अवकल बीजगणित: Difference between revisions

From Vigyanwiki
No edit summary
Line 2: Line 2:
{{about|algebraic study of differential equations|the concept in homological algebra|Differential graded algebra}}
{{about|algebraic study of differential equations|the concept in homological algebra|Differential graded algebra}}


गणित में, विभेदक [[बीजगणित]], मोटे तौर पर, गणित का वह क्षेत्र है जिसमें समाधान की गणना किए बिना [[अंतर समीकरण|विभेदक समीकरण]] और संक्रियक के गुणों को प्राप्त करने के मद्देनजर बीजगणित के रूप में विभेदक समीकरणों और विभेदक संक्रियक का अध्ययन सम्मिलित है, उसी तरह जैसे [[बहुपद बीजगणित]] का उपयोग किया जाता है।  बीजगणितीय प्रकारों का अध्ययन, जो बहुपद समीकरणों की प्रणालियों के समाधान समूह हैं। [[वेइल बीजगणित|वेल बीजगणित]] और ली बीजगणित को विभेदक बीजगणित से संबंधित माना जा सकता है।
गणित में, विभेदक [[बीजगणित]], बड़े पैमाने पर गणित का वह क्षेत्र है जिसमें समाधान की गणना किए बिना [[अंतर समीकरण|विभेदक समीकरण]] और संक्रियक के गुणों को प्राप्त करने को ध्यान में रखकर बीजगणित के रूप में विभेदक समीकरणों और विभेदक संक्रियक का अध्ययन सम्मिलित है, उसी तरह जैसे [[बहुपद बीजगणित]] का उपयोग किया जाता है।  बीजगणितीय प्रकारों का अध्ययन, जो बहुपद समीकरणों की प्रणालियों के समाधान समूह हैं। [[वेइल बीजगणित]] और ली बीजगणित को विभेदक बीजगणित से संबंधित माना जा सकता है।


अधिक विशेष रूप से, विभेदक बीजगणित 1950 में जोसेफ रिट द्वारा पेश किए गए सिद्धांत को संदर्भित करता है, जिसमें विभेदक वलय, विभेदक क्षेत्र और विभेदक बीजगणित वलय, क्षेत्र और बीजगणित हैं जो कि कई व्युत्पत्तियों से सुसज्जित हैं।
अधिक विशेष रूप से, विभेदक बीजगणित 1950 में जोसेफ रिट द्वारा प्रस्तुत किए गए सिद्धांत को संदर्भित करता है, जिसमें विभेदक वलय, विभेदक क्षेत्र और विभेदक बीजगणित वलय, क्षेत्र और बीजगणित हैं जो कि कई व्युत्पत्तियों से सुसज्जित हैं।


विभेदक क्षेत्र का एक प्राकृतिक उदाप्रत्येकण [[जटिल संख्या]]ओं पर एक चर में [[तर्कसंगत कार्य|तर्कसंगत]] कार्यों का क्षेत्र है, <math>\mathbb{C}(t),</math> जहां व्युत्पत्ति के संबंध में भेदभाव <math>t</math> है। अधिक सामान्यतः प्रत्येक विभेदक समीकरण को समीकरण में दिखाई देने वाले (ज्ञात) कार्यों द्वारा उत्पन्न विभेदक क्षेत्र पर विभेदक बीजगणित के एक तत्व के रूप में देखा जा सकता है।
विभेदक क्षेत्र का एक प्राकृतिक उदाहरण [[जटिल संख्या]]ओं पर एक चर में [[तर्कसंगत कार्य|तर्कसंगत]] कार्यों का क्षेत्र <math>\mathbb{C}(t)</math> है, जहां व्युत्पत्ति के संबंध में भेदभाव <math>t</math> है। अधिक सामान्यतः प्रत्येक विभेदक समीकरण को समीकरण में दिखाई देने वाले (ज्ञात) फलन द्वारा उत्पन्न विभेदक क्षेत्र पर विभेदक बीजगणित के एक तत्व के रूप में देखा जा सकता है।


==इतिहास==
==इतिहास==
जोसेफ रिट ने विभेदक बीजगणित विकसित किया क्योंकि उन्होंने विभेदक समीकरणों की प्रणालियों को विभिन्न विहित रूपों में कम करने के प्रयासों को एक असंतोषजनक दृष्टिकोण के रूप में देखा। यद्यपि, बीजगणितीय उन्मूलन विधियों और बीजगणितीय मैनिफोल्ड सिद्धांत की सफलता ने रिट को विभेदक समीकरणों के लिए एक समान दृष्टिकोण पर विचार करने के लिए प्रेरित किया।{{sfn|Ritt|1932}}{{rp|iii-iv}} उनके प्रयासों से एक प्रारंभिक पेपर <em>मैनिफोल्ड्स ऑफ फंक्शन्स डिफाइन्ड बाय सिस्टम्स ऑफ अलजेब्रिक डिफरेंशियल इक्वेशन</em> और 2 किताबें, <em>डिफरेंशियल इक्वेशन फ्रॉम द अलजेब्रिक स्टैंडपॉइंट</em> और <em>डिफरेंशियल अलजेब्रा</em>  प्रकाशित हुईं।। उन्हें>.{{sfn|Ritt|1930}}{{sfn|Ritt|1932}}{{sfn|Ritt|1950}} रिट के छात्र [[एलिस कल्चेन]] ने इस क्षेत्र को आगे बढ़ाया और <em>डिफरेंशियल अलजेब्रा एंड अलजेब्रिक ग्रुप्स</em> प्रकाशित किया।{{sfn|Kolchin |1973}}
जोसेफ रिट ने विभेदक बीजगणित विकसित किया क्योंकि उन्होंने विभेदक समीकरणों की प्रणालियों को विभिन्न विहित रूपों में कम करने के प्रयासों को एक असंतोषजनक दृष्टिकोण के रूप में देखा। यद्यपि, बीजगणितीय उन्मूलन विधियों और बीजगणितीय मैनिफोल्ड सिद्धांत की सफलता ने रिट को विभेदक समीकरणों के लिए एक समान दृष्टिकोण पर विचार करने के लिए प्रेरित किया।{{sfn|Ritt|1932}}{{rp|iii-iv}} उनके प्रयासों से प्रारंभिक बीजगणितीय विभेदक समीकरणों की प्रणालियों द्वारा परिभाषित कार्यों के प्रारंभिक पेपर मैनिफोल्ड्स और 2 पुस्तकें, बीजगणितीय दृष्टिकोण और विभेदक बीजगणित से विभेदक समीकरण।।{{sfn|Ritt|1930}}{{sfn|Ritt|1932}}{{sfn|Ritt|1950}} रिट के छात्र [[एलिस कल्चेन]] ने इस क्षेत्र को आगे बढ़ाया और <em>विभेदक बीजगणित और बीजगणितीय समूह</em> प्रकाशित किया।{{sfn|Kolchin |1973}}


