स्वतंत्रता (संभावना सिद्धांत)
संभाव्यता सिद्धांत में स्वतंत्रता एक मौलिक धारणा है, जैसा कि सांख्यिकी और स्टोकेस्टिक प्रक्रियाओं के सिद्धांत में है। दो घटनाएँ (संभाव्यता सिद्धांत) स्वतंत्र, सांख्यिकीय रूप से स्वतंत्र, या आंकड़े रूप से स्वतंत्र हैं[1] यदि दृच्छिक वेरिएबल स्वतंत्र होते हैं यदि एक की प्राप्ति दूसरे के संभाव्यता वितरण को प्रभावित नहीं करती है।
दो से अधिक घटनाओं के संग्रह के साथ व्यवहार करते समय, स्वतंत्रता की दो धारणाओं को भिन्न करने की आवश्यकता होती है। घटनाओं को जोड़ीदार स्वतंत्र कहा जाता है यदि संग्रह में कोई भी दो घटनाएँ एक दूसरे से स्वतंत्र हैं, जबकि घटनाओं की पारस्परिक स्वतंत्रता (या सामूहिक स्वतंत्रता) का अर्थ है, अनौपचारिक रूप से बोला जाता है कि प्रत्येक घटना संग्रह में अन्य घटनाओं के किसी भी संयोजन से स्वतंत्र है। इसी प्रकार की धारणा यादृच्छिक वेरिएबल के संग्रह के लिए उपस्थित है। पारस्परिक स्वतंत्रता का तात्पर्य जोड़ीदार स्वतंत्रता से है, किंतु इसके विपरीत नहीं संभाव्यता सिद्धांत, सांख्यिकी, और स्टोचैस्टिक प्रक्रियाओं के मानक साहित्य में आगे की योग्यता के बिना स्वतंत्रता सामान्यतः पारस्परिक स्वतंत्रता को संदर्भित करती है।
परिभाषा
घटनाओं के लिए
दो घटनाएँ
दो घटनाएँ और स्वतंत्र हैं ( अधिकांशतः लिखा जाता है या , जहां बाद वाला प्रतीक अधिकांशतः नियमित स्वतंत्रता के लिए भी प्रयोग किया जाता है) यदि और केवल यदि उनकी संयुक्त संभावना उनकी संभावनाओं के उत्पाद के समान होती है:[2]: p. 29 [3]: p. 10
|
(Eq.1) |
इंगित करता है कि दो स्वतंत्र घटनाओं और के नमूना स्थान में सामान्य तत्व हैं ताकि वह परस्पर अनन्य न हों (परस्पर अनन्य यदि )। यह स्वतंत्रता को क्यों परिभाषित करता है, इसे नियमित संभावनाओं के साथ पुनर्लेखन द्वारा स्पष्ट किया जाता है, जिस संभावना पर घटना घटित होती है, परन्तु कि घटना घटित हुई हो या मानी गई हो:
और इसी प्रकार
इस प्रकार, की घटना की संभावना को प्रभावित नहीं करती है, और इसके विपरीत दूसरे शब्दों में, और एक दूसरे से स्वतंत्र हैं। चूँकि व्युत्पन्न अभिव्यक्तियाँ अधिक सहज लग सकती हैं, वह पसंदीदा परिभाषा नहीं हैं, क्योंकि नियमित संभावनाएँ अपरिभाषित हो सकती हैं यदि या 0 हैं। इसके अतिरिक्त , पसंदीदा परिभाषा समरूपता से स्पष्ट करती है कि जब से स्वतंत्र है, भी से स्वतंत्र है
लॉग संभाव्यता और सूचना सामग्री
लॉग संभाव्यता के संदर्भ में कहा गया है, दो घटनाएं स्वतंत्र हैं यदि और केवल यदि संयुक्त घटना की लॉग संभावना भिन्न -भिन्न घटनाओं की लॉग संभावना का योग है:
सूचना सिद्धांत में, नकारात्मक लॉग संभाव्यता की व्याख्या सूचना सामग्री के रूप में की जाती है, और इस प्रकार दो घटनाएं स्वतंत्र होती हैं यदि और केवल यदि संयुक्त घटना की सूचना सामग्री भिन्न -भिन्न घटनाओं की सूचना सामग्री के योग के समान होती है:
विवरण के लिए सूचना सामग्री देखें § स्वतंत्र घटनाओं की संयोजकता है ।
ऑड्स
