द्वितीय गणनीय समिष्ट: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Topological space whose topology has a countable base}} टोपोलॉजी में, एक द्वितीय-गणनीय स्थ...")
 
No edit summary
Line 1: Line 1:
{{short description|Topological space whose topology has a countable base}}
{{short description|Topological space whose topology has a countable base}}


[[टोपोलॉजी]] में, एक द्वितीय-[[गणनीय]] स्थान, जिसे पूरी तरह से अलग करने योग्य स्थान भी कहा जाता है, एक टोपोलॉजिकल स्थान है जिसकी टोपोलॉजी में एक गणनीय [[आधार (टोपोलॉजी)]] होता है। अधिक स्पष्ट रूप से, एक [[टोपोलॉजिकल स्पेस]] <math>T</math> यदि कुछ गणनीय संग्रह मौजूद है तो द्वितीय-गणनीय है <math>\mathcal{U} = \{U_i\}_{i=1}^{\infty}</math> के खुले सेट उपसमुच्चय <math>T</math> ऐसा कि कोई भी खुला उपसमुच्चय <math>T</math> के कुछ उपपरिवार के तत्वों के संघ के रूप में लिखा जा सकता है <math>\mathcal{U}</math>. ऐसा कहा जाता है कि दूसरा गणनीय स्थान गणनीयता के दूसरे सिद्धांत को संतुष्ट करता है। अन्य गणनीयता सिद्धांतों की तरह, दूसरी-गणनीय होने की संपत्ति एक स्थान में मौजूद खुले सेटों की संख्या को प्रतिबंधित करती है।
[[टोपोलॉजी]] में, द्वितीय-[[गणनीय]] स्थान, जिसे पूर्णता से विभक्त अंतरिक्ष भी कहा जाता है, एक ऐसा टोपोलॉजिक अंतरिक्ष होता है जिसकी टोपोलॉजी में एक गिनतीय [[आधार (टोपोलॉजी)]] होता है। अधिक स्पष्ट रूप से, [[टोपोलॉजिकल स्पेस|टोपोलॉजिकल]] स्थान <math>T</math> यदि कुछ गणनीय संग्रह मौजूद है तो द्वितीय-गणनीय है <math>\mathcal{U} = \{U_i\}_{i=1}^{\infty}</math> के खुले सेट उपसमुच्चय <math>T</math> ऐसा कि कोई भी खुला उपसमुच्चय <math>T</math> के कुछ उपपरिवार के तत्वों के संघ के रूप में लिखा जा सकता है <math>\mathcal{U}</math>. ऐसा कहा जाता है कि दूसरा गणनीय स्थान गणनीयता के दूसरे सिद्धांत को संतुष्ट करता है। अन्य गणनीयता सिद्धांतों की तरह, दूसरी-गणनीय होने की संपत्ति स्थान में मौजूद खुले सेटों की संख्या को प्रतिबंधित करती है।


गणित में कई अच्छे व्यवहार वाले स्थान द्वितीय-गणनीय हैं। उदाहरण के लिए, [[ यूक्लिडियन स्थान ]] (R<sup>n</sup>) अपनी सामान्य टोपोलॉजी के साथ द्वितीय-गणनीय है। हालाँकि [[खुली गेंद]]ों का सामान्य आधार [[बेशुमार]] होता है, कोई [[तर्कसंगत संख्या]] त्रिज्या वाली सभी खुली गेंदों के संग्रह को सीमित कर सकता है और जिनके केंद्रों में तर्कसंगत निर्देशांक होते हैं। यह प्रतिबंधित सेट गणनीय है और फिर भी एक आधार बनाता है।
गणित में कई "अच्छी तरह की" स्थानें द्वितीय-गिनतीय होती हैं। उदाहरण के लिए, [[ यूक्लिडियन स्थान |यूक्लिडियन स्थान]] (R<sup>n</sup>) अपनी सामान्य टोपोलॉजी के साथ द्वितीय-गणनीय है। हालाँकि [[खुली गेंद|खुली गोलों]] का सामान्य आधार [[बेशुमार]] होता है, लेकिन हम [[तर्कसंगत संख्या]] त्रिज्या वाली सभी संख्यात्मक त्रिज्या वाले खुले गोलों की संख्या पर प्रतिबंध लगा सकते हैं। यह प्रतिबंधित संख्या संख्यात्मक होती है और फिर भी एक आधार बनाती है।