==विभेदक वलय==
==विभेदक वलय==
Line 15: Line 15:
===परिभाषा===
===परिभाषा===


<em>व्युत्पत्ति</em>  <math display="inline"> \partial </math>  वलय पर <math display="inline"> \mathcal{R} </math> एक फलन है  <math>\partial : R \to R\,</math> ऐसा कि
<em>व्युत्पत्ति</em>  <math display="inline"> \partial </math>  वलय पर <math display="inline"> \mathcal{R} </math> एक फलन है  <math>\partial : R \to R\,</math> ऐसा कि<math display=block>\partial(r_1 + r_2) = \partial r_1 + \partial r_2</math>और
<math display=block>\partial(r_1 + r_2) = \partial r_1 + \partial r_2</math>
और
:<math>\partial(r_1 r_2) = (\partial r_1) r_2 + r_1 (\partial r_2)\quad</math> ([[प्रॉडक्ट नियम|लीबनिज़ उत्पाद नियम]]),
:<math>\partial(r_1 r_2) = (\partial r_1) r_2 + r_1 (\partial r_2)\quad</math> ([[प्रॉडक्ट नियम|लीबनिज़ उत्पाद नियम]]),
प्रत्येक <math>r_1</math> और <math>r_2</math> में <math>R.</math>के लिए
प्रत्येक <math>r_1</math> और <math>r_2</math> में <math>R</math> के लिए


व्युत्पत्ति पूर्णांकों पर रैखिक मानचित्र है क्योंकि ये सर्वसमिकाएं संकेत देती हैं <math>\partial (0)=\partial (1) = 0</math> और <math>\partial (-r)=-\partial (r).</math>
व्युत्पत्ति पूर्णांकों पर रैखिक मानचित्र है क्योंकि ये सर्वसमिकाएं संकेत <math>\partial (0)=\partial (1) = 0</math> और <math>\partial (-r)=-\partial (r)</math> देती हैं
एक विभेदक वलय एक [[क्रमविनिमेय वलय]] है <math>R</math> एक या अधिक व्युत्पत्तियों से सुसज्जित जो जोड़ीदार रूप से आवागमन करती हैं; वह है, <math display="block">\partial_1(\partial_2 (r))=\partial_2(\partial_1 (r))</math> व्युत्पत्तियों की प्रत्येक जोड़ी और प्रत्येक के लिए <math>r\in R.</math>है।{{sfn|Kolchin |1973}}{{rp|58–59}} जब केवल एक ही व्युत्पत्ति होती है तो सामान्यतः एक <em>साधारण विभेदक वलय</em> की बात की जाती है; अन्यथा, कोई <em>आंशिक विभेदक वलय</em> की बात करता है
एक विभेदक वलय एक [[क्रमविनिमेय वलय]] <math>R</math> है, एक या अधिक व्युत्पत्तियों से सुसज्जित जो जोड़ीदार रूप से आवागमन करती हैं; वह है, <math display="block">\partial_1(\partial_2 (r))=\partial_2(\partial_1 (r))</math> व्युत्पत्तियों की प्रत्येक जोड़ी और प्रत्येक के लिए <math>r\in R</math> है।{{sfn|Kolchin |1973}}{{rp|58–59}} जब केवल एक ही व्युत्पत्ति होती है तो सामान्यतः एक <em>साधारण विभेदक वलय</em> की बात की जाती है; अन्यथा, कोई <em>आंशिक विभेदक वलय</em> की बात करता है


विभेदक क्षेत्र विभेदक वलय है जो एक क्षेत्र भी है। एक विभेदक बीजगणित <math>A</math> एक विभेदक क्षेत्र पर <math>K</math> एक विभेदक वलय है जिसमें सम्मिलित है <math>K</math> एक सबवलय के रूप में जैसे कि प्रतिबंध <math>K</math> की व्युत्पत्तियों का <math>A</math> की व्युत्पत्ति के बराबर <math>K.</math> (एक अधिक सामान्य परिभाषा नीचे दी गई है, जो उस स्थिति के लिए पर्याप्त है <math>K</math> एक क्षेत्र नहीं है, और अनिवार्य रूप से समतुल्य है जब <math>K</math> एक क्षेत्र है.)
विभेदक क्षेत्र विभेदक वलय है जो एक क्षेत्र भी है। एक विभेदक बीजगणित <math>A</math> एक विभेदक क्षेत्र पर <math>K</math> एक विभेदक वलय है जिसमें सम्मिलित है <math>K</math> एक सबवलय के रूप में जैसे कि प्रतिबंध <math>K</math> की व्युत्पत्तियों का <math>A</math> की व्युत्पत्ति के बराबर <math>K.</math> (एक अधिक सामान्य परिभाषा नीचे दी गई है, जो उस स्थिति के लिए पर्याप्त है <math>K</math> एक क्षेत्र नहीं है, और अनिवार्य रूप से समतुल्य है जब <math>K</math> एक क्षेत्र है.)


विट बीजगणित विभेदक वलय है जिसमें <math>\Q</math> परिमेय संख्याओं का क्षेत्र सम्मिलित होता है। समान रूप से, यह एक विभेदक बीजगणित <math>\Q</math> है  तब से <math>\Q</math> इसे एक विभेदक क्षेत्र के रूप में माना जा सकता है जिस पर प्रत्येक व्युत्पत्ति [[शून्य कार्य]] है।
विट बीजगणित विभेदक वलय है जिसमें <math>\Q</math> परिमेय संख्याओं का क्षेत्र सम्मिलित होता है। समान रूप से, यह विभेदक बीजगणित <math>\Q</math> है  तब से <math>\Q</math> इसे विभेदक क्षेत्र के रूप में माना जा सकता है जिस पर प्रत्येक व्युत्पत्ति [[शून्य कार्य]] है।


एक विभेदक वलय के <em>स्थिरांक</em> तत्व हैं <math>r</math> ऐसा है कि <math>\partial r=0</math> प्रत्येक व्युत्पत्ति <math>\partial.</math>के लिए,  एक विभेदक [[सबरिंग|वलय]] के स्थिरांक एक उपवलय बनाते हैं और एक भिन्न क्षेत्र के स्थिरांक एक उपक्षेत्र बनाते हैं।{{sfn|Kolchin |1973}}{{rp|58–60}} स्थिरांक का यह अर्थ एक स्थिर कार्य की अवधारणा को सामान्यीकृत करता है, और इसे [[स्थिरांक (गणित)]] के सामान्य अर्थ के साथ भ्रमित नहीं किया जाना चाहिए।
एक विभेदक वलय के <em>स्थिरांक</em> तत्व <math>r</math> हैं  ऐसा है कि <math>\partial r=0</math> प्रत्येक व्युत्पत्ति <math>\partial</math> के लिए,  विभेदक [[सबरिंग|वलय]] के स्थिरांक उपवलय बनाते हैं और भिन्न क्षेत्र के स्थिरांक उपक्षेत्र बनाते हैं।{{sfn|Kolchin |1973}}{{rp|58–60}} स्थिरांक का यह अर्थ एक स्थिर कार्य की अवधारणा को सामान्यीकृत करता है, और इसे [[स्थिरांक (गणित)|स्थिरांक]] के सामान्य अर्थ के साथ भ्रमित नहीं किया जाना चाहिए।