बाधाओं के संदर्भ में कहा गया है, दो घटनाएं स्वतंत्र हैं यदि और केवल यदि बाधाओं का अनुपात और एकता (1) है। संभाव्यता के अनुरूप, यह बिना नियम बाधाओं के समान नियमित बाधाओं के समान है:
या एक घटना की विषमताओं के लिए, दूसरी घटना को देखते हुए, घटना की बाधाओं के समान होने के कारण दूसरी घटना घटित नहीं होती है:
विषम अनुपात के रूप में परिभाषित किया जा सकता है
या सममित रूप से की बाधाओं के लिए दिया गया है, और इस प्रकार 1 है यदि और केवल यदि घटनाएं स्वतंत्र हैं।
दो से अधिक घटनाएँ
घटनाओं का एक सीमित सेट जोड़ीवार स्वतंत्र है यदि घटनाओं की प्रत्येक जोड़ी स्वतंत्र है [4] - अथार्त, यदि और केवल यदि सूचकांकों के सभी भिन्न -भिन्न जोड़े के लिए है ।
|
(Eq.2) |
घटनाओं का एक सीमित सेट पारस्परिक रूप से स्वतंत्र होता है यदि प्रत्येक घटना अन्य घटनाओं के किसी भी प्रतिच्छेदन से स्वतंत्र होती है[[4][3]: p. 11 —अर्थात्, यदि और केवल यदि प्रत्येक के लिए और प्रत्येक k सूचकांकों के लिए उपयोग किया जाता है
|
(Eq.3) |
इसे स्वतंत्र घटनाओं का गुणन नियम कहा जाता है। यह एक ऐसी स्थिति नहीं है जिसमें केवल सभी एकल घटनाओं की सभी संभावनाओं का उत्पाद सम्मिलित हैं इसे घटनाओं के सभी उपसमूहों के लिए सत्य होना चाहिए।
दो से अधिक घटनाओं के लिए, घटनाओं का परस्पर स्वतंत्र सेट (परिभाषा के अनुसार) जोड़ीवार स्वतंत्र होता है; किंतु इसका विपरीत आवश्यक रूप से सत्य नहीं है।[2]: p. 30
वास्तविक मूल्यांकित यादृच्छिक वेरिएबल के लिए
दो यादृच्छिक वेरीएबल
'दो यादृच्छिक वेरिएबल और स्वतंत्र हैं अगर और केवल अगर (iff) Pi सिस्टम के तत्व|π-सिस्टम उनके द्वारा उत्पन्न स्वतंत्र हैं; अर्थात् प्रत्येक के लिए और , घटनाएं और स्वतंत्र घटनाएँ हैं (जैसा कि ऊपर परिभाषित किया गया है Eq.1). वह है, और संचयी वितरण कार्य के साथ और , स्वतंत्र हैं यदि और केवल यदि संयुक्त यादृच्छिक वेरिएबल एक संयुक्त वितरण संचयी वितरण फलन है[3]: p. 15 ''''
|
(Eq.4) |
या समकक्ष, यदि संभाव्यता घनत्व और और संयुक्त संभाव्यता घनत्व है।
दो से अधिक यादृच्छिक वेरीएबल
का एक परिमित सेट यादृच्छिक वेरिएबल जोड़ीदार स्वतंत्र है यदि और केवल यदि यादृच्छिक वेरिएबल की प्रत्येक जोड़ी स्वतंत्र है। यहां तक कि यदि यादृच्छिक वेरिएबल का सेट जोड़ीदार स्वतंत्र है, तब जरूरी नहीं कि यह पारस्परिक रूप से स्वतंत्र हो, जैसा कि आगे परिभाषित किया गया है।
का एक परिमित सेट यादृच्छिक वेरिएबल संख्याओं के किसी अनुक्रम के लिए यदि और केवल यदि परस्पर स्वतंत्र है , घटनाएं परस्पर स्वतंत्र घटनाएँ हैं (जैसा कि ऊपर परिभाषित किया गया है Eq.3). यह संयुक्त संचयी वितरण कार्य पर निम्नलिखित शर्त के समान है . का एक परिमित सेट यादृच्छिक वेरिएबल पारस्परिक रूप से स्वतंत्र है यदि और केवल यदि [3]: p. 16
|
(Eq.5) |
ध्यान दें कि यहाँ यह आवश्यक नहीं है कि प्रायिकता वितरण सभी संभव के लिए गुणनखंडित हो -element स्थिति के रूप में सबसेट आयोजन में इसकी आवश्यकता नहीं है क्योंकि उदा। तात्पर्य .
