लिए दाईं ओर सचित्र, ज़ारिस्की सांस्थिति वास्तविक संख्याओं के समुच्चय पर एक से काफी अलग है।
वर्णक्रम में अधिकतम पूर्णता का समुच्चय होता है, जिसे कभी-कभी mSpec(R) के रूप में दर्शाया जाता है। बीजगणितीय रूप से बंद क्षेत्र के लिए mSpec(k[T1, ..., Tn] /(f1, ..., fm)) समुच्चय के साथ विरोध में है
इस प्रकार, अधिकतम पूर्णता बहुपदों के समाधान समुच्चय के ज्यामितीय गुणों को दर्शाते हैं, जो क्रमविनिमेय वलय के अध्ययन के लिए प्रारंभिक प्रेरणा है। हालांकि, वलय के ज्यामितीय गुणों के हिस्से के रूप में गैर-अधिकतम पूर्णता का विचार कई कारणों से उपयोगी है। उदाहरण के लिए, न्यूनतम अभाज्य पूर्णता(अर्थात्, जो सख्ती से छोटे वाले नहीं होते हैं) Spec R के अलघुकरणीय घटक के अनुरूप होते हैं। यह प्राथमिक अपघटन का ज्यामितीय पुनर्कथन है, जिसके अनुसार किसी भी पूर्णता को सूक्ष्म रूप से कई प्राथमिक पूर्णता के उत्पाद के रूप में विघटित किया जा सकता है। यह तथ्य डेडेकिंड के वलय में प्रमुख पूर्णता में अपघटन का अंतिम सामान्यीकरण है।
अफिन योजनाएं
वर्णक्रम की धारणा क्रमविनिमेय बीजगणित और बीजगणितीय ज्यामिति का सामान्य आधार है। बीजगणितीय ज्यामिति युक्ति R को शीफ(गणित) (एक इकाई जो स्थानिक रूप से परिभाषित कार्यों को एकत्र करती है, यानी अलग-अलग खुले उपसमुच्चय पर) के साथ समाप्त करके आगे बढ़ती है। स्पेस और शीफ के तथ्य को एफाइन स्कीम कहा जाता है। अफिन योजना दी गई है, अंतर्निहित वलय R को वैश्विक वर्गों के रूप में पुनर्प्राप्त किया जा सकता है। इसके अलावा, वलय और एफ़िन योजनाओं के बीच यह एक-से-एक पत्राचार भी वलय समरूपता के साथ संगत है: कोई भी f : R → S विपरीत दिशा में सतत प्रतिचित्र को जन्म देता है
दो उक्त श्रेणियों की श्रेणियों की परिणामी समानता ज्यामितीय तरीके से वलय के बीजगणितीय गुणों को उपयुक्त रूप से दर्शाती है।
इस तथ्य के समान कि बहुसंखयक(गणित) स्थानिक रूप से Rn के खुले उपसमुच्चय द्वारा दिए गए हैं, अफिन योजना(गणित) के लिए स्थानिक प्रतिरूप हैं, जो बीजगणितीय ज्यामिति में अध्ययन की वस्तु हैं। इसलिए, क्रमविनिमेय वलय से संबंधित कई धारणाएं ज्यामितीय अंतर्ज्ञान से उत्पन्न होती हैं।
आयाम
वलय R का क्रुल आयाम(या आयाम) dim R, R में स्वतंत्र तत्वों की गिनती करके, मोटे तौर पर बोलकर, वलय के आकार को मापता है। क्षेत्र k पर बीजगणित के आयाम को चार गुणों द्वारा स्वयंसिद्ध किया जा सकता है:
- आयाम एक स्थानिक गुण है: dim R = supp ∊ Spec R dim Rp.