===मूल सूत्र===
===मूल सूत्र===
Line 37: Line 35:
* अगर <math>u_1, \ldots, u_n</math> में इकाइयाँ <math>R</math> हैं, और <math>n_1, \ldots, n_n</math> पूर्णांक हैं, किसी के पास <em>[[लघुगणकीय व्युत्पन्न]] पहचान है:</em> <math display =block> \frac{\delta (u_{1}^{e_{1}} \ldots u_{n}^{e_{n}})}{u_{1}^{e_{1}} \ldots u_{n}^{e_{n}}} = e_{1} \frac{\delta( u_{1} ) }{u_{1}} + \dots + e_{n} \frac{\delta( u_{n} ) }{u_{n}}. </math>
* अगर <math>u_1, \ldots, u_n</math> में इकाइयाँ <math>R</math> हैं, और <math>n_1, \ldots, n_n</math> पूर्णांक हैं, किसी के पास <em>[[लघुगणकीय व्युत्पन्न]] पहचान है:</em> <math display =block> \frac{\delta (u_{1}^{e_{1}} \ldots u_{n}^{e_{n}})}{u_{1}^{e_{1}} \ldots u_{n}^{e_{n}}} = e_{1} \frac{\delta( u_{1} ) }{u_{1}} + \dots + e_{n} \frac{\delta( u_{n} ) }{u_{n}}. </math>
===उच्च क्रम व्युत्पत्तियाँ===
===उच्च क्रम व्युत्पत्तियाँ===
एक <em>व्युत्पत्ति संचालिका</em> या <em>उच्च क्रम व्युत्पत्ति</em>{{citation needed|reason=It is unclear what is the common name in the literature|date=March 2023}} कई व्युत्पत्तियों की [[कार्य संरचना|संरचना]] है। जैसा कि एक विभेदक वलय की व्युत्पत्तियों को परिवर्तित किया जाना चाहिए, व्युत्पत्तियों का क्रम तात्पर्य नहीं रखता है, और एक व्युत्पत्ति संक्रियक को इस प्रकार लिखा जा सकता है<math display= block> \delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n},</math>जहाँ <math>\delta_1, \ldots, \delta_n</math> विचाराधीन व्युत्पत्तियां हैं, <math>e_1, \ldots, e_n</math> अतिरिक्त-ऋणात्मक पूर्णांक हैं, और किसी व्युत्पत्ति का घातांक यह दर्शाता है कि संक्रियक में यह व्युत्पत्ति कितनी बार बनाई गई है।योग <math>o=e_1+ \cdots +e_n</math> व्युत्पत्ति का क्रम कहलाता है। अगर <math>o=1</math> व्युत्पत्ति संचालिका मूल व्युत्पत्तियों में से एक है। अगर <math>o=0</math>, एक में पहचान फलन होता है, जिसे सामान्यतः क्रम शून्य का अद्वितीय व्युत्पत्ति संक्रियक माना जाता है। इन सम्मेलनों के साथ, व्युत्पत्ति संचालक विचाराधीन व्युत्पत्ति के समूह पर एक मुक्त क्रमविनिमेय मोनोइड बनाते हैं।
एक <em>व्युत्पत्ति संचालिका</em> या <em>उच्च क्रम व्युत्पत्ति</em>{{citation needed|reason=It is unclear what is the common name in the literature|date=March 2023}} कई व्युत्पत्तियों की [[कार्य संरचना|संरचना]] है। जैसा कि एक विभेदक वलय की व्युत्पत्तियों को परिवर्तित किया जाना चाहिए, व्युत्पत्तियों का क्रम तात्पर्य नहीं रखता है, और एक व्युत्पत्ति संक्रियक को इस प्रकार लिखा जा सकता है<math display= block> \delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n},</math>जहाँ <math>\delta_1, \ldots, \delta_n</math> विचाराधीन व्युत्पत्तियां हैं, <math>e_1, \ldots, e_n</math> अतिरिक्त-ऋणात्मक पूर्णांक हैं, और किसी व्युत्पत्ति का घातांक यह दर्शाता है कि संक्रियक में यह व्युत्पत्ति कितनी बार बनाई गई है।


किसी तत्व का व्युत्पन्न <math>x</math> विभेदक वलय <math>x</math> का व्युत्पत्ति संक्रियक का अनुप्रयोग है अर्थात्, उपरोक्त संकेतन <math>\delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n}(x)</math> के साथ है, एक <em>उचित व्युत्पन्न</em>  सकारात्मक क्रम का व्युत्पन्न है।{{sfn|Kolchin |1973}}{{rp|58–59}}
योग <math>o=e_1+ \cdots +e_n</math> व्युत्पत्ति का क्रम कहलाता है। अगर <math>o=1</math> व्युत्पत्ति संचालिका मूल व्युत्पत्तियों में से एक है। अगर <math>o=0</math>, एक में पहचान फलन होता है, जिसे सामान्यतः क्रम शून्य का अद्वितीय व्युत्पत्ति संक्रियक माना जाता है। इन सम्मेलनों के साथ, व्युत्पत्ति संचालक विचाराधीन व्युत्पत्ति के समूह पर एक क्रमविनिमेय मोनोइड बनाते हैं।
 
किसी तत्व का व्युत्पन्न <math>x</math> विभेदक वलय <math>x</math> का व्युत्पत्ति संक्रियक का अनुप्रयोग है अर्थात्, उपरोक्त संकेतन <math>\delta_1^{e_1} \circ \cdots \circ \delta_n^{e_n}(x)</math> के साथ है, एक <em>उचित व्युत्पन्न</em>  सकारात्मक क्रम का व्युत्पन्न है।{{sfn|Kolchin |1973}}{{rp|58–59}}


