होमोटॉपी विस्तार गुण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, [[बीजगणितीय टोपोलॉजी]] के क्षेत्र में, '''[[होमोटॉपी]] विस्तार गुण''' प्रदर्शित करती है कि उप-स्थान पर परिभाषित कौन सी होमोटॉपी को बड़े स्थान पर परिभाषित होमोटॉपी तक बढ़ाया जा सकता है। [[[[ कंपन |को-फाइब्रेशन]]]] की होमोटॉपी विस्तार गुण होमोटॉपी उठाने वाली गुण से दोहरी है जिसका उपयोग फाइब्रेशन को परिभाषित करने के लिए किया जाता है।  
गणित में, [[बीजगणितीय टोपोलॉजी]] के क्षेत्र में, '''[[होमोटॉपी]] विस्तार गुण''' प्रदर्शित करते है कि उप-स्थान पर परिभाषित कौन सी होमोटॉपी को बड़े स्थान पर परिभाषित होमोटॉपी तक बढ़ाया जा सकता है। [[[[ कंपन |को-फाइब्रेशन]]]] की होमोटॉपी विस्तार गुण होमोटॉपी उपयोगी गुण से दोहरी है जिसका उपयोग फाइब्रेशन को परिभाषित करने के लिए किया जाता है।  


==परिभाषा ==
==परिभाषा ==
मान लीजिये <math>X\,\!</math> [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल स्थान]] है, और <math>A \subset X</math> द्वारा जोड़ी <math>(X,A)\,\!</math> यदि, समरूपता दी गई है तो इसमें समरूप विस्तार गुण <math>f_\bullet\colon A \rightarrow Y^I</math> है और मानचित्र <math>\tilde{f}_0\colon X \rightarrow Y</math> ऐसा है कि <math display="block">\tilde{f}_0\circ \iota = \left.\tilde{f}_0\right|_A = f_0 = \pi_0 \circ f_\bullet,</math> तो वहाँ का विस्तार <math>f_\bullet</math> उपस्थित है समरूपता के लिए <math>\tilde{f}_\bullet\colon X \rightarrow Y^I</math> और <math>\tilde{f}_\bullet\circ \iota = \left.\tilde{f}_\bullet\right|_A = f_\bullet</math> है:<ref>A. Dold, ''Lectures on Algebraic Topology'', pp. 84, Springer {{ISBN|3-540-58660-1}}</ref>
मान लीजिये <math>X\,\!</math> [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल स्थान]] है, और <math>A \subset X</math> द्वारा युग्म <math>(X,A)\,\!</math> यदि, समरूपता दी गई है तो इसमें समरूप विस्तार गुण <math>f_\bullet\colon A \rightarrow Y^I</math> है और मानचित्र <math>\tilde{f}_0\colon X \rightarrow Y</math> ऐसा है कि <math display="block">\tilde{f}_0\circ \iota = \left.\tilde{f}_0\right|_A = f_0 = \pi_0 \circ f_\bullet,</math> तो वहाँ का विस्तार <math>f_\bullet</math> उपस्थित है समरूपता के लिए <math>\tilde{f}_\bullet\colon X \rightarrow Y^I</math> और <math>\tilde{f}_\bullet\circ \iota = \left.\tilde{f}_\bullet\right|_A = f_\bullet</math> है:<ref>A. Dold, ''Lectures on Algebraic Topology'', pp. 84, Springer {{ISBN|3-540-58660-1}}</ref>
अर्थात जोड़ी <math>(X,A)\,\!</math> यदि कोई मानचित्र है तो होमोटॉपी विस्तार गुण <math>G\colon ((X\times \{0\}) \cup (A\times I)) \rightarrow Y</math> है मानचित्र तक <math>G'\colon X\times I \rightarrow Y</math> बढ़ाया जा सकता है (अर्थात <math>G\,\!</math> और <math>G'\,\!</math> उनके सामान्य डोमेन पर सहमत है)।
अर्थात युग्म <math>(X,A)\,\!</math> यदि कोई मानचित्र है तो होमोटॉपी विस्तार गुण <math>G\colon ((X\times \{0\}) \cup (A\times I)) \rightarrow Y</math> है मानचित्र तक <math>G'\colon X\times I \rightarrow Y</math> बढ़ाया जा सकता है (अर्थात <math>G\,\!</math> और <math>G'\,\!</math> उनके सामान्य डोमेन पर सहमत है)।