==गुण==
==गुण==


प्रथम-गणनीय स्थान|प्रथम-गणनीयता की तुलना में द्वितीय-गणनीयता एक अधिक मजबूत धारणा है। यदि प्रत्येक बिंदु का एक गणनीय [[स्थानीय आधार]] हो तो एक स्थान प्रथम-गणनीय होता है। टोपोलॉजी और एक बिंदु x के लिए एक आधार दिया गया है, x वाले सभी आधार सेटों का सेट x पर एक स्थानीय आधार बनाता है। इस प्रकार, यदि किसी के पास टोपोलॉजी के लिए एक गणनीय आधार है तो उसके पास प्रत्येक बिंदु पर एक गणनीय स्थानीय आधार है, और इसलिए प्रत्येक दूसरा-गणनीय स्थान भी एक प्रथम-गणनीय स्थान है। हालाँकि कोई भी बेशुमार असतत स्थान प्रथम-गणनीय है, लेकिन द्वितीय-गणनीय नहीं है।
द्वितीय-गिनतीयता पहल-गिनतीयता से अधिक मजबूत अवधारणा है। यदि प्रत्येक बिंदु का गणनीय [[स्थानीय आधार]] हो तो स्थान प्रथम-गणनीय होता है।टोपोलॉजी के लिए एक आधार और एक बिंदु x की दिया गया हो तो x को सम्मिलित करने वाले सभी आधार सेट x पर एक स्थानिक आधार बनाते हैं। इस प्रकार, यदि किसी टोपोलॉजी के लिए एक गिनतीय आधार होती है तो हर बिंदु पर एक गिनतीय स्थानिक आधार होती है, और इसलिए हर द्वितीय-गिनतीय अंतरिक्ष भी एक पहल-गिनतीय अंतरिक्ष होता है। हालांकि, कोई भी अगणित विचक्षण अंतरिक्ष पहल-गिनतीय होता है लेकिन द्वितीय-गिनतीय नहीं होता है।


द्वितीय-गणनीयता का तात्पर्य कुछ अन्य टोपोलॉजिकल गुणों से है। विशेष रूप से, प्रत्येक दूसरा-गणनीय स्थान वियोज्य स्थान है (इसमें एक गणनीय [[सघन (टोपोलॉजी)]] उपसमुच्चय है) और लिंडेलोफ स्थान|लिंडेलोफ (प्रत्येक खुले आवरण में एक गणनीय उपकवर होता है)। इसका कोई विपरीत प्रभाव नहीं पड़ता। उदाहरण के लिए, वास्तविक रेखा पर [[निचली सीमा टोपोलॉजी]] प्रथम-गणनीय, वियोज्य और लिंडेलॉफ है, लेकिन द्वितीय-गणनीय नहीं है। हालाँकि, मीट्रिक रिक्त स्थान के लिए, द्वितीय-गणनीय, वियोज्य और लिंडेलोफ़ होने के गुण सभी समान हैं।<ref>Willard, theorem 16.11, p. 112</ref> इसलिए, वास्तविक रेखा पर निचली सीमा टोपोलॉजी [[मेट्रिज़ेबल]] नहीं है।


दूसरे-गणनीय स्थानों में - जैसा कि मीट्रिक स्थानों में होता है - [[ सघन स्थान ]], अनुक्रमिक कॉम्पैक्टनेस, और गणनीय कॉम्पैक्टनेस सभी समान गुण हैं।
द्वितीय-गिनतीयता अन्य टोपोलॉजिक गुणों को सूचित करती है। विशेष रूप से, प्रत्येक दूसरा-गणनीय स्थान वियोज्य स्थान है (इसमें गणनीय [[सघन (टोपोलॉजी)]] उपसमुच्चय है) और लिंडेलोफ स्थान|लिंडेलोफ (प्रत्येक खुले आवरण में गणनीय उपकवर होता है)। इसका कोई विपरीत प्रभाव नहीं होते हैं। उदाहरण के लिए, वास्तविक रेखा पर [[निचली सीमा टोपोलॉजी]] प्रथम-गणनीय, वियोज्य और लिंडेलॉफ है, लेकिन द्वितीय-गणनीय नहीं है। हालाँकि, मीट्रिक रिक्त स्थान के लिए, द्वितीय-गणनीय, वियोज्य और लिंडेलोफ़ होने के गुण सभी समान होते हैं।<ref>Willard, theorem 16.11, p. 112</ref> इसलिए, वास्तविक रेखा पर निचली सीमा टोपोलॉजी [[मेट्रिज़ेबल]] नहीं है।