===[[विभेदक आदर्श]]===
===[[विभेदक आदर्श]]===
Line 54: Line 54:
<math>S</math> द्वारा उत्पन्न विभेदक आदर्श  के तत्वों के परिमित रैखिक संयोजनों का समुच्चय <math>S</math> है और इन तत्वों के किसी भी क्रम के व्युत्पन्न; इसे सामान्यतः <math>[S]</math> रूप में दर्शाया जाता है  जब <math>S</math> परिमित है, <math>[S]</math> सामान्यतः बीजगणितीय आदर्श के रूप में [[अंतिम रूप से उत्पन्न आदर्श|अंतिम रूप से उत्पन्र्]] नहीं होता है।
<math>S</math> द्वारा उत्पन्न विभेदक आदर्श  के तत्वों के परिमित रैखिक संयोजनों का समुच्चय <math>S</math> है और इन तत्वों के किसी भी क्रम के व्युत्पन्न; इसे सामान्यतः <math>[S]</math> रूप में दर्शाया जाता है  जब <math>S</math> परिमित है, <math>[S]</math> सामान्यतः बीजगणितीय आदर्श के रूप में [[अंतिम रूप से उत्पन्न आदर्श|अंतिम रूप से उत्पन्र्]] नहीं होता है।


<math>S</math> द्वारा उत्पन्न मौलिक विभेदक आदर्श सामान्यतः <math>\{S\}</math> के रूप में दर्शाया जाता है अन्य दो वाद की तरह इसके तत्व को चित्रित करने का कोई ज्ञात तरीका नहीं है।
<math>S</math> द्वारा उत्पन्न मौलिक विभेदक आदर्श सामान्यतः <math>\{S\}</math> के रूप में दर्शाया जाता है अन्य दो वाद की तरह इसके तत्व को चित्रित करने का कोई ज्ञात तरीका नहीं है।


==विभेदक बहुपद==
==विभेदक बहुपद==

Revision as of 02:34, 10 July 2023

गणित में, विभेदक बीजगणित, बड़े पैमाने पर गणित का वह क्षेत्र है जिसमें समाधान की गणना किए बिना विभेदक समीकरण और संक्रियक के गुणों को प्राप्त करने को ध्यान में रखकर बीजगणित के रूप में विभेदक समीकरणों और विभेदक संक्रियक का अध्ययन सम्मिलित है, उसी तरह जैसे बहुपद बीजगणित का उपयोग किया जाता है। बीजगणितीय प्रकारों का अध्ययन, जो बहुपद समीकरणों की प्रणालियों के समाधान समूह हैं। वेइल बीजगणित और ली बीजगणित को विभेदक बीजगणित से संबंधित माना जा सकता है।

अधिक विशेष रूप से, विभेदक बीजगणित 1950 में जोसेफ रिट द्वारा प्रस्तुत किए गए सिद्धांत को संदर्भित करता है, जिसमें विभेदक वलय, विभेदक क्षेत्र और विभेदक बीजगणित वलय, क्षेत्र और बीजगणित हैं जो कि कई व्युत्पत्तियों से सुसज्जित हैं।

विभेदक क्षेत्र का एक प्राकृतिक उदाहरण जटिल संख्याओं पर एक चर में तर्कसंगत कार्यों का क्षेत्र है, जहां व्युत्पत्ति के संबंध में भेदभाव है। अधिक सामान्यतः प्रत्येक विभेदक समीकरण को समीकरण में दिखाई देने वाले (ज्ञात) फलन द्वारा उत्पन्न विभेदक क्षेत्र पर विभेदक बीजगणित के एक तत्व के रूप में देखा जा सकता है।

इतिहास

जोसेफ रिट ने विभेदक बीजगणित विकसित किया क्योंकि उन्होंने विभेदक समीकरणों की प्रणालियों को विभिन्न विहित रूपों में कम करने के प्रयासों को एक असंतोषजनक दृष्टिकोण के रूप में देखा। यद्यपि, बीजगणितीय उन्मूलन विधियों और बीजगणितीय मैनिफोल्ड सिद्धांत की सफलता ने रिट को विभेदक समीकरणों के लिए एक समान दृष्टिकोण पर विचार करने के लिए प्रेरित किया।[1]: iii–iv  उनके प्रयासों से प्रारंभिक बीजगणितीय विभेदक समीकरणों की प्रणालियों द्वारा परिभाषित कार्यों के प्रारंभिक पेपर मैनिफोल्ड्स और 2 पुस्तकें, बीजगणितीय दृष्टिकोण और विभेदक बीजगणित से विभेदक समीकरण।।[2][1][3] रिट के छात्र एलिस कल्चेन ने इस क्षेत्र को आगे बढ़ाया और विभेदक बीजगणित और बीजगणितीय समूह प्रकाशित किया।[4]

विभेदक वलय

परिभाषा

व्युत्पत्ति वलय पर एक फलन है ऐसा कि

और

(लीबनिज़ उत्पाद नियम),

प्रत्येक और में के लिए

व्युत्पत्ति पूर्णांकों पर रैखिक मानचित्र है क्योंकि ये सर्वसमिकाएं संकेत और देती हैं एक विभेदक वलय एक क्रमविनिमेय वलय है, एक या अधिक व्युत्पत्तियों से सुसज्जित जो जोड़ीदार रूप से आवागमन करती हैं; वह है,

व्युत्पत्तियों की प्रत्येक जोड़ी और प्रत्येक के लिए है।[4]: 58–59  जब केवल एक ही व्युत्पत्ति होती है तो सामान्यतः एक साधारण विभेदक वलय की बात की जाती है; अन्यथा, कोई आंशिक विभेदक वलय की बात करता है

विभेदक क्षेत्र विभेदक वलय है जो एक क्षेत्र भी है। एक विभेदक बीजगणित एक विभेदक क्षेत्र पर एक विभेदक वलय है जिसमें सम्मिलित है एक सबवलय के रूप में जैसे कि प्रतिबंध की व्युत्पत्तियों का की व्युत्पत्ति के बराबर (एक अधिक सामान्य परिभाषा नीचे दी गई है, जो उस स्थिति के लिए पर्याप्त है एक क्षेत्र नहीं है, और अनिवार्य रूप से समतुल्य है जब एक क्षेत्र है.)

विट बीजगणित विभेदक वलय है जिसमें परिमेय संख्याओं का क्षेत्र सम्मिलित होता है। समान रूप से, यह विभेदक बीजगणित है तब से इसे विभेदक क्षेत्र के रूप में माना जा सकता है जिस पर प्रत्येक व्युत्पत्ति शून्य कार्य है।

एक विभेदक वलय के स्थिरांक तत्व हैं ऐसा है कि प्रत्येक व्युत्पत्ति के लिए, विभेदक वलय के स्थिरांक उपवलय बनाते हैं और भिन्न क्षेत्र के स्थिरांक उपक्षेत्र बनाते हैं।[4]: 58–60  स्थिरांक का यह अर्थ एक स्थिर कार्य की अवधारणा को सामान्यीकृत करता है, और इसे स्थिरांक के सामान्य अर्थ के साथ भ्रमित नहीं किया जाना चाहिए।

मूल सूत्र

निम्नलिखित पहचान में, एक विभेदक वलय की व्युत्पत्ति है [5]: 76 

  • अगर और में एक स्थिरांक है (वह है, ), तब
  • अगर और में एक इकाई (वलय सिद्धांत) है तब
  • अगर एक अऋणात्मक पूर्णांक है और तब
  • अगर में इकाइयाँ हैं, और पूर्णांक हैं, किसी के पास लघुगणकीय व्युत्पन्न पहचान है:

उच्च क्रम व्युत्पत्तियाँ

एक व्युत्पत्ति संचालिका या उच्च क्रम व्युत्पत्ति[citation needed] कई व्युत्पत्तियों की संरचना है। जैसा कि एक विभेदक वलय की व्युत्पत्तियों को परिवर्तित किया जाना चाहिए, व्युत्पत्तियों का क्रम तात्पर्य नहीं रखता है, और एक व्युत्पत्ति संक्रियक को इस प्रकार लिखा जा सकता है

जहाँ विचाराधीन व्युत्पत्तियां हैं, अतिरिक्त-ऋणात्मक पूर्णांक हैं, और किसी व्युत्पत्ति का घातांक यह दर्शाता है कि संक्रियक में यह व्युत्पत्ति कितनी बार बनाई गई है।

योग व्युत्पत्ति का क्रम कहलाता है। अगर व्युत्पत्ति संचालिका मूल व्युत्पत्तियों में से एक है। अगर , एक में पहचान फलन होता है, जिसे सामान्यतः क्रम शून्य का अद्वितीय व्युत्पत्ति संक्रियक माना जाता है। इन सम्मेलनों के साथ, व्युत्पत्ति संचालक विचाराधीन व्युत्पत्ति के समूह पर एक क्रमविनिमेय मोनोइड बनाते हैं।

किसी तत्व का व्युत्पन्न विभेदक वलय का व्युत्पत्ति संक्रियक का अनुप्रयोग है अर्थात्, उपरोक्त संकेतन के साथ है, एक उचित व्युत्पन्न सकारात्मक क्रम का व्युत्पन्न है।[4]: 58–59 

विभेदक आदर्श

विभेदक आदर्श विभेदक वलय वलय का एक आदर्श है जो वलय की व्युत्पत्ति के तहत बंद (स्थिर) है; वह है, प्रत्येक व्युत्पत्ति के लिए और प्रत्येक है। विभेदक आदर्श को उचित कहा जाता है यदि वह संपूर्ण वलय नहीं है। भ्रम से बचने के लिए, एक आदर्श जो विभेदक आदर्श नहीं है, उसे कभी-कभी बीजगणितीय आदर्श कहा जाता है।

विभेदक आदर्श का मूलांक बीजगणितीय आदर्श के रूप में उसके मूलांक के समान होता है, अर्थात, वलय तत्वों का समूह जिनकी आदर्श में शक्ति होती है। विभेदक आदर्श का मूलांक भी विभेदक आदर्श है। मौलिक या पूर्ण विभेदक आदर्श विभेदक आदर्श है जो इसके मौलिक के बराबर होता है।[6]: 3–4  एक अभाज्य विभेदक आदर्श एक विभेदक विचारधारा है जो सामान्य अर्थों में अभाज्य आदर्श है; अर्थात्, यदि कोई उत्पाद आदर्श से संबंधित है, तो कम से कम एक कारक आदर्श से संबंधित है। एक अभाज्य विभेदक आदर्श प्रायः एक मूल विभेदक आदर्श होता है।

रिट की एक खोज यह है कि, यद्यपि बीजगणित का उत्कृष्ट सिद्धांत विभेदक आदर्शों के लिए काम नहीं करता है, लेकिन इसका एक बड़ा हिस्सा परंपरागत विभेदक आदर्शों तक बढ़ाया जा सकता है, और यह उन्हें विभेदक बीजगणित में मौलिक बनाता है।

विभेदक आदर्शों के किसी भी परिवार का प्रतिच्छेदन एक विभेदक आदर्श है, और मूल विभेदक आदर्शों के किसी भी परिवार का प्रतिच्छेदन एक मूल विभेदक आदर्श है।[4]: 61–62 यह इस प्रकार है,विभेदक वलय का एक उपसमुच्चय दिया गया है, इसके द्वारा उत्पन्न तीन आदर्श होते हैं, जो क्रमशः, सभी बीजगणितीय आदर्शों, सभी विभेदक आदर्शों और सभी मौलिक विभेदक आदर्शों के प्रतिच्छेदन होते हैं जिनमें यह सम्मिलित होता है।[4]: 61–62 [7]: 21 

द्वारा उत्पन्न बीजगणितीय आदर्श के तत्वों के परिमित रैखिक संयोजनों का समुच्चय है और सामान्यतः इसे या इस रूप में दर्शाया जाता है

द्वारा उत्पन्न विभेदक आदर्श के तत्वों के परिमित रैखिक संयोजनों का समुच्चय है और इन तत्वों के किसी भी क्रम के व्युत्पन्न; इसे सामान्यतः रूप में दर्शाया जाता है जब परिमित है, सामान्यतः बीजगणितीय आदर्श के रूप में अंतिम रूप से उत्पन्र् नहीं होता है।

द्वारा उत्पन्न मौलिक विभेदक आदर्श सामान्यतः के रूप में दर्शाया जाता है अन्य दो वाद की तरह इसके तत्व को चित्रित करने का कोई ज्ञात तरीका नहीं है।

विभेदक बहुपद

विभेदक क्षेत्र पर विभेदक बहुपद विभेदक समीकरण की अवधारणा का एक औपचारिकरण है जैसे कि समीकरण में दिखाई देने वाले ज्ञात कार्य संबंधित हैं और अनिश्चित अज्ञात कार्यों के प्रतीक हैं।

तो चलो एक विभेदक क्षेत्र हो, जो विशिष्ट रूप से (लेकिन जरूरी नहीं) परिमेय भिन्नों का क्षेत्र है (बहुभिन्नरूपी बहुपदों के भिन्न), व्युत्पत्तियों से सुसज्जित ऐसा है कि और अगर (सामान्य आंशिक व्युत्पन्न)।

वलय को परिभाषित करने के लिए में विभेदक बहुपदों का व्युत्पत्तियों के साथ एक रूप के नए अनिश्चितों की अनंतता का परिचय देता है जहाँ क्या कोई व्युत्पत्ति संचालक क्रम से उच्चतर 1 है। इस संकेतन के साथ, इन सभी अनिश्चितों में प्राकृतिक व्युत्पत्तियों के साथ बहुपदों का समुच्चय है (प्रत्येक बहुपद में केवल अनिश्चितों की एक सीमित संख्या सम्मिलित होती है)। विशेषकर, यदि के पास

यहां तक ​​कि जब विभेदक बहुपदों का एक वलय नोथेरियन वलय नहीं है। इससे बहुपद वलय के इस सामान्यीकरण का सिद्धांत कठिन हो जाता है। यद्यपि, दो तथ्य ऐसे सामान्यीकरण की अनुमति देते हैं।