- आयाम निलपोटेंट तत्वों से स्वतंत्र है: यदि I ⊆ R निलपोटेंट है तो dim R = dim R / I
- परिमित विस्तार के तहत आयाम स्थिर रहता है: यदि S एक R-बीजगणित है जो R-मापदंड के रूप में अंतिम रूप से उत्पन्न होता है, तो dim S = dim R।
- आयाम को dim k[X1, ..., Xn] = n द्वारा जांच किया जाता है। यह अभिगृहीत n चरों में बहुपद वलय को अफिन n-आयामी समष्टि के बीजगणितीय अनुरूप के रूप में प्रेरित करता है।
आयाम परिभाषित किया गया है, किसी भी वलय R के लिए, प्रमुख पूर्णता की श्रृंखलाओं की लंबाई n के उच्चतम के रूप में
उदाहरण के लिए, क्षेत्र शून्य-आयामी है, क्योंकि एकमात्र प्रमुख पूर्णता शून्य पूर्णता है। पूर्णांक एक-विमीय होते हैं, क्योंकि शृंखलाएँ(0) ⊊(p) के रूप की होती हैं, जहाँ p अभाज्य संख्या है। गैर-नोथेरियन वलय और गैर-स्थानिक वलय के लिए, आयाम अनंत हो सकता है, लेकिन नोथेरियन स्थानिक वलय का परिमित आयाम होता है। उपरोक्त चार स्वयंसिद्धों में से, पहले दो परिभाषा के प्रारंभिक परिणाम हैं, जबकि शेष दो क्रमविनिमेय बीजगणित में महत्वपूर्ण तथ्यों ऊपर जाने वाला प्रमेय और क्रुल का प्रमुख पूर्णता प्रमेय पर टिका है।
वलय समरूपता
वलय समरूपता या, अधिक बोलचाल की भाषा में, केवल प्रतिचित्र, एक प्रतिचित्र f : R → S ऐसा है कि
ये स्थितियाँ f(0) = 0 सुनिश्चित करती हैं। इसी तरह अन्य बीजगणितीय संरचनाओं के लिए, वलय समरूपता इस प्रकार प्रतिचित्र है जो प्रश्न में बीजगणितीय वस्तुओं की संरचना के अनुकूल है। ऐसी स्थिति में S को R-बीजगणित भी कहा जाता है, यह समझकर कि S में s को R के कुछ r से गुणा किया जा सकता है, समुच्चय करके
कर्नेल और f की छवि ker(f) = {r ∈ R, f(r) = 0} और im(f) = f(R) = {f(r), r ∈ R} द्वारा परिभाषित की गई है। कर्नेल R का पूर्णता है, और छवि S का उप-वलय है।
वलय समरूपता को समरूपता कहा जाता है यदि यह द्विभाजित है। वलय समरूपता का एक उदाहरण, जिसे चीनी शेष प्रमेय के रूप में जाना जाता है, है
क्रमविनिमेय वलय, वलय समरूपता के साथ मिलकर श्रेणी बनाते हैं। वलय Z इस श्रेणी की प्रारंभिक वस्तु है, जिसका अर्थ है कि किसी भी क्रमविनिमेय वलय R के लिए, अद्वितीय वलय समरूपता Z → R है। इस प्रतिचित्र के माध्यम से, पूर्णांक n को R का तत्व माना जा सकता है। उदाहरण के लिए , द्विपद सूत्र

दो R-बीजगणित S और T उनके टेन्सर गुणनफल दिए गए हैं
पुनः क्रमविनिमेय R-बीजगणित है। कुछ मामलों में, टेंसर उत्पाद T-बीजगणित खोजने के लिए काम कर सकता है जो Z से संबंधित है क्योंकि S R से संबंधित है। उदाहरण के लिए,
परिमित उत्पत्ति
R-बीजगणित S को परिमित रूप से उत्पन्न(बीजगणित के रूप में) कहा जाता है यदि बहुत से तत्व s1, ..., sn हैं जैसे कि s के किसी भी तत्व को सी में बहुपद के रूप में अभिव्यक्त किया जा सकता है। समतुल्य रूप से, S तुल्याकारी है