उरीसोहन के मेट्रिज़ेशन प्रमेय में कहा गया है कि प्रत्येक सेकंड-गणनीय, हॉसडॉर्फ अंतरिक्ष [[नियमित स्थान]] मेट्रिज़ेशन योग्य है। इससे यह निष्कर्ष निकलता है कि ऐसा प्रत्येक स्थान [[पूरी तरह से सामान्य स्थान]] होने के साथ-साथ [[ परा-सुसंहत ]] भी है। इसलिए द्वितीय-गणनीयता टोपोलॉजिकल स्पेस पर एक प्रतिबंधात्मक संपत्ति है, जिसके लिए मेट्रिज़ेबिलिटी को दर्शाने के लिए केवल एक पृथक्करण सिद्धांत की आवश्यकता होती है।
 
दूसरे-गणनीय स्थानों में - जैसा कि मीट्रिक स्थानों में होता है - [[ सघन स्थान |सघन स्थान]] , अनुक्रमिक कॉम्पैक्टनेस, और गणनीय कॉम्पैक्टनेस सभी समान गुण हैं।
 
यूरिसोह्न के मेट्रिज़ेशन सिद्धांत कहता है कि प्रत्येक द्वितीय-गिनतीय, हॉसडॉर्फ स्थान [[नियमित स्थान]] मेट्रिज़ेशन योग्य होता है। इससे यह निष्कर्ष निकलता है कि ऐसा प्रत्येक स्थान [[पूरी तरह से सामान्य स्थान]] होने के साथ-साथ [[ परा-सुसंहत |परा-सुसंहत]] भी है। इसलिए द्वितीय-गणनीयता टोपोलॉजिकल स्थान पर प्रतिबंधात्मक संपत्ति है, जिसके लिए मेट्रिज़ेबिलिटी को दर्शाने के लिए केवल पृथक्करण सिद्धांत की आवश्यकता होती है।


===अन्य गुण===
===अन्य गुण===


*द्वितीय-गणनीय स्थान की एक सतत, खुली मानचित्र [[छवि (गणित)]] द्वितीय-गणनीय है।
*द्वितीय-गणनीय स्थान की सतत, खुली मानचित्र [[छवि (गणित)]] द्वितीय-गणनीय होती है।
*द्वितीय-गणनीय स्थान का प्रत्येक उप-स्थान (टोपोलॉजी) द्वितीय-गणनीय है।
*द्वितीय-गणनीय स्थान का प्रत्येक उप-स्थान (टोपोलॉजी) द्वितीय-गणनीय होता है।
*द्वितीय-गणनीय स्थानों के [[भागफल स्थान (टोपोलॉजी)]] को द्वितीय-गणनीय होने की आवश्यकता नहीं है; हालाँकि, खुले भागफल हमेशा होते हैं।
*द्वितीय-गणनीय स्थानों के [[भागफल स्थान (टोपोलॉजी)]] को द्वितीय-गणनीय होने की आवश्यकता नहीं है; हालाँकि, खुले प्रतिस्थान सदैव द्वितीय-गिनतीय होते हैं।
*द्वितीय-गणनीय स्थान का कोई भी गणनीय [[उत्पाद स्थान]] द्वितीय-गणनीय है, हालाँकि बेशुमार उत्पादों की आवश्यकता नहीं है।
*किसी द्वितीय-गणनीय स्थान का कोई भी गणनीय [[उत्पाद स्थान]] द्वितीय-गणनीय है, हालाँकि बेशुमार उत्पादों की आवश्यकता नहीं होती है।
*द्वितीय-गणनीय टी की टोपोलॉजी<sub>1</sub> अंतरिक्ष की [[प्रमुखता]] c (सातत्य की कार्डिनैलिटी) से कम या उसके बराबर है।
*द्वितीय-गणनीय T<sub>1</sub> स्थान की टोपोलॉजी की [[प्रमुखता]] c (सातत्य की कार्डिनैलिटी) से कम या उसके बराबर होती है।
*दूसरे गणनीय स्थान के लिए किसी भी आधार में एक गणनीय उपपरिवार होता है जो अभी भी एक आधार है।
*दूसरे गणनीय स्थान के लिए किसी भी आधार में गणनीय उपपरिवार होता है जो अभी भी आधार है।
*द्वितीय-गणनीय स्थान में असंयुक्त खुले सेटों का प्रत्येक संग्रह गणनीय है।
*द्वितीय-गणनीय स्थान में असंयुक्त खुले समुच्चय का प्रत्येक संग्रह गणनीय होती है।