सबसे पहले, विभेदक बहुपद की सीमित संख्या में एक साथ अनिश्चित संख्याओं की सीमित संख्या सम्मिलित होती है। इसका तात्पर्य यह है कि बहुपदों का प्रत्येक गुण जिसमें बहुपदों की सीमित संख्या सम्मिलित होती है, विभेदक बहुपदों के लिए सत्य रहता है। विशेष रूप से, सबसे बड़े सामान्य भाजक उपस्थित हैं, और विभेदक बहुपदों की वलय अद्वितीय गुणनखंडन कार्यक्षेत्र है।

दूसरा तथ्य यह है कि यदि क्षेत्र में परिमेय संख्याओं का क्षेत्र, विभेदक बहुपदों के वलय सम्मिलित हैं मूल विभेदक आदर्शों पर आरोही श्रृंखला की स्थिति को संतुष्ट करता है। यह रिट का प्रमेय इसके सामान्यीकरण से निहित है, जिसे कभी-कभी रिट-रौडेनबश आधार प्रमेय भी कहा जाता है जो दावा करता है कि यदि रिट बीजगणित है (वह, एक विभेदक वलय है जिसमें तर्कसंगत संख्याओं का क्षेत्र सम्मिलित है),[8]: 12  जो परंपरागत विभेदक आदर्शों पर आरोही श्रृंखला की स्थिति को संतुष्ट करता है, फिर विभेदक बहुपद की वलय एक ही गुणधर्म को संतुष्ट करता है (प्रमेय को पुनरावृत्त रूप से लागू करके एकल चर से बहुभिन्नरूपी विषय चला जाता है)।[8]: 45, 48 : 56–57 [4]: 126–129 

नोथेरियन गुणधर्म का तात्पर्य है कि, विभेदक बहुपद की एक वलय में, प्रत्येक परंपरागत विभेदक आदर्श परिमित रूप से उत्पन्न होता है, इस अर्थ में कि यह सबसे छोटा परंपरागत विभेदक आदर्श है जिसमें बहुपद का एक सीमित समूह होता है।[9] यह जनरेटर के ऐसे सीमित समूह द्वारा एक परंपरागत विभेदक आदर्श का प्रतिनिधित्व करने और इन आदर्शों के साथ गणनाओं की अनुमति देता है। यद्यपि, बीजगणितीय विषय की कुछ सामान्य गणनाओं को बढ़ाया नहीं जा सकता है। विशेष रूप से दो मौलिक विभेदक आदर्शों की समानता के मौलिक विभेदक आदर्श में किसी तत्व की सदस्यता का परीक्षण करने के लिए कोई कलन विधि ज्ञात नहीं है।

नोथेरियन गुणधर्म का एक और परिणाम यह है कि एक परंपरागत विभेदक आदर्श को विशिष्ट रूप से प्रधान विभेदक आदर्शों की एक सीमित संख्या के प्रतिच्छेदन के रूप में व्यक्त किया जा सकता है, जिसे आदर्श के आवश्यक प्रधान घटक कहा जाता है।[10]: 8 

उन्मूलन विधियाँ

उन्मूलन विधियाँ कलन विधि हैं जो विभेदक समीकरणों के समूह से व्युत्पन्न के एक निर्दिष्ट समूह को प्राथमिकता से हटा देते हैं, जो सामान्यतः विभेदक समीकरणों के समूह को उत्तम ढंग से समझने और हल करने के लिए किया जाता है।

उन्मूलन विधियों की श्रेणियों में विशेषता समूह विधियों की विधि, विभेदक ग्रोबनेर आधार विधियां और परिणामी आधारित विधियां सम्मिलित हैं।[4][11][12][13][14][15][16]

उन्मूलन कलन विधि में उपयोग किए जाने वाले सामान्य संचालन में 1) श्रेणी व्युत्पन्न, बहुपद और बहुपद समूह, 2) बहुपद के प्रमुख व्युत्पन्न, प्रारंभिक और पृथक्करण की पहचान करना, 3) बहुपद कमी, और 4) विशेष बहुपद समूह बनाना सम्मिलित हैं।

श्रेणी व्युत्पन्न

व्युत्पन्न की श्रेणी सम्पूर्ण क्रम और स्वीकार्य क्रम है, जिसे इस प्रकार परिभाषित किया गया है:[4]: 75–76 [17]: 1141 [10]: 10 

प्रत्येक व्युत्पन्न में एक पूर्णांक ट्यूपल होता है, और एकपदी क्रम व्युत्पन्न के पूर्णांक ट्यूपल को श्रेणी करके व्युत्पन्न को श्रेणी करता है। पूर्णांक टपल विभेदक अनिश्चित, व्युत्पन्न के बहु-सूचकांक की पहचान करता है और व्युत्पन्न के क्रम की पहचान कर सकता है। श्रेणी के प्रकारों में सम्मिलित हैं:[18]: 83 

  • क्रमबद्ध श्रेणी:
  • उन्मूलन श्रेणी:

इस उदाहरण में, पूर्णांक टुपल विभेदक अनिश्चित और व्युत्पन्न के बहु-सूचकांक और शब्दकोषीय क्रम की पहचान करता है, व्युत्पन्न की श्रेणी निर्धारित करता है।[19]: 4 

.

अग्रणी व्युत्पन्न, प्रारंभिक और विभाजक

यह मानक बहुपद रूप है।.[4]: 75–76 [19]: 4 

  • अग्रणी या अग्रणी व्युत्पन्न बहुपद का सर्वोच्च श्रेणी वाला व्युत्पन्न है। .
  • गुणांक प्रमुख व्युत्पन्न सम्मिलित नहीं है।
  • बहुपद की डिग्री बहुपद का अग्रणी व्युत्पन्न का सबसे बड़ा घातांक है।
  • प्रारंभिक गुणांक है।
  • श्रेणी बहुपद की डिग्री तक उठाया गया प्रमुख व्युत्पन्न है।
  • विभेदक रूप से बंद क्षेत्रव्युत्पन्न है।

वे समूह को अलग कर देते हैं। प्रारंभिक समूह है हैं। और संयुक्त समूह है।[12]: 159 

पराभव

आंशिक रूप से छोटा (आंशिक सामान्य रूप) बहुपद बहुपद के संबंध में इंगित करता है कि ये बहुपद अतिरिक्त-जमीनी क्षेत्र तत्व हैं, , और का कोई उचित व्युत्पन्न नहीं है।[4]: 75 [18]: 84 [12]: 159 

आंशिक रूप से छोटा किया गया बहुपद बहुपद के संबंध में लघु (सामान्य रूप) बहुपद बन जाता है, बहुपद इसके संबंध में यदि में की डिग्री कम है तब डिग्री में है।[4][4]: 75 [18]: 84 [12]: 159 