बहुत मजबूत स्थिति यह है कि S को R-मापदंड के रूप में परिमित रूप से उत्पन्न किया जाता है, जिसका अर्थ है कि किसी भी S को कुछ सीमित समुच्चय s1, ..., sn के R-रैखिक संयोजन के रूप में व्यक्त किया जा सकता है।
स्थानीयवलय
वलय को स्थानिक कहा जाता है यदि इसमें केवल अधिकतम पूर्णता होता है, जिसे m द्वारा निरूपित किया जाता है। किसी भी(जरूरी नहीं कि स्थानिक) वलय R के लिए, स्थानीयकरण
एक प्रमुख पूर्णता पर p स्थानिक है। यह स्थानीयकरण Spec R "p के आसपास" के ज्यामितीय गुणों को दर्शाता है। क्रमविनिमेय बीजगणित में कई धारणाओं और समस्याओं को उस मामले में कम किया जा सकता है जब आर स्थानिक होता है, जिससे स्थानीयवलय विशेष रूप से गहनता से अध्ययन किए जाने वाले वलय बनते हैं। R के अवशेष क्षेत्र को रूप में परिभाषित किया गया है
कोई भी R-मापदंड M, M / mM द्वारा दिए गए k-सदिश समष्टि को उत्पन्न करता है। नाकायमा की लेम्मा से पता चलता है कि यह मार्ग महत्वपूर्ण जानकारी को संरक्षित कर रहा है: अंतिम रूप से उत्पन्न मापदंड M शून्य है अगर और केवल अगर M / mM शून्य है।
नियमित स्थानीयवलय

k-सदिश समष्टि m/m2 स्पर्शरेखा स्थान का बीजगणितीय अवतरण है। अनौपचारिक रूप से, m के तत्वों को उन कार्यों के रूप में माना जा सकता है जो बिंदु p पर गायब हो जाते हैं, जबकि m2में वे सम्मिलित होते हैं जो कम से कम 2 क्रम के साथ गायब हो जाते हैं। किसी भी नोथेरियन स्थानीय वलय R के लिए, असमानता
सत्य धारण करता है, इस विचार को दर्शाता है कि कोटिस्पर्शज्या(या समतुल्य रूप से स्पर्शरेखा) समष्टि में कम से कम समष्टि विनिर्देश R का आयाम है। यदि समानता इस अनुमान में सही है, तो R को नियमित स्थानिक वलय कहा जाता है। नोथेरियन स्थानिक वलय नियमित है यदि और केवल यदि वलय(जो स्पर्शरेखा शंकु पर कार्यों की वलय है)
असतत मूल्यांकन वलय फलन से सुसज्जित हैं जो किसी भी तत्व r को पूर्णांक प्रदान करता है। r के मूल्यांकन नामक इस संख्या को अनौपचारिक रूप से r के शून्य या ध्रुव क्रम के रूप में माना जा सकता है। असतत मूल्यांकन के वलय ठीक आयामी नियमित स्थानीय वलय हैं। उदाहरण के लिए, रीमैन सतह पर पूर्णसममितिक कार्यों के रोगाणु का वलय असतत मूल्यांकन वलय है।
पूर्ण प्रतिच्छेदन

क्रुल के प्रमुख पूर्णता प्रमेय द्वारा, वलय के आयाम सिद्धांत (बीजगणित)में मूलभूत परिणाम, का आयाम
कम से कम r - n है। वलय R को पूर्ण प्रतिच्छेदन वलय कहा जाता है यदि इसे इस तरह से प्रस्तुत किया जा सकता है जो इस न्यूनतम सीमा को प्राप्त करता है। यह धारणा ज्यादातर स्थानिक वलय के लिए भी अध्ययन की जाती है। कोई भी नियमित स्थानिक वलय एक पूर्ण प्रतिच्छेदन की वलय है, लेकिन इसके विपरीत नहीं।