== उदाहरण और प्रति उदाहरण ==
== उदाहरण और प्रति उदाहरण ==
* असंयुक्त गणनीय संघ पर विचार करें <math> X = [0,1] \cup [2,3] \cup [4,5] \cup \dots \cup [2k, 2k+1] \cup \dotsb</math>. अंतराल के बाएँ छोर की पहचान करके एक तुल्यता संबंध और एक [[भागफल टोपोलॉजी]] को परिभाषित करें - अर्थात, 0 ~ 2 ~ 4 ~ … ~ 2k और इसी तरह की पहचान करें। X द्वितीय-गणनीय स्थानों के गणनीय संघ के रूप में, द्वितीय-गणनीय है। हालाँकि, X/~ पहचाने गए बिंदुओं के सहसमुच्चय पर प्रथम-गणनीय नहीं है और इसलिए द्वितीय-गणनीय भी नहीं है।
* असंयुक्त गणनीय संघ पर विचार करें <math> X = [0,1] \cup [2,3] \cup [4,5] \cup \dots \cup [2k, 2k+1] \cup \dotsb</math>. अंतराल के बाएँ छोर की पहचान करके तुल्यता संबंध और [[भागफल टोपोलॉजी]] को परिभाषित करें - अर्थात, 0 ~ 2 ~ 4 ~ … ~ 2k और इसी तरह की पहचान करें। X द्वितीय-गणनीय स्थानों के गणनीय संघ के रूप में, द्वितीय-गणनीय है। हालाँकि, X/~ पहचाने गए बिंदुओं के सहसमुच्चय पर प्रथम-गणनीय नहीं है और इसलिए द्वितीय-गणनीय भी नहीं है।
* उपरोक्त स्थान स्पष्ट मीट्रिक से संपन्न तुल्यता वर्गों के समान सेट के लिए समरूप नहीं है: यानी एक ही अंतराल में दो बिंदुओं के लिए नियमित यूक्लिडियन दूरी, और समान अंतराल में नहीं रहने वाले बिंदुओं के लिए बाएं हाथ के बिंदु की दूरी का योग - उपरोक्त स्थान की तुलना में अधिक कठोर टोपोलॉजी उत्पन्न करना। यह एक अलग करने योग्य मीट्रिक स्थान है (तर्कसंगत बिंदुओं के सेट पर विचार करें), और इसलिए यह द्वितीय-गणनीय है।
* उपरोक्त स्थान स्पष्ट मीट्रिक से संपन्न तुल्यता वर्गों के समान सेट के लिए समरूप नहीं है: अर्थात, ही अंतराल में दो बिंदुओं के लिए नियमित यूक्लिडियन दूरी, और समान अंतराल में नहीं रहने वाले बिंदुओं के लिए बाएं हाथ के बिंदु की दूरी का योग - जो उपरोक्त स्थान की तुलना में अधिक कठोर टोपोलॉजी देता है। यह अलग करने योग्य मीट्रिक स्थान है (तर्कसंगत बिंदुओं के सेट पर विचार करें), और इसलिए यह द्वितीय-गणनीय है।
* [[लंबी लाइन (टोपोलॉजी)]] द्वितीय-गणनीय नहीं है, बल्कि प्रथम-गणनीय है।
* [[लंबी लाइन (टोपोलॉजी)|लंबी रेखा (टोपोलॉजी)]] द्वितीय-गणनीय नहीं है, लेकिन प्रथम-गणनीय है।


==टिप्पणियाँ==
==टिप्पणियाँ==
{{reflist}}
{{reflist}}
==संदर्भ==
==संदर्भ==
* Stephen Willard, ''General Topology'', (1970) Addison-Wesley Publishing Company, Reading Massachusetts.
* स्टीफन विलार्ड, जनरल टोपोलॉजी, (1970) एडिसन-वेस्ले पब्लिशिंग कंपनी, रीडिंग मैसाचुसेट्स।
* John G. Hocking and Gail S. Young (1961). ''Topology.'' Corrected reprint, Dover, 1988.  {{isbn|0-486-65676-4}}
* जॉन जी. हॉकिंग और गेल एस. यंग (1961)। टोपोलॉजी। संशोधित पुनर्मुद्रण, डोवर, 1988। {{isbn|0-486-65676-4}}
 