स्वतः कम किए गए बहुपद समूह में प्रत्येक बहुपद समूह के प्रत्येक दूसरे बहुपद के संबंध में कम हो जाता है। प्रत्येक स्वतः कम किया गया समूह परिमित है। एक स्वतः कम किया गया समूह त्रिकोणीय है जिसका अर्थ है कि प्रत्येक बहुपद तत्व का एक अलग अग्रणी व्युत्पन्न होता है।[6]: 6 [4]: 75 

रिट का न्यूनीकरण कलन विधि पूर्णांकों की पहचान करता है और एक विभेदक बहुपद को रूपांतरित करता है निम्न या समान श्रेणी वाले शेष बहुपद के लिए बहुपद के सबसे बड़े सामान्य भाजक का उपयोग करना स्वतः कम किए गए बहुपद समूह के संबंध में कम हो गया है। कलन विधि का पहला चरण निविष्ट बहुपद को आंशिक रूप से कम करता है और कलन विधि का दूसरा चरण बहुपद को पूरी तरह से कम करता है। पराभव का सूत्र [4]: 75 

है।

श्रेणी बहुपद समूह

तय करना यदि अग्रणी व्युत्पन्न की श्रेणी है तो यह विभेदक श्रृंखला है और के संबंध में कम किया गया है [11]: 294 

स्वतः कम किए गए समूह और प्रत्येक में क्रमबद्ध बहुपद तत्व होते हैं। यह प्रक्रिया समान रूप से अनुक्रमित जोड़े की तुलना करके दो स्वचालित समूहों को श्रेणी करती है,दोनों स्वतः कम किए गए समूहों से बहुपद।[4]: 81 

  • और और .
  • अगर वहां एक है ऐसा है कि के लिए और .
  • अगर और के लिए .
  • अगर और के लिए .

बहुपद समुच्चय

विशेषता समूह आदर्श के सभी स्वतः कम किए गए उपसमुच्चय में से सबसे कम श्रेणी स्वतः कम किए गए उपसमुच्चय है जिनके उपसमुच्चय बहुपद विभाजक आदर्श के अतिरिक्त-सदस्य हैं।.[4]: 82 

डेल्टा बहुपद बहुपद युग्म पर लागू होता है जिनके अग्रणी एक समान व्युत्पन्न साझा करते हैं, बहुपद जोड़ी के अग्रणी व्युत्पन्न के लिए सबसे कम सामान्य व्युत्पन्न संक्रियक है ,

और डेल्टा बहुपद है:[4]: 136 [12]: 160 

सुसंगत समुच्चय एक बहुपद समुच्चय है जो इसके डेल्टा बहुपद युग्मों को शून्य कर देता है।[4]: 136 [12]: 160 

नियमित व्यवस्था और नियमित आदर्श

एक नियमित प्रणाली इसमें विभेदक समीकरणों का एक स्वचालित और सुसंगत समूह सम्मिलित है और एक असमानता समुच्चय समूह के साथ समीकरण समूह के संबंध में कम हो गया है।[12]: 160 

नियमित विभेदक आदर्श और नियमित बीजगणितीय आदर्श आदर्श भागफल हैं जो एक नियमित प्रणाली से उत्पन्न होते हैं।[12]: 160  लेज़ार्ड का लेम्मा बताता है कि नियमित विभेदक और नियमित बीजगणितीय आदर्श परंपरागतआदर्श हैं।[20]

  • नियमित विभेदक आदर्श:
  • नियमित बीजगणितीय आदर्श:

रोसेनफेल्ड-ग्रोबनेर कलन विधि

रोसेनफेल्ड-ग्रोबनेर कलन विधि नियमित मौलिक विभेदक आदर्शों के एक सीमित प्रतिच्छेदन के रूप में मौलिक विभेदक आदर्श को विघटित करता है। विशिष्ट समूहों द्वारा दर्शाए गए ये नियमित विभेदक परंपरागतआदर्श आवश्यक रूप से प्रमुख आदर्श नहीं हैं और प्रतिनिधित्व आवश्यक रूप से न्यूनतम नहीं है।[12]: 158 

सदस्यता समस्या यह निर्धारित करना है कि क्या एक विभेदक बहुपद है विभेदक बहुपदों के एक समूह से उत्पन्न आदर्श का एक सदस्य है . रोसेनफेल्ड-ग्रोबनेर कलन विधि ग्रोबनेर आधारों के समूह उत्पन्न करता है। कलन विधि यह निर्धारित करता है कि एक बहुपद आदर्श का सदस्य है यदि और केवल तभी जब आंशिक रूप से कम किया गया शेष बहुपद ग्रोबनर आधारों द्वारा उत्पन्न बीजगणितीय आदर्श का सदस्य हो।[12]: 164 

रोसेनफेल्ड-ग्रोबनेर कलन विधि विभेदक समीकरणों के समाधान के टेलर श्रृंखला विस्तार बनाने की सुविधा प्रदान करता है।[21]

उदाहारण

विभेदक क्षेत्र

उदहारण 1: एकल मानक व्युत्पत्ति के साथ विभेदक मेरोमोर्फिक फलन क्षेत्र है।

उदहारण 2: व्युत्पत्ति के रूप में एक विभेदक संक्रियक के साथ एक विभेदक क्षेत्र है।

व्युत्पत्ति

परिभाषित करना शिफ्ट संक्रियक के रूप में बहुपद के लिए है। .

एक शिफ्ट-इनवेरिएंट संक्रियक शिफ्ट संक्रियक के साथ आवागमन करता है ।.

पिंचरले व्युत्पन्न, शिफ्ट-इनवेरिएंट संक्रियक की व्युत्पत्ति , है ।.[22]: 694 

स्थिरांक

पूर्णांकों का वलय है, और प्रत्येक पूर्णांक एक स्थिरांक है।

  • 1 की व्युत्पत्ति शून्य है.
  • भी है।
  • प्रेरण द्वारा है।

परिमेय संख्याओं का क्षेत्र है , और प्रत्येक परिमेय संख्या एक स्थिरांक है।

  • प्रत्येक परिमेय संख्या पूर्णांकों का भागफल होती है।
  • यह मानते हुए कि पूर्णांकों की व्युत्पत्तियाँ शून्य हैं, भागफल के लिए व्युत्पत्ति सूत्र लागू करें:
.

विभेदक सबवलय

स्थिरांक, स्थिरांकों के उपवलय का निर्माण करते हैं।[4]: 60 

विभेदक आदर्श

तत्व विभेदक वलय में .[6] विभेदकआदर्श उत्पन्न करता है।.[6]: 4 

एक विभेदक वलय पर बीजगणित

पहचान वाली कोई भी वलय बीजगणित एक है।[23]: 343  इस प्रकार एक विभेदक वलय बीजगणित है।

अगर वलय यूनिटल वलय के केंद्र का एक उपवलय है , तब एक बीजगणित है।[23]: 343  इस प्रकार, एक विभेदक वलय अपने विभेदक उपवलय पर एक बीजगणित है। यह बीजगणित की उसके उप-वलय पर प्राकृतिक संरचना है।[4]: 75 

विशेष और सामान्य बहुपद

वलय असमानेय बहुपद हैं, (सामान्य, वर्गमुक्त) और (विशेष, आदर्श जनरेटर)हैं।

 :

बहुपद

श्रेणी

वलय व्युत्पन्न है और * प्रत्येक व्युत्पन्न को पूर्णांक टपल में मैप करें: .