वलय R समुच्चय-सैद्धांतिक पूर्ण प्रतिच्छेदन है यदि R से संबंधित घटा हुआ वलय, अर्थात, सभी निलपोटेंट तत्वों को विभाजित करके प्राप्त किया गया पूर्ण प्रतिच्छेदन है। 2017 तक, यह सामान्य रूप से अज्ञात है, कि क्या त्रि-आयामी समष्टि में वक्र समुच्चय-सैद्धांतिक पूर्ण प्रतिच्छेदन हैं।[2]
कोहेन-मैकाले के वलय
स्थानिक वलय R की गहनता कुछ में तत्वों की संख्या है(या, जैसा कि दिखाया जा सकता है, कोई भी) अधिकतम नियमित अनुक्रम, यानी, अनुक्रम a1, ..., an ∈ m जैसे कि सभी ai गैर-शून्य विभाजक हैं में
किसी भी स्थानिक नोथेरियन वलय के लिए, असमानता
रखती है। स्थानिक वलय जिसमें समानता होती है, कोहेन-मैकाले वलय कहलाता है। स्थानिक पूर्ण प्रतिच्छेदन के वलय, और फोर्टियोरी, नियमित स्थानीय वलय कोहेन-मैकाले हैं, लेकिन इसके विपरीत नहीं। कोहेन-मैकाले नियमित वलय के वांछनीय गुणों को जोड़ते हैं(जैसे कि सार्वभौमिक रूप से कैटेनरी वलय होने का गुण, जिसका अर्थ है कि प्राइम्स का(सह) आयाम अच्छी तरह से व्यवहार किया जाता है), लेकिन नियमित स्थानिक वलय की तुलना में अधिक मजबूत होते हैं।[3]
विनिमेय वलयों का निर्माण
दिए गए वलय में से नए वलय बनाने के कई तरीके हैं। इस तरह के निर्माण का उद्देश्य अक्सर वलय के कुछ गुणों में सुधार करना होता है ताकि इसे और अधिक आसानी से समझा जा सके। उदाहरण के लिए, पूर्णांकीय प्रांत जो अपने अंशों के क्षेत्र में अभिन्न रूप से बंद है, सामान्य कहलाता है। यह वांछनीय गुण है, उदाहरण के लिए कोई भी सामान्य एक-आयामी वलय आवश्यक रूप से नियमित है। रेंडरिंग[clarification needed] वलय सामान्य सामान्यीकरण के रूप में जाना जाता है।
प्राप्तियां
यदि I क्रमविनिमेय वलय R में पूर्णता है, तो I की घात 0 के सांस्थितिक प्रतिवेश(सांस्थिति)बनाती हैं जो R को सांस्थितिक वलय के रूप में देखने की अनुमति देती हैं। इस सांस्थिति को I-एडिक सांस्थिति कहा जाता है। आर तो इस सांस्थिति के संबंध में पूरा किया जा सकता है। औपचारिक रूप से, I-एडिक पूर्णता वलय R/In की व्युत्क्रम सीमा है। उदाहरण के लिए, यदि k क्षेत्र है, kX, k से अधिक चर में औपचारिक घात श्रृंखला वलय, k[X] का I-एडिक पूर्णता है जहाँ I , X द्वारा उत्पन्न प्रमुख पूर्णता है। यह वलय डिस्क के बीजगणितीय रेखीय के रूप में कार्य करता है। अनुरूप रूप से, p-एडिक पूर्णांकों का वलय मुख्य पूर्णता(p) के संबंध में Z की पूर्णता है। कोई भी वलय जो अपनी पूर्णता के लिए समरूपी है, पूर्ण कहलाता है।
पूर्ण स्थानिक वलय हेंसल के लेम्मा को संतुष्ट करते हैं, जो मोटे तौर पर बोलकर अवशेष क्षेत्र k से R तक समाधान(विभिन्न समस्याओं के) को विस्तारित करने की अनुमति देता है।
