सशर्त निर्भरता: Difference between revisions
(Created page with "{{see also|Conditional independence}} File:Conditional Dependence.jpg|thumb|right|सशर्त निर्भरता को दर्शाने वाला [[ब...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{see also| | {{see also|सशर्त स्वतंत्रता}} | ||
[[File:Conditional Dependence.jpg|thumb|right|सशर्त निर्भरता को दर्शाने वाला [[बायेसियन नेटवर्क]]]]संभाव्यता सिद्धांत में, सशर्त निर्भरता दो या दो से अधिक घटनाओं (संभावना सिद्धांत) के बीच एक संबंध है जो तीसरी घटना होने पर [[निर्भरता (संभावना सिद्धांत)]] होती है।<ref name="AI-class">Introduction to Artificial Intelligence by Sebastian Thrun and Peter Norvig, 2011 [https://www.ai-class.com/course/video/videolecture/33 "Unit 3: Conditional Dependence"]{{Dead link|date=July 2020|bot=InternetArchiveBot|fix-attempted=yes}}</ref><ref>Introduction to learning Bayesian Networks from Data by Dirk Husmeier [http://www.bioss.sari.ac.uk/staff/dirk/papers/sbb_bnets.pdf] "Introduction to Learning Bayesian Networks from Data -Dirk Husmeier"</ref> उदाहरण के लिए, यदि <math>A</math> और <math>B</math> दो घटनाएँ हैं जो व्यक्तिगत रूप से तीसरी घटना की संभावना को बढ़ाती हैं <math>C,</math> और एक-दूसरे को सीधे प्रभावित नहीं करते हैं, तो शुरू में (जब यह नहीं देखा गया है कि घटना है या नहीं)। <math>C</math> घटित होना)<ref>Conditional Independence in Statistical theory [http://edlab-www.cs.umass.edu/cs589/2010-lectures/conditional%20independence%20in%20statistical%20theory.pdf "Conditional Independence in Statistical Theory", A. P. Dawid"] {{webarchive|url=https://web.archive.org/web/20131227164541/http://edlab-www.cs.umass.edu/cs589/2010-lectures/conditional%20independence%20in%20statistical%20theory.pdf|date=2013-12-27}}</ref><ref>Probabilistic independence on Britannica [http://www.britannica.com/EBchecked/topic/477530/probability-theory/32768/Applications-of-conditional-probability#toc32769 "Probability->Applications of conditional probability->independence (equation 7) "]</ref> | [[File:Conditional Dependence.jpg|thumb|right|सशर्त निर्भरता को दर्शाने वाला [[बायेसियन नेटवर्क]]]]संभाव्यता सिद्धांत में, सशर्त निर्भरता दो या दो से अधिक घटनाओं (संभावना सिद्धांत) के बीच एक संबंध है जो तीसरी घटना होने पर [[निर्भरता (संभावना सिद्धांत)]] होती है।<ref name="AI-class">Introduction to Artificial Intelligence by Sebastian Thrun and Peter Norvig, 2011 [https://www.ai-class.com/course/video/videolecture/33 "Unit 3: Conditional Dependence"]{{Dead link|date=July 2020|bot=InternetArchiveBot|fix-attempted=yes}}</ref><ref>Introduction to learning Bayesian Networks from Data by Dirk Husmeier [http://www.bioss.sari.ac.uk/staff/dirk/papers/sbb_bnets.pdf] "Introduction to Learning Bayesian Networks from Data -Dirk Husmeier"</ref> उदाहरण के लिए, यदि <math>A</math> और <math>B</math> दो घटनाएँ हैं जो व्यक्तिगत रूप से तीसरी घटना की संभावना को बढ़ाती हैं <math>C,</math> और एक-दूसरे को सीधे प्रभावित नहीं करते हैं, तो शुरू में (जब यह नहीं देखा गया है कि घटना है या नहीं)। <math>C</math> घटित होना)<ref>Conditional Independence in Statistical theory [http://edlab-www.cs.umass.edu/cs589/2010-lectures/conditional%20independence%20in%20statistical%20theory.pdf "Conditional Independence in Statistical Theory", A. P. Dawid"] {{webarchive|url=https://web.archive.org/web/20131227164541/http://edlab-www.cs.umass.edu/cs589/2010-lectures/conditional%20independence%20in%20statistical%20theory.pdf|date=2013-12-27}}</ref><ref>Probabilistic independence on Britannica [http://www.britannica.com/EBchecked/topic/477530/probability-theory/32768/Applications-of-conditional-probability#toc32769 "Probability->Applications of conditional probability->independence (equation 7) "]</ref> | ||
Line 6: | Line 6: | ||