माप-सैद्धांतिक रूप से इच्छुक उपरोक्त परिभाषा में घटनाओं के लिए घटनाओं को प्रतिस्थापित करना पसंद कर सकते हैं, जहां कोई बोरेल सेट है। वह परिभाषा बिल्कुल उपरोक्त परिभाषा के समतुल्य है जब यादृच्छिक वेरिएबल के मान वास्तविक संख्याएँ होते हैं। इसमें सम्मिश्र-मूल्यवान यादृच्छिक वेरिएबल के लिए या किसी भी मापने योग्य स्थान में मान लेने वाले यादृच्छिक वेरिएबल के लिए भी काम करने का लाभ है (जिसमें उचित σ-बीजगणित द्वारा संपन्न टोपोलॉजिकल रिक्त स्थान सम्मिलित हैं)।
वास्तविक मूल्यवान यादृच्छिक सदिश के लिए
दो यादृच्छिक सदिश और स्वतंत्र कहलाते हैं यदि[5]: p. 187
|
(Eq.6) |
और , और के संचयी वितरण फलन को दर्शाते हैं और उनके संयुक्त संचयी वितरण फलन को दर्शाते हैं। और की स्वतंत्रता को अधिकांशत: से दर्शाया जाता है। लिखित घटक-वार से दर्शाया जाता है और को स्वतंत्र कहा जाता है
स्टोकास्टिक प्रक्रियाओं के लिए
एक स्टोकेस्टिक प्रक्रिया के लिए
स्वतंत्रता की परिभाषा को यादृच्छिक सदिश से स्टोकेस्टिक प्रक्रिया तक बढ़ाया जा सकता है। इसलिए, एक स्वतंत्र स्टोकेस्टिक प्रक्रिया के लिए यह आवश्यक है कि किसी भी गुना पर प्रक्रिया का नमूना लेकर प्राप्त यादृच्छिक वेरिएबल किसी भी के लिए स्वतंत्र यादृच्छिक वेरिएबल होते हैं।[6]: p. 163
औपचारिक रूप से, एक स्टोकेस्टिक प्रक्रिया को स्वतंत्र कहा जाता है, यदि और केवल यदि सभी के लिए और सभी के लिए उपयुक्त है
|
(Eq.7) |
जहाँ स्टोचैस्टिक प्रक्रिया की स्वतंत्रता अंदर की गुण है एक स्टोकेस्टिक प्रक्रिया, दो स्टोकेस्टिक प्रक्रियाओं के मध्य नहीं है।
दो स्टोकेस्टिक प्रक्रियाओं के लिए
दो स्टोकेस्टिक प्रक्रियाओं की स्वतंत्रता दो स्टोकेस्टिक प्रक्रियाओं और के मध्य की गुण है जो समान प्रायिकता स्थान पर परिभाषित हैं औपचारिक रूप से, दो स्टोकेस्टिक प्रक्रियाएं और यदि सभी के लिए स्वतंत्र कहा जाता है और सभी के लिए , यादृच्छिक सदिश और स्वतंत्र हैं,[7]: p. 515 अथार्त यदि
>Eq.8
|
|
({{{3}}}) |
स्वतंत्र σ-अलजेब्रा
उपरोक्त परिभाषाएँ (Eq.1 और Eq.2) दोनों को σ-बीजगणित के लिए स्वतंत्रता की निम्नलिखित परिभाषा द्वारा सामान्यीकृत किया गया है। मान लीजिए कि एक संभाव्यता स्थान है और और के दो उप-σ-बीजगणित हैं।. और को स्वतंत्र कहा जाता है यदि, जब भी और , हो।