सजातीय धारणाएँ
क्रमविनिमेय वलयों के कई गहरे पहलुओं का समजातीय बीजगणित के तरीकों का उपयोग करके अध्ययन किया गया है। होचस्टर (2007) सक्रिय अनुसंधान के इस क्षेत्र में कुछ खुले प्रश्नों को सूचीबद्ध करता है।
प्रक्षेपीय मापदंड और एक्सट्रीम फंक्शनल
प्रक्षेपीय मापदंड को मुक्त मापदंड के प्रत्यक्ष योगरूप में परिभाषित किया जा सकता है। यदि R स्थानिक है, तो कोई भी अंतिम रूप से उत्पन्न प्रक्षेपीय मापदंड वास्तव में मुक्त है, जो प्रक्षेपीय मापदंड औ सदिश बंडलों के बीच सादृश्य को सामग्री देता है।[4] क्विलेन-सुस्लिन प्रमेय का दावा है कि k[T1, ..., Tn](k क्षेत्र) पर कोई भी अंतिम रूप से उत्पन्न प्रक्षेपीय मापदंड मुक्त है, लेकिन सामान्य तौर पर ये दो अवधारणाएँ भिन्न हैं। स्थानिक नोथेरियन वलय नियमित है यदि और केवल यदि इसका वैश्विक आयाम परिमित है, तो n कहें, जिसका अर्थ है कि किसी भी सूक्ष्म रूप से उत्पन्न R-मापदंड में अधिकतम लंबाई के प्रक्षेपी मापदंड द्वारा संकल्प होता है।
इस और अन्य संबंधित कथनों का प्रमाण अनुरूपता तरीकों के उपयोग पर निर्भर करता है, जैसे कि एक्सट ऑपरेटर । यह कारक का व्युत्पन्न कारक है
बाद वाला कारक समुचित है यदि M प्रक्षेपी है, लेकिन अन्यथा नहीं: द्विभाजित map E → F, R-मापदंड के लिए, एक map M → F को एक map M → E तक विस्तारित करने की आवश्यकता नहीं है। उच्च एक्सटी कारक गैर-सटीकता होम-कारक को मापते हैं। समरूप बीजगणित प्रतिबंध में इस मानक निर्माण के महत्व को इस तथ्य से देखा जा सकता है कि अवशेष क्षेत्र k के साथ स्थानिक नोथेरियन वलय R नियमित है यदि और केवल यदि
काफी बड़े n के लिए गायब हो जाता है। इसके अलावा, इन एक्सट-ग्रुप्स के आयाम, जिन्हें बेट्टी संख्या के रूप में जाना जाता है, n में बहुपद रूप से बढ़ते हैं यदि और केवल यदि R एकस्थानीय पूर्ण प्रतिच्छेदन वलय है।[5]इस तरह के विचारों में एक महत्वपूर्ण तर्क कोज़ुल कॉम्प्लेक्स है, जो एक नियमित अनुक्रम के संदर्भ में एक स्थानिक वलय R के अवशेष क्षेत्र k का स्पष्ट मुक्त रिज़ॉल्यूशन प्रदान करता है।
समतलता
टेन्सर उत्पाद अन्य गैर-समुचित कारक है जो क्रमविनिमेय वलय के संदर्भ में प्रासंगिक है: सामान्य R-मापदंड M के लिए, कारक
केवल समुचित है। यदि यह समुचित है, तो M को समतल कहा जाता है। यदि R स्थानिक है, तो कोई भी अंतिम रूप से प्रस्तुत समतल मापदंड परिमित क्रम से मुक्त है, इस प्रकार प्रक्षेपीय है। अनुरूपता बीजगणित के संदर्भ में परिभाषित होने के बावजूद, समतलता का गहरा ज्यामितीय प्रभाव है। उदाहरण के लिए, यदि R-बीजगणित S समतल है, तंतुओं के आयाम
(R में प्रमुख पूर्णता p के लिए) अपेक्षित आयाम हैं, अर्थात् dim S − dim R + dim(R / p).