लेकिन अब मान लीजिये <math>C</math> घटित होता देखा गया है। यदि घटना <math>B</math> तब घटना के घटित होने की संभावना होती है <math>A</math> में कमी आएगी क्योंकि इसका सकारात्मक संबंध है <math>C</math> की घटना के लिए स्पष्टीकरण के रूप में कम आवश्यक है <math>C</math> (इसी तरह, घटना <math>A</math> घटित होने से घटित होने की सम्भावना कम हो जायेगी <math>B</math>). इसलिए, अब दो घटनाएँ <math>A</math> और <math>B</math> सशर्त रूप से एक-दूसरे पर नकारात्मक रूप से निर्भर होते हैं क्योंकि प्रत्येक के घटित होने की संभावना इस बात पर नकारात्मक रूप से निर्भर होती है कि दूसरा घटित होता है या नहीं। अपने पास<ref>Introduction to Artificial Intelligence by Sebastian Thrun and Peter Norvig, 2011 [https://www.ai-class.com/course/video/quizquestion/60 "Unit 3: Explaining Away"]{{Dead link|date=July 2020 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> | लेकिन अब मान लीजिये <math>C</math> घटित होता देखा गया है। यदि घटना <math>B</math> तब घटना के घटित होने की संभावना होती है <math>A</math> में कमी आएगी क्योंकि इसका सकारात्मक संबंध है <math>C</math> की घटना के लिए स्पष्टीकरण के रूप में कम आवश्यक है <math>C</math> (इसी तरह, घटना <math>A</math> घटित होने से घटित होने की सम्भावना कम हो जायेगी <math>B</math>). इसलिए, अब दो घटनाएँ <math>A</math> और <math>B</math> सशर्त रूप से एक-दूसरे पर नकारात्मक रूप से निर्भर होते हैं क्योंकि प्रत्येक के घटित होने की संभावना इस बात पर नकारात्मक रूप से निर्भर होती है कि दूसरा घटित होता है या नहीं। अपने पास<ref>Introduction to Artificial Intelligence by Sebastian Thrun and Peter Norvig, 2011 [https://www.ai-class.com/course/video/quizquestion/60 "Unit 3: Explaining Away"]{{Dead link|date=July 2020 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> | ||
<math display=block>\operatorname{P}(A \mid C \text{ and } B) < \operatorname{P}(A \mid C).</math> | <math display=block>\operatorname{P}(A \mid C \text{ and } B) < \operatorname{P}(A \mid C).</math> | ||
A और B की सशर्त निर्भरता, सी दी गई, [[सशर्त स्वतंत्रता]] का तार्किक निषेध है <math>((A \perp\!\!\!\perp B) \mid C)</math>.<ref>{{Cite book |last=Bouckaert |first=Remco R. |title=डेटा, आर्टिफिशियल इंटेलिजेंस और सांख्यिकी से मॉडल का चयन IV|publisher=[[Springer-Verlag]] |year=1994 |isbn=978-0-387-94281-0 |editor-last=Cheeseman |editor-first=P. |series=Lecture Notes in Statistics |volume=89 |pages=101-111, especially 104 |language=EN |chapter=11. Conditional dependence in probabilistic networks |editor-last2=Oldford |editor-first2=R. W.}}</ref> सशर्त स्वतंत्रता में दो घटनाएँ (जो निर्भर हो सकती हैं या नहीं) तीसरी घटना के घटित होने पर स्वतंत्र हो जाती हैं।<ref>Conditional Independence in Statistical theory [http://edlab-www.cs.umass.edu/cs589/2010-lectures/conditional%20independence%20in%20statistical%20theory.pdf "Conditional Independence in Statistical Theory", A. P. Dawid] {{webarchive|url=https://web.archive.org/web/20131227164541/http://edlab-www.cs.umass.edu/cs589/2010-lectures/conditional%20independence%20in%20statistical%20theory.pdf |date=2013-12-27 }}</ref> | |||
Line 17: | Line 17: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | !घटना | ||
! <math>\operatorname{P}(s_1)=1/4</math> !! <math>\operatorname{P}(s_2)=1/4</math> !! <math>\operatorname{P}(s_3)=1/4</math> !! <math>\operatorname{P}(s_4)=1/4</math> !!घटना की संभावना | |||
|- | |- | ||
| <math>A</math> || 0 || 1 || 0 || 1 | | <math>A</math> || 0 || 1 || 0 || 1 | ||
Line 32: | Line 33: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | !घटना | ||
! <math>s_1</math> !! <math>s_2</math> !! <math>s_3</math> !! <math>s_4</math> !!घटना की संभावना | |||
|- | |- | ||
| <math>A \cap B</math> || 0 || 0 || 0 || 1 | | <math>A \cap B</math> || 0 || 0 || 0 || 1 | ||
Line 57: | Line 59: | ||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|सशर्त स्वतंत्रता}} | ||
* {{annotated link| | * {{annotated link|डी फिनेटी का प्रमेय}} | ||
* {{annotated link| | * {{annotated link|सशर्त अपेक्षा}} | ||