इसी प्रकार, σ-अलजेब्रा का परिमित वर्ग , जहाँ एक सूचकांक सेट है, यदि और केवल यदि स्वतंत्र कहा जाता है
और σ-अलजेब्रस के एक अनंत वर्ग को स्वतंत्र कहा जाता है यदि इसके सभी परिमित उपवर्ग स्वतंत्र हों।
नई परिभाषा पिछले वाले से सीधे रूप से संबंधित है:
- दो घटनाएँ स्वतंत्र हैं (पुराने अर्थों में) यदि और केवल यदि उनके द्वारा उत्पन्न σ-अल्जेब्रा स्वतंत्र हैं (नए अर्थों में)। एक घटना द्वारा उत्पन्न σ-बीजगणित है, परिभाषा के अनुसार,
- दो यादृच्छिक वेरिएबल और परिभाषित किया गया स्वतंत्र हैं (पुराने अर्थों में) यदि और केवल यदि σ-अलजेब्रा जो वह उत्पन्न करते हैं वह स्वतंत्र हैं (नए अर्थों में) हैं। एक यादृच्छिक वेरिएबल द्वारा उत्पन्न σ-बीजगणित कुछ मापने योग्य स्थान में मान लेना परिभाषा के अनुसार, के सभी उपसमुच्चय सम्मिलित हैं जो फार्म का , जहां , का कोई मापने योग्य उपसमुच्चय है।
इस परिभाषा का उपयोग करके, यह दिखाना सरल है कि यदि और यादृच्छिक वेरिएबल हैं और स्थिर है, तब और स्वतंत्र हैं, क्योंकि एक स्थिर यादृच्छिक वेरिएबल द्वारा उत्पन्न σ-बीजगणित तुच्छ σ-बीजगणित है . संभाव्यता शून्य घटना स्वतंत्रता को प्रभावित नहीं कर सकती है गीत स्वतंत्रता भी रखती है यदि केवल पीआर-लगभग निश्चित रूप से स्थिर है।
गुण
आत्मनिर्भरता
ध्यान दें कि एक घटना स्वयं से स्वतंत्र है यदि और केवल यदि
इस प्रकार एक घटना स्वयं से स्वतंत्र होती है यदि और केवल यदि यह लगभग निश्चित रूप से होती है या इसका पूरक (सेट सिद्धांत) लगभग निश्चित रूप से होता है; शून्य–एक नियम सिद्ध करते समय यह तथ्य उपयोगी होता है।[8]
अपेक्षा और सहप्रसरण
यदि और स्वतंत्र यादृच्छिक वेरिएबल हैं, फिर अपेक्षित मान गुण है
और सहप्रसरण शून्य है, जैसा कि निम्नानुसार है
इसका विलोम मान्य नहीं है: यदि दो यादृच्छिक वेरिएबलों का सहप्रसरण 0 है, तब भी वह स्वतंत्र नहीं हो सकते हैं। असंबद्ध देखें।
इसी प्रकार दो स्टोकेस्टिक प्रक्रियाओं के लिए और : यदि वह स्वतंत्र हैं, तब वह असंबद्ध हैं।[9]: p. 151
विशेषता समारोह
दो यादृच्छिक वेरिएबल और स्वतंत्र हैं यदि और केवल यदि यादृच्छिक वेक्टर के विशेषता कार्य (संभाव्यता सिद्धांत) संतुष्ट है
विशेष रूप से उनकी राशि का विशिष्ट कार्य उनके सीमांत विशेषता कार्यों का उत्पाद है:
चूँकि विपरीत निहितार्थ सत्य नहीं है। यादृच्छिक वेरिएबल जो बाद की स्थिति को संतुष्ट करते हैं उन्हें उप-निर्भरता कहा जाता है।
उदाहरण
रोलिंग पासा
एक पासे को पहली बार फेंके जाने पर 6 आने की घटना और दूसरी बार 6 आने की घटना स्वतंत्र होती है। इसके विपरीत, पहली बार एक पासा फेंके जाने पर 6 आने की घटना और पहली और दूसरी प्रयाश में देखी गई संख्याओं का योग 8 होने की घटना स्वतंत्र नहीं है।
कार्ड बनाना
यदि ताश की गड्डी से प्रतिस्थापन के साथ दो पत्ते निकाले जाते हैं, तब पहले परीक्षण पर लाल कार्ड निकालने की घटना और दूसरे परीक्षण पर लाल कार्ड निकालने की घटना स्वतंत्र होती है। इसके विपरीत, यदि ताश की गड्डी से प्रतिस्थापन के बिना दो पत्ते निकाले जाते हैं, तब पहले प्रयास में लाल कार्ड निकालने की घटना और दूसरे प्रयास में लाल कार्ड निकालने की घटना स्वतंत्र नहीं होती है, क्योंकि जिस डेक का लाल रंग होता है हटाए गए कार्ड में आनुपातिक रूप से कम लाल कार्ड हैं।
जोड़ीवार और आपसी स्वतंत्रता
दिखाए गए दो प्रायिकता स्थानों पर विचार करें। दोनों ही स्थिति में, और . पहली जगह में यादृच्छिक वेरिएबल जोड़ीदार स्वतंत्र हैं क्योंकि , , और ; किंतु तीन यादृच्छिक वेरिएबल परस्पर स्वतंत्र नहीं हैं। दूसरी जगह में यादृच्छिक वेरिएबल जोड़ीदार स्वतंत्र और पारस्परिक रूप से स्वतंत्र दोनों हैं। अंतर को स्पष्ट करने के लिए, दो घटनाओं पर कंडीशनिंग पर विचार करें। जोड़ीदार स्वतंत्र स्थिति में, चूँकि कोई भी एक घटना व्यक्तिगत रूप से अन्य दो में से प्रत्येक से स्वतंत्र है, यह अन्य दो के प्रतिच्छेदन से स्वतंत्र नहीं है:
चूँकि , परस्पर स्वतंत्र स्थिति में,
ट्रिपल-स्वतंत्रता किंतु जोड़ीदार-स्वतंत्रता नहीं
जिसमें तीन-घटना का उदाहरण बनाना संभव है
और फिर भी तीन घटनाओं में से कोई भी जोड़ीदार स्वतंत्र नहीं है (और इसलिए घटनाओं का सेट पारस्परिक रूप से स्वतंत्र नहीं है)।[10] इस उदाहरण से पता चलता है कि आपसी स्वतंत्रता में घटनाओं के सभी संयोजनों की संभावनाओं के उत्पादों पर आवश्यकताएं सम्मिलित हैं, न कि केवल एक घटना जैसा कि इस उदाहरण में है।
नियमित स्वतंत्रता
घटनाओं के लिए
जब कोई घटना दी जाती है तब घटनाएँ और नियमित रूप से स्वतंत्र होती हैं
.