  • श्रेणी व्युत्पन्न और पूर्णांक टुपल्स: .

अग्रणी व्युत्पन्न और प्रारंभिक

अग्रणी व्युत्पन्न, और प्रारंभिक हैं:

 :  :

विभाजक

.

स्वचालित समूह

  • स्वचालित समूह और हैं. प्रत्येक समूह एक अलग बहुपद अग्रणी व्युत्पन्न के साथ त्रिकोणीय है।
  • अतिरिक्त-स्वचालित समूह केवल आंशिक रूप से कम किया गया है इसके संबंध में ; यह समुच्चय अतिरिक्त-त्रिकोणीय है क्योंकि बहुपदों का अग्रणी विभेदक समान है।

अनुप्रयोग

प्रतीकात्मक एकीकरण

प्रतीकात्मक एकीकरण बहुपदों और उनके व्युत्पन्न जैसे प्रत्येक्मिटमें कमी, सीज़िचोव्स्की कलन विधि, लैजार्ड-रियोबू-ट्रेजर कलन विधि, होरोविट्ज़-ओस्ट्रोग्रैडस्की कलन विधि, वर्गमुक्त गुणनखंडन और विशेष और सामान्य बहुपदों को विभाजित करने वाले गुणनखंडन से जुड़े कलन विधि का उपयोग करता है।[5]: 41, 51, 53, 102, 299, 309 

विभेदक समीकरण

विभेदक बीजगणित यह निर्धारित कर सकता है कि विभेदक बहुपद समीकरणों के एक समूह का कोई समाधान है या नहीं है। कुल श्रेणी क्रम बीजगणितीय बाधाओं की पहचान कर सकती है। एक उन्मूलन श्रेणी यह निर्धारित कर सकती है कि स्वतंत्र चर का एक या चयनित समूह विभेदक समीकरणों को व्यक्त कर सकता है या नहीं सकता है। त्रिकोणीय अपघटन और उन्मूलन क्रम का उपयोग करके, चरण-वार विधि में एक समय में एक विभेदक अनिश्चित विभेदक समीकरणों को हल करना संभव हो सकता है। एक अन्य दृष्टिकोण ज्ञात समाधान प्रपत्र के साथ विभेदक समीकरणों का एक वर्ग बनाना है जो की किसी विभेदक समीकरण को उसके वर्ग से मिलाने से समीकरण के समाधान की पहचान हो जाती है। समीकरणों की विभेदक-बीजगणितीय प्रणाली के संख्यात्मक एकीकरण की सुविधा के लिए विधियाँ उपलब्ध हैं।[10]: 41–47 

कैओस सिद्धांत के साथ अतिरिक्त-रेखीय गतिशील प्रणालियों के एक अध्ययन में, शोधकर्ताओं ने विभेदक समीकरणों को एकल स्थान चर से जुड़े सामान्य विभेदक समीकरणों में कम करने के लिए विभेदक उन्मूलन का उपयोग किया। वे अधिकतर वाद में सफल रहे, और इससे अनुमानित समाधान विकसित करने, कैओस सिद्धांत का कुशलतापूर्वक मूल्यांकन करने और लाइपापुनोव कार्यों का निर्माण करने में मदद मिली।[24] शोधकर्ताओं ने जैव रासायनिक प्रतिक्रियाओं के लिए कोशिका जीव विज्ञान, पूरक जैव रसायन प्रतिरूप, प्राचल अनुमान और स्थिर अवस्था अर्ध-स्थिर अवस्था सन्निकटन (QSSA) को समझने के लिए विभेदक उन्मूलन लागू किया है।[25][26]विभेदक ग्रोबनेर आधारों का उपयोग करते हुए, शोधकर्ताओं ने अतिरिक्त-रेखीय विभेदक समीकरणों के अतिरिक्त-उत्कृष्ट समरूपता गुणों की जांच की है।[27] अन्य अनुप्रयोगों में नियंत्रण सिद्धांत, प्रतिरूप सिद्धांत और बीजगणितीय ज्यामिति सम्मिलित हैं।[28][9][7] विभेदक बीजगणित विभेदक-विभेदक समीकरणों पर भी लागू होता है।[17]

व्युत्पत्तियों के साथ बीजगणित

विभेदक श्रेणीबद्ध सदिश स्थान

चुनौतीपूर्ण समस्याएँ

रिट समस्या पूछती है कि क्या कोई कलन विधि है जो यह निर्धारित करता है कि क्या प्रमुख विभेदक आदर्श में दूसरा प्रमुख विभेदक आदर्श होता है जब विशेषता समूह दोनों आदर्शों की पहचान करते हैं।

कोल्चिन कैटेनरी अनुमान में कहा गया है


जैकोबी बाध्य अनुमान एक विभेदक प्रकार के अपरिवर्तनीय घटक के क्रम के लिए ऊपरी सीमा की चिंता करता है। बहुपद के आदेश जैकोबी संख्या निर्धारित करते हैं, और अनुमान यह है कि जैकोबी संख्या इस सीमा को निर्धारित करती है।

  1. 1.0 1.1 Ritt 1932.
  2. Ritt 1930.
  3. Ritt 1950.
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 Kolchin 1973.
  5. 5.0 5.1 Bronstein 2005.
  6. 6.0 6.1 6.2 6.3 Sit 2002.
  7. 7.0 7.1 Buium 1994.
  8. 8.0 8.1 Kaplansky 1976.
  9. 9.0 9.1 Marker 2000.
  10. 10.0 10.1 10.2 Hubert 2002.
  11. 11.0 11.1 Li & Yuan 2019.
  12. 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 Boulier et al. 1995.
  13. Mansfield 1991.
  14. Ferro 2005.
  15. Chardin 1991.
  16. Wu 2005b.
  17. 17.0 17.1 Gao et al. 2009.
  18. 18.0 18.1 18.2 Ferro & Gerdt 2003.
  19. 19.0 19.1 Wu 2005a.
  20. Morrison 1999.
  21. Boulier et al. 2009b.
  22. Rota, Kahaner & Odlyzko 1973.
  23. 23.0 23.1 Dummit & Foote 2004.
  24. Harrington & VanGorder 2017.
  25. Boulier 2007.
  26. Boulier & Lemaire 2009a.
  27. Clarkson & Mansfield 1994.
  28. Diop 1992.