== संदर्भ == | == संदर्भ == |
Revision as of 19:32, 11 July 2023
संभाव्यता सिद्धांत में, सशर्त निर्भरता दो या दो से अधिक घटनाओं (संभावना सिद्धांत) के बीच एक संबंध है जो तीसरी घटना होने पर निर्भरता (संभावना सिद्धांत) होती है।[1][2] उदाहरण के लिए, यदि और दो घटनाएँ हैं जो व्यक्तिगत रूप से तीसरी घटना की संभावना को बढ़ाती हैं और एक-दूसरे को सीधे प्रभावित नहीं करते हैं, तो शुरू में (जब यह नहीं देखा गया है कि घटना है या नहीं)। घटित होना)[3][4]
लेकिन अब मान लीजिये घटित होता देखा गया है। यदि घटना तब घटना के घटित होने की संभावना होती है में कमी आएगी क्योंकि इसका सकारात्मक संबंध है की घटना के लिए स्पष्टीकरण के रूप में कम आवश्यक है (इसी तरह, घटना घटित होने से घटित होने की सम्भावना कम हो जायेगी ). इसलिए, अब दो घटनाएँ और सशर्त रूप से एक-दूसरे पर नकारात्मक रूप से निर्भर होते हैं क्योंकि प्रत्येक के घटित होने की संभावना इस बात पर नकारात्मक रूप से निर्भर होती है कि दूसरा घटित होता है या नहीं। अपने पास[5]
उदाहरण
संक्षेप में संभाव्यता किसी घटना की संभावित घटना के बारे में किसी व्यक्ति की जानकारी से प्रभावित होती है। उदाहरण के लिए, घटना को मान लीजिए 'मेरे पास एक नया फ़ोन है'; आयोजन 'मेरे पास एक नई घड़ी है'; और घटना रहो 'मैं खुश हूँ'; और मान लीजिए कि नया फोन या नई घड़ी होने से मेरे खुश रहने की संभावना बढ़ जाती है। चलिए मान लेते हैं कि घटना घटित हुआ है - जिसका अर्थ है 'मैं खुश हूँ'। अब अगर कोई दूसरा व्यक्ति मेरी नई घड़ी देखता है, तो वह तर्क देगा कि मेरी खुश होने की संभावना मेरी नई घड़ी से बढ़ गई है, इसलिए मेरी खुशी का श्रेय नए फोन को देने की जरूरत कम है।
उदाहरण को अधिक संख्यात्मक रूप से विशिष्ट बनाने के लिए, मान लें कि चार संभावित अवस्थाएँ हैं निम्नलिखित तालिका के मध्य चार कॉलमों में दिया गया है, जिसमें घटना का घटित होना है ए द्वारा सूचित किया जाता है पंक्ति में और इसकी गैर-घटना को ए द्वारा दर्शाया जाता है और इसी तरह के लिए और वह है, और की संभावना है हरएक के लिए
घटना | घटना की संभावना | ||||
---|---|---|---|---|---|
0 | 1 | 0 | 1 | ||
0 | 0 | 1 | 1 | ||
0 | 1 | 1 | 1 |
इसलिए
घटना | घटना की संभावना | ||||
---|---|---|---|---|---|
0 | 0 | 0 | 1 | ||
0 | 1 | 0 | 1 | ||
0 | 0 | 1 | 1 | ||
0 | 0 | 0 | 1 |
इस उदाहरण में, होता है यदि और केवल यदि इनमें से कम से कम एक घटित होना। बिना शर्त (अर्थात, बिना संदर्भ के ), और एक दूसरे की स्वतंत्रता (संभावना सिद्धांत) हैं क्योंकि -ए से जुड़ी संभावनाओं का योग पंक्ति में -है जबकि
लेकिन सशर्त घटित होने पर (तालिका में अंतिम तीन कॉलम), हमारे पास है
जबकि
चूंकि की उपस्थिति में की संभावना की उपस्थिति या अनुपस्थिति से प्रभावित होता है और सशर्त रूप से परस्पर निर्भर हैं
यह भी देखें
- सशर्त स्वतंत्रता – Probability theory concept
- डी फिनेटी का प्रमेय
- सशर्त अपेक्षा – Expected value of a random variable given that certain conditions are known to occur
संदर्भ
- ↑ Introduction to Artificial Intelligence by Sebastian Thrun and Peter Norvig, 2011 "Unit 3: Conditional Dependence"[permanent dead link]
- ↑ Introduction to learning Bayesian Networks from Data by Dirk Husmeier [1] "Introduction to Learning Bayesian Networks from Data -Dirk Husmeier"
- ↑ Conditional Independence in Statistical theory "Conditional Independence in Statistical Theory", A. P. Dawid" Archived 2013-12-27 at the Wayback Machine
- ↑ Probabilistic independence on Britannica "Probability->Applications of conditional probability->independence (equation 7) "
- ↑ Introduction to Artificial Intelligence by Sebastian Thrun and Peter Norvig, 2011 "Unit 3: Explaining Away"[permanent dead link]
- ↑ Bouckaert, Remco R. (1994). "11. Conditional dependence in probabilistic networks". In Cheeseman, P.; Oldford, R. W. (eds.). डेटा, आर्टिफिशियल इंटेलिजेंस और सांख्यिकी से मॉडल का चयन IV. Lecture Notes in Statistics (in English). Vol. 89. Springer-Verlag. pp. 101–111, especially 104. ISBN 978-0-387-94281-0.
- ↑ Conditional Independence in Statistical theory "Conditional Independence in Statistical Theory", A. P. Dawid Archived 2013-12-27 at the Wayback Machine