गुण
वेडरबर्न की छोटी प्रमेय के अनुसार वेडरबर्न की प्रमेय, प्रत्येक परिमित विभाजन वलय क्रमविनिमेय है, और इसलिए परिमित क्षेत्र है। नाथन जैकबसन के कारण वलय की क्रमविनिमेयता सुनिश्चित करने वाली अन्य शर्त निम्नलिखित है: R के प्रत्येक तत्व r के लिए पूर्णांक विद्यमान है n > 1 ऐसा है कि rn = r.[6] अगर, r2 = r प्रत्येक r के लिए, वलय को बूलियन वलय कहा जाता है। अधिक सामान्य स्थितियाँ जो वलय की क्रमविनिमेयता की गारंटी देती हैं, भी जानी जाती हैं।[7]
सामान्यीकरण
श्रेणीकृत-क्रमविनिमेय वलय

वर्गीकृत वलय R = ⨁i∊Z Ri श्रेणीकृत-क्रमविनिमेय वलय कहा जाता है| श्रेणीकृत-क्रमविनिमेय अगर, सभी सजातीय तत्वों a और b के लिए,
यदि Ri अंतर ∂ द्वारा जुड़े हुए हैं जैसे कि उत्पाद नियम का अमूर्त रूप धारण करता है, अर्थात,
R को अंतर वर्गीकृत बीजगणित(सीडीजीए ) कहा जाता है। उदाहरण बहुसंखयक(गणित) पर अंतर रूपों का परिसर है, बाहरी उत्पाद द्वारा दिए गए गुणन के साथ, सीडीजीए है। सीडीजीए का सह समरूपता श्रेणीकृत-क्रमविनिमेय वलय है, जिसे कभी-कभी सह समरूपता वलय के रूप में संदर्भित किया जाता है। श्रेणीकृत वलय की विस्तृत श्रृंखला के उदाहरण इस तरह से सामने आते हैं। उदाहरण के लिए, लाज़ार्ड की सार्वभौमिक वलय जटिल बहुसंखयक के सह-बोर्डवाद वर्गों की वलय है।
Z/2(Z के विपरीत) द्वारा श्रेणीकृत के संबंध में श्रेणीकृत-क्रमविनिमेय वलय को सुपरएलजेब्रा कहा जाता है।
संबंधित धारणा क्रमविनिमेय वलय है, जिसका अर्थ है कि R इस तरह से निस्यंदन(गणित) है कि संबद्ध श्रेणीबद्ध वलय
क्रमविनिमेय है। उदाहरण वेइल बीजगणित और विभेदक संचालक के अधिक सामान्य वलय हैं।
प्रसमुच्चयी क्रमविनिमेय वलय
प्रसमुच्चयी क्रमविनिमेय वलय क्रमविनिमेय वलय की श्रेणी में प्रसमुच्चयी वस्तु है। वे(संयोजी) व्युत्पन्न बीजगणितीय ज्यामिति के लिए ब्लॉक बना रहे हैं। निकट से संबंधित लेकिन अधिक सामान्य धारणा E∞-वलय की है।
क्रमविनिमेय वलयों के अनुप्रयोग
- पूर्णसममितिक कार्य
- बीजगणितीय K-सिद्धांत
- सांस्थितिक K-थ्योरी
- विभाजित घात संरचनाएं
- विट सदिश
- हेके बीजगणित(फर्मेट के अंतिम प्रमेय के विल्स के प्रमाण में प्रयुक्त)
- फॉनटेन पीरियड वलय
- क्लस्टर बीजगणित
- कनवल्शन बीजगणित(एक कम्यूटिव समूह का)
- फ्रेचेट बीजगणित
यह भी देखें
- लगभग वलय, क्रमविनिमेय वलय का एक निश्चित सामान्यीकरण
- विभाज्यता(वलय थ्योरी): निलपोटेंट तत्व,(उदाहरण दोहरी संख्या)
- पूर्णता और मापदंड: एक पूर्णता, मोरिटा तुल्यता के कट्टरपंथी
- वलय समरूपता: अभिन्न तत्व: केली-हैमिल्टन प्रमेय, एकीकृत रूप से बंद प्रक्षेत्र, क्रुल वलय, क्रुल-अकिज़ुकी प्रमेय, मोरी-नागाटा प्रमेय
- प्राइम्स: अभाज्य परिहार लेम्मा, जैकबसन कट्टरपंथी, नील रेडिकल ऑफ़ ए वलय, वर्णक्रम: कॉम्पैक्ट जगह, कनेक्टेड वलय, क्रमविनिमेय अल्जेब्रा पर डिफरेंशियल कैलकुलस, बनच-स्टोन प्रमेय
- स्थानिक वलय: गोरेंस्टीन स्थानिक वलय(फर्मेट के अंतिम प्रमेय के विल्स के प्रमाण में भी प्रयुक्त): द्वैत(गणित), एबेन मैटलिस, दोहरीकरण मापदंड, पोपेस्कु प्रमेय, आर्टिन सन्निकटन प्रमेय।
टिप्पणियाँ
- ↑ This notion can be related to the spectrum of a linear operator, see Spectrum of a C*-algebra and Gelfand representation.