यादृच्छिक वेरिएबल के लिए
सहज रूप से, दो यादृच्छिक वेरिएबल X और Y नियमित हैं स्वतंत्र दिया गया Z यदि, एक बार Z ज्ञात हो जाए, तब Y का मान X के बारे में कोई अतिरिक्त जानकारी नहीं जोड़ता है। उदाहरण के लिए, एक ही अंतर्निहित मात्रा Z के दो माप X और Y स्वतंत्र नहीं हैं, किंतु वह Z दिए जाने पर नियमित रूप से स्वतंत्र हैं (जब तक कि दोनों मापों में त्रुटियाँ किसी प्रकार जुड़ी हुई हैं)।
नियमित स्वतंत्रता की औपचारिक परिभाषा नियमित वितरण के विचार पर आधारित है। यदि , , और असतत यादृच्छिक वेरिएबल हैं, फिर हम परिभाषित करते हैं और नियमित रूप से स्वतंत्र होने के लिए यदि
सभी , और के लिए ऐसा कि । दूसरी ओर, यदि यादृच्छिक वेरिएबल निरंतर हैं और एक संयुक्त संभाव्यता घनत्व फलन है, तब और नियमित रूप से स्वतंत्र हैं यदि दिया गया है
सभी वास्तविक संख्याओं के लिए , और ऐसा है कि .
यदि असतत और , दिए जाने पर नियमित रूप से स्वतंत्र हैं
किसी के लिए , और साथ . अथार्त नियमित वितरण के लिए दिया गया और जैसा दिया गया है वैसा ही है अकेला। निरंतर स्थिति में नियमित संभाव्यता घनत्व कार्यों के लिए एक समान समीकरण प्रयुक्त होता है।
स्वतंत्रता को एक विशेष प्रकार की नियमित स्वतंत्रता के रूप में देखा जा सकता है, क्योंकि संभाव्यता को एक प्रकार की नियमित संभावना के रूप में देखा जा सकता है, जिसमें कोई घटना नहीं है।
यह भी देखें
- कोपुला (सांख्यिकी)
- स्वतंत्र और समान रूप से वितरित यादृच्छिक वेरीएबल
- परस्पर अनन्य कार्यक्रम
- जोड़ीदार स्वतंत्रता
- पराधीनता
- नियमित स्वतंत्रता
- सामान्य रूप से वितरित और असंबद्ध का अर्थ स्वतंत्र नहीं है
- औसत निर्भरता
संदर्भ
- ↑ Russell, Stuart; Norvig, Peter (2002). Artificial Intelligence: A Modern Approach. Prentice Hall. p. 478. ISBN 0-13-790395-2.
- ↑ 2.0 2.1 Florescu, Ionut (2014). Probability and Stochastic Processes. Wiley. ISBN 978-0-470-62455-5.
- ↑ 3.0 3.1 3.2 3.3 Gallager, Robert G. (2013). Stochastic Processes Theory for Applications. Cambridge University Press. ISBN 978-1-107-03975-9.
- ↑ 4.0 4.1 Feller, W (1971). "Stochastic Independence". An Introduction to Probability Theory and Its Applications. Wiley.
- ↑ Papoulis, Athanasios (1991). Probability, Random Variables and Stochastic Processes. MCGraw Hill. ISBN 0-07-048477-5.
- ↑ Hwei, Piao (1997). Theory and Problems of Probability, Random Variables, and Random Processes. McGraw-Hill. ISBN 0-07-030644-3.
- ↑ Amos Lapidoth (8 February 2017). A Foundation in Digital Communication. Cambridge University Press. ISBN 978-1-107-17732-1.
- ↑ Durrett, Richard (1996). Probability: theory and examples (Second ed.). page 62
- ↑ Park,Kun Il (2018). Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. ISBN 978-3-319-68074-3.
- ↑ George, Glyn, "Testing for the independence of three events," Mathematical Gazette 88, November 2004, 568. PDF
बाहरी संबंध
- Media related to स्वतंत्रता (संभावना सिद्धांत) at Wikimedia Commons