{{Topology}}
[[Category: सामान्य टोपोलॉजी]] [[Category: टोपोलॉजिकल रिक्त स्थान के गुण]]  
[[Category: सामान्य टोपोलॉजी]] [[Category: टोपोलॉजिकल रिक्त स्थान के गुण]]  



Revision as of 19:09, 7 July 2023

टोपोलॉजी में, द्वितीय-गणनीय स्थान, जिसे पूर्णता से विभक्त अंतरिक्ष भी कहा जाता है, एक ऐसा टोपोलॉजिक अंतरिक्ष होता है जिसकी टोपोलॉजी में एक गिनतीय आधार (टोपोलॉजी) होता है। अधिक स्पष्ट रूप से, टोपोलॉजिकल स्थान यदि कुछ गणनीय संग्रह मौजूद है तो द्वितीय-गणनीय है के खुले सेट उपसमुच्चय ऐसा कि कोई भी खुला उपसमुच्चय के कुछ उपपरिवार के तत्वों के संघ के रूप में लिखा जा सकता है . ऐसा कहा जाता है कि दूसरा गणनीय स्थान गणनीयता के दूसरे सिद्धांत को संतुष्ट करता है। अन्य गणनीयता सिद्धांतों की तरह, दूसरी-गणनीय होने की संपत्ति स्थान में मौजूद खुले सेटों की संख्या को प्रतिबंधित करती है।

गणित में कई "अच्छी तरह की" स्थानें द्वितीय-गिनतीय होती हैं। उदाहरण के लिए, यूक्लिडियन स्थान (Rn) अपनी सामान्य टोपोलॉजी के साथ द्वितीय-गणनीय है। हालाँकि खुली गोलों का सामान्य आधार बेशुमार होता है, लेकिन हम तर्कसंगत संख्या त्रिज्या वाली सभी संख्यात्मक त्रिज्या वाले खुले गोलों की संख्या पर प्रतिबंध लगा सकते हैं। यह प्रतिबंधित संख्या संख्यात्मक होती है और फिर भी एक आधार बनाती है।

गुण

द्वितीय-गिनतीयता पहल-गिनतीयता से अधिक मजबूत अवधारणा है। यदि प्रत्येक बिंदु का गणनीय स्थानीय आधार हो तो स्थान प्रथम-गणनीय होता है।टोपोलॉजी के लिए एक आधार और एक बिंदु x की दिया गया हो तो x को सम्मिलित करने वाले सभी आधार सेट x पर एक स्थानिक आधार बनाते हैं। इस प्रकार, यदि किसी टोपोलॉजी के लिए एक गिनतीय आधार होती है तो हर बिंदु पर एक गिनतीय स्थानिक आधार होती है, और इसलिए हर द्वितीय-गिनतीय अंतरिक्ष भी एक पहल-गिनतीय अंतरिक्ष होता है। हालांकि, कोई भी अगणित विचक्षण अंतरिक्ष पहल-गिनतीय होता है लेकिन द्वितीय-गिनतीय नहीं होता है।


द्वितीय-गिनतीयता अन्य टोपोलॉजिक गुणों को सूचित करती है। विशेष रूप से, प्रत्येक दूसरा-गणनीय स्थान वियोज्य स्थान है (इसमें गणनीय सघन (टोपोलॉजी) उपसमुच्चय है) और लिंडेलोफ स्थान|लिंडेलोफ (प्रत्येक खुले आवरण में गणनीय उपकवर होता है)। इसका कोई विपरीत प्रभाव नहीं होते हैं। उदाहरण के लिए, वास्तविक रेखा पर निचली सीमा टोपोलॉजी प्रथम-गणनीय, वियोज्य और लिंडेलॉफ है, लेकिन द्वितीय-गणनीय नहीं है। हालाँकि, मीट्रिक रिक्त स्थान के लिए, द्वितीय-गणनीय, वियोज्य और लिंडेलोफ़ होने के गुण सभी समान होते हैं।[1] इसलिए, वास्तविक रेखा पर निचली सीमा टोपोलॉजी मेट्रिज़ेबल नहीं है।