यदि जोड़ी के निकट यह गुण केवल निश्चित [[कोडोमेन]] के लिए <math>Y\,\!</math> है, हम ऐसा कहते हैं <math>(X,A)\,\!</math> के संबंध में समरूप विस्तार गुण <math>Y\,\!</math> है।
यदि युग्म के निकट यह गुण केवल निश्चित [[कोडोमेन]] के लिए <math>Y\,\!</math> है, हम ऐसा कहते हैं <math>(X,A)\,\!</math> के संबंध में समरूप विस्तार गुण <math>Y\,\!</math> है।


==विज़ुअलाइज़ेशन==
==विज़ुअलाइज़ेशन==
होमोटॉपी विस्तार गुण को निम्नलिखित चित्र में दर्शाया गया है:
होमोटॉपी विस्तार गुण को निम्नलिखित चित्र में दर्शाया गया है:


[[File:Homotopy extension property rotated.svg|175px|center]]यदि उपरोक्त आरेख (बिना धराशायी मानचित्र के) चलता है (यह उपरोक्त स्थितियों के समान है), यदि मानचित्र उपस्थित है तो जोड़ी (X,A) में होमोटॉपी विस्तार गुण <math>\tilde{f}_\bullet</math> है जो आरेख को आवागमन योग्य बनाता है। [[करी|करीइंग]] द्वारा, ध्यान दें कि होमोटॉपीज़ को मानचित्रों के रूप में <math>\tilde{f}_\bullet \colon X \to Y^I</math>व्यक्त किया गया है मानचित्र के रूप में भावों के साथ प्राकृतिक आपत्तियां परिवर्तन<math> \tilde{f}_\bullet \colon X\times I \to Y </math> हैं।
[[File:Homotopy extension property rotated.svg|175px|center]]यदि उपरोक्त आरेख (बिना धराशायी मानचित्र के) चलता है (यह उपरोक्त स्थितियों के समान है), यदि मानचित्र उपस्थित है तो युग्म (X,A) में होमोटॉपी विस्तार गुण <math>\tilde{f}_\bullet</math> है जो आरेख को आवागमन योग्य बनाता है। [[करी|करीइंग]] द्वारा, ध्यान दें कि होमोटॉपीज़ को मानचित्रों के रूप में <math>\tilde{f}_\bullet \colon X \to Y^I</math>व्यक्त किया गया है मानचित्र के रूप में भावों के साथ प्राकृतिक आपत्तियां परिवर्तन<math> \tilde{f}_\bullet \colon X\times I \to Y </math> हैं।


ध्यान दें कि यह आरेख होमोटॉपी उपयोग के गुण के दोहरे (विपरीत) है; इस द्वैत को सामान्यतः एकमैन-हिल्टन द्वैत कहा जाता है।
ध्यान दें कि यह आरेख होमोटॉपी उपयोगी गुण के दोहरे (विपरीत) है; इस द्वैत को सामान्यतः एकमैन-हिल्टन द्वैत कहा जाता है।


==गुण==
==गुण==
Line 18: Line 18:
* युग्म <math>(X,A)\,\!</math> होमोटॉपी विस्तार गुण है यदि केवल <math>(X\times \{0\} \cup A\times I)</math> का विरूपण प्रत्यावर्तन <math>X\times I.</math> है।  
* युग्म <math>(X,A)\,\!</math> होमोटॉपी विस्तार गुण है यदि केवल <math>(X\times \{0\} \cup A\times I)</math> का विरूपण प्रत्यावर्तन <math>X\times I.</math> है।  