उद्धरण
- ↑ Matsumura (1989, §19, Theorem 48)
- ↑ Lyubeznik (1989)
- ↑ Eisenbud (1995, Corollary 18.10, Proposition 18.13)
- ↑ See also Serre–Swan theorem.
- ↑ Christensen, Striuli & Veliche (2010)
- ↑ Jacobson 1945
- ↑ Pinter-Lucke 2007
संदर्भ
- Christensen, Lars Winther; Striuli, Janet; Veliche, Oana (2010), "Growth in the minimal injective resolution of a local ring", Journal of the London Mathematical Society, Second Series, 81 (1): 24–44, arXiv:0812.4672, doi:10.1112/jlms/jdp058, S2CID 14764965
- Eisenbud, David (1995), Commutative algebra. With a view toward algebraic geometry., Graduate Texts in Mathematics, vol. 150, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94268-1, MR 1322960
- Hochster, Melvin (2007), "Homological conjectures, old and new", Illinois J. Math., 51 (1): 151–169, doi:10.1215/ijm/1258735330
- Jacobson, Nathan (1945), "Structure theory of algebraic algebras of bounded degree", Annals of Mathematics, 46 (4): 695–707, doi:10.2307/1969205, ISSN 0003-486X, JSTOR 1969205
- Lyubeznik, Gennady (1989), "A survey of problems and results on the number of defining equations", Representations, resolutions and intertwining numbers, pp. 375–390, Zbl 0753.14001
- Matsumura, Hideyuki (1989), Commutative Ring Theory, Cambridge Studies in Advanced Mathematics (2nd ed.), Cambridge University Press, ISBN 978-0-521-36764-6
- Pinter-Lucke, James (2007), "Commutativity conditions for rings: 1950–2005", Expositiones Mathematicae, 25 (2): 165–174, doi:10.1016/j.exmath.2006.07.001, ISSN 0723-0869
अग्रिम पठन
- Atiyah, Michael; Macdonald, I. G. (1969), Introduction to commutative algebra, Addison-Wesley Publishing Co.
- Balcerzyk, Stanisław; Józefiak, Tadeusz (1989), Commutative Noetherian and Krull rings, Ellis Horwood Series: Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-13-155615-7
- Balcerzyk, Stanisław; Józefiak, Tadeusz (1989), Dimension, multiplicity and homological methods, Ellis Horwood Series: Mathematics and its Applications., Chichester: Ellis Horwood Ltd., ISBN 978-0-13-155623-2
- Kaplansky, Irving (1974), Commutative rings (Revised ed.), University of Chicago Press, MR 0345945
- Nagata, Masayoshi (1975) [1962], Local rings, Interscience Tracts in Pure and Applied Mathematics, vol. 13, Interscience Publishers, pp. xiii+234, ISBN 978-0-88275-228-0, MR 0155856
- Zariski, Oscar; Samuel, Pierre (1958–60), Commutative Algebra I, II, University series in Higher Mathematics, Princeton, N.J.: D. van Nostrand, Inc. (Reprinted 1975-76 by Springer as volumes 28-29 of Graduate Texts in Mathematics.)