दूसरे-गणनीय स्थानों में - जैसा कि मीट्रिक स्थानों में होता है - सघन स्थान , अनुक्रमिक कॉम्पैक्टनेस, और गणनीय कॉम्पैक्टनेस सभी समान गुण हैं।

यूरिसोह्न के मेट्रिज़ेशन सिद्धांत कहता है कि प्रत्येक द्वितीय-गिनतीय, हॉसडॉर्फ स्थान नियमित स्थान मेट्रिज़ेशन योग्य होता है। इससे यह निष्कर्ष निकलता है कि ऐसा प्रत्येक स्थान पूरी तरह से सामान्य स्थान होने के साथ-साथ परा-सुसंहत भी है। इसलिए द्वितीय-गणनीयता टोपोलॉजिकल स्थान पर प्रतिबंधात्मक संपत्ति है, जिसके लिए मेट्रिज़ेबिलिटी को दर्शाने के लिए केवल पृथक्करण सिद्धांत की आवश्यकता होती है।

अन्य गुण

  • द्वितीय-गणनीय स्थान की सतत, खुली मानचित्र छवि (गणित) द्वितीय-गणनीय होती है।
  • द्वितीय-गणनीय स्थान का प्रत्येक उप-स्थान (टोपोलॉजी) द्वितीय-गणनीय होता है।
  • द्वितीय-गणनीय स्थानों के भागफल स्थान (टोपोलॉजी) को द्वितीय-गणनीय होने की आवश्यकता नहीं है; हालाँकि, खुले प्रतिस्थान सदैव द्वितीय-गिनतीय होते हैं।
  • किसी द्वितीय-गणनीय स्थान का कोई भी गणनीय उत्पाद स्थान द्वितीय-गणनीय है, हालाँकि बेशुमार उत्पादों की आवश्यकता नहीं होती है।
  • द्वितीय-गणनीय T1 स्थान की टोपोलॉजी की प्रमुखता c (सातत्य की कार्डिनैलिटी) से कम या उसके बराबर होती है।
  • दूसरे गणनीय स्थान के लिए किसी भी आधार में गणनीय उपपरिवार होता है जो अभी भी आधार है।
  • द्वितीय-गणनीय स्थान में असंयुक्त खुले समुच्चय का प्रत्येक संग्रह गणनीय होती है।

उदाहरण और प्रति उदाहरण

  • असंयुक्त गणनीय संघ पर विचार करें . अंतराल के बाएँ छोर की पहचान करके तुल्यता संबंध और भागफल टोपोलॉजी को परिभाषित करें - अर्थात, 0 ~ 2 ~ 4 ~ … ~ 2k और इसी तरह की पहचान करें। X द्वितीय-गणनीय स्थानों के गणनीय संघ के रूप में, द्वितीय-गणनीय है। हालाँकि, X/~ पहचाने गए बिंदुओं के सहसमुच्चय पर प्रथम-गणनीय नहीं है और इसलिए द्वितीय-गणनीय भी नहीं है।
  • उपरोक्त स्थान स्पष्ट मीट्रिक से संपन्न तुल्यता वर्गों के समान सेट के लिए समरूप नहीं है: अर्थात, ही अंतराल में दो बिंदुओं के लिए नियमित यूक्लिडियन दूरी, और समान अंतराल में नहीं रहने वाले बिंदुओं के लिए बाएं हाथ के बिंदु की दूरी का योग - जो उपरोक्त स्थान की तुलना में अधिक कठोर टोपोलॉजी देता है। यह अलग करने योग्य मीट्रिक स्थान है (तर्कसंगत बिंदुओं के सेट पर विचार करें), और इसलिए यह द्वितीय-गणनीय है।
  • लंबी रेखा (टोपोलॉजी) द्वितीय-गणनीय नहीं है, लेकिन प्रथम-गणनीय है।

टिप्पणियाँ

  1. Willard, theorem 16.11, p. 112

संदर्भ

  • स्टीफन विलार्ड, जनरल टोपोलॉजी, (1970) एडिसन-वेस्ले पब्लिशिंग कंपनी, रीडिंग मैसाचुसेट्स।
  • जॉन जी. हॉकिंग और गेल एस. यंग (1961)। टोपोलॉजी। संशोधित पुनर्मुद्रण, डोवर, 1988। ISBN 0-486-65676-4