 
== अन्य ==
==अन्य==
यदि <math>(X, A)</math> होमोटॉपी विस्तार गुण है, फिर सरल समावेशन मानचित्र <math>\iota\colon A \to X</math> सह-फाइब्रेशन है।
यदि <math>(X, A)</math> होमोटॉपी विस्तार गुण है, फिर सरल समावेशन मानचित्र <math>\iota\colon A \to X</math> सह-फाइब्रेशन है।



Revision as of 00:08, 12 July 2023

गणित में, बीजगणितीय टोपोलॉजी के क्षेत्र में, होमोटॉपी विस्तार गुण प्रदर्शित करते है कि उप-स्थान पर परिभाषित कौन सी होमोटॉपी को बड़े स्थान पर परिभाषित होमोटॉपी तक बढ़ाया जा सकता है। [[को-फाइब्रेशन]] की होमोटॉपी विस्तार गुण होमोटॉपी उपयोगी गुण से दोहरी है जिसका उपयोग फाइब्रेशन को परिभाषित करने के लिए किया जाता है।

परिभाषा

मान लीजिये टोपोलॉजिकल स्थान है, और द्वारा युग्म यदि, समरूपता दी गई है तो इसमें समरूप विस्तार गुण है और मानचित्र ऐसा है कि

तो वहाँ का विस्तार उपस्थित है समरूपता के लिए और है:[1] अर्थात युग्म यदि कोई मानचित्र है तो होमोटॉपी विस्तार गुण है मानचित्र तक बढ़ाया जा सकता है (अर्थात और उनके सामान्य डोमेन पर सहमत है)।

यदि युग्म के निकट यह गुण केवल निश्चित कोडोमेन के लिए है, हम ऐसा कहते हैं के संबंध में समरूप विस्तार गुण है।

विज़ुअलाइज़ेशन

होमोटॉपी विस्तार गुण को निम्नलिखित चित्र में दर्शाया गया है:

Homotopy extension property rotated.svg

यदि उपरोक्त आरेख (बिना धराशायी मानचित्र के) चलता है (यह उपरोक्त स्थितियों के समान है), यदि मानचित्र उपस्थित है तो युग्म (X,A) में होमोटॉपी विस्तार गुण है जो आरेख को आवागमन योग्य बनाता है। करीइंग द्वारा, ध्यान दें कि होमोटॉपीज़ को मानचित्रों के रूप में व्यक्त किया गया है मानचित्र के रूप में भावों के साथ प्राकृतिक आपत्तियां परिवर्तन हैं।

ध्यान दें कि यह आरेख होमोटॉपी उपयोगी गुण के दोहरे (विपरीत) है; इस द्वैत को सामान्यतः एकमैन-हिल्टन द्वैत कहा जाता है।

गुण

  • यदि सेल संकुल है और उपसमुच्चय है , फिर युग्म समरूप विस्तार गुण है।
  • युग्म होमोटॉपी विस्तार गुण है यदि केवल का विरूपण प्रत्यावर्तन है।

अन्य

यदि होमोटॉपी विस्तार गुण है, फिर सरल समावेशन मानचित्र सह-फाइब्रेशन है।

वास्तव में, यदि आप किसी सह-फाइब्रेशन पर विचार करते हैं, तो वह हमारे पास है नीचे दी गई छवि के अनुरूप होम्योमॉर्फिक है, इसका तात्पर्य यह है कि किसी भी सह-फाइब्रेशन को समावेशन मानचित्र के रूप में माना जा सकता है, और इसलिए इसे होमोटॉपी विस्तार गुण के रूप में माना जा सकता है।

यह भी देखें

  • होमोटोपी उपयोगी गुण

संदर्भ

  1. A. Dold, Lectures on Algebraic Topology, pp. 84, Springer ISBN 3-540-58660-1