स्पर्शरेखा अर्धकोण प्रतिस्थापन: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:स्पर्शरेखा_अर्धकोण_प्रतिस्थापन) |
(No difference)
|
Revision as of 09:17, 15 July 2023
के बारे में लेखों की एक श्रृंखला का हिस्सा |
पथरी |
---|
समाकलन गणित में स्पर्शरेखा अर्ध-कोण प्रतिस्थापन समाकलन के मूल्यांकन के लिए उपयोग किए जाने वाले चर (गणित) का एक रूपांतरण है, जो के त्रिकोणमितीय फलनों को तर्कसंगत फलन के द्वारा के एक सामान्य तर्कसंगत फलन में परिवर्तित करता है। यह वास्तविक रेखा पर कोण माप द्वारा मापित इकाई वृत्त का एक आयामी त्रिविम प्रक्षेपण है, जिसका सामान्य रूपांतरण सूत्र है:[1]
गोलीय त्रिकोणमिति में अर्ध-कोण की स्पर्शरेखा महत्वपूर्ण होती है। इसे 17वीं शताब्दी में कभी-कभी अर्ध-स्पर्शरेखीय अनुपात या अर्ध-स्पर्शरेखा के रूप में जाना जाता था।[2] लियोनहार्ड यूलर ने 1768 मे अपनी समाकलन गणित पाठ्यपुस्तक में समाकलन का मूल्यांकन करने के लिए इसका उपयोग किया और एड्रियन-मैरी लीजेंड्रे ने 1817 में इसकी सामान्य विधि का वर्णन किया था।[3]
प्रतिस्थापन का वर्णन 19वीं शताब्दी के उत्तरार्ध से अधिकांश समाकलन पाठ्यपुस्तकों में सामान्यतः बिना किसी विशेष नाम के किया गया है।[4] इसे रूस में व्यापक त्रिकोणमितीय प्रतिस्थापन के रूप में जाना जाता है और अर्ध-स्पर्शरेखा प्रतिस्थापन या अर्ध-कोण प्रतिस्थापन जैसे भिन्न नामों से भी जाना जाता है।[5] इसे कभी-कभी वीयरस्ट्रैस प्रतिस्थापन के रूप में ग़लत माना जाता है।[6] माइकल स्पिवक ने इसे "विश्व का सबसे गुप्त प्रतिस्थापन" भी कहा है।[7]
प्रतिस्थापन
एक नए चर (गणित) का परिचय देते हुए, ज्या और कोज्या को के परिमेय फलन के रूप में व्यक्त किया जा सकता है और को के गुणनफल के परिमेय फलन के रूप में निम्नानुसार व्यक्त किया जा सकता है:
व्युत्पत्ति
युग्म-कोण सूत्रों का उपयोग करते हुए, पाइथागोरस प्रमेय के लिए 1 के बराबर हर का परिचय देने तथा अंश और हर को से विभाजित करने से निम्न मान प्राप्त होता है:
उदाहरण
सहसंयोजक का प्रतिव्युत्पन्न
निश्चित समाकलन
तीसरा उदाहरण: ज्या और कोज्या दोनों
ज्यामिति
जैसे ही x परिवर्तित होता है, बिंदु (cos x, syn x) बार-बार (0, 0) पर केन्द्रित इकाई वृत्त के चारों ओर घूमता है:
जब यह t −∞ से +∞ तक जाता है तो वृत्त के चारों ओर केवल एक बार ही जाता है और बिंदु (−1, 0) तक कभी नहीं जाता है जिसे t से ±∞ के निकट जाने पर एक सीमा के रूप में देखा जाता है जैसे ही यह t, −∞ से −1 तक जाता है तो t द्वारा निर्धारित बिंदु तीसरे चतुर्थांश में वृत्त के भाग से होकर (−1, 0) से (0, −1) तक जाता है जैसे ही t, -1 से 0 तक जाता है तब बिंदु चौथे चतुर्थांश में (0, -1) से (1, 0) तक वृत्त के एक भाग का अनुसरण करता है, जैसे ही t, 0 से 1 तक जाता है तो बिंदु पहले चतुर्थांश में वृत्त के एक भाग (1, 0) से (0, 1) का अनुसरण करता है अंत में जैसे ही t, 1 से +∞ तक जाता है, तब बिंदु दूसरे चतुर्थांश में वृत्त के एक भाग (0, 1) से (−1, 0) का अनुसरण करता है।
यहाँ एक और ज्यामितीय दृष्टिकोण है। इकाई वृत्त बनाएं और मान लें कि बिंदु P (−1, 0) है, P से होकर जाने वाली एक रेखा (ऊर्ध्वाधर रेखा को छोड़कर) उसकी प्रवणता से निर्धारित होती है। इसके अतिरिक्त प्रत्येक रेखा (ऊर्ध्वाधर रेखा को छोड़कर) इकाई वृत्त को दो बिंदुओं पर प्रतिच्छेदित करती है, जिनमें से एक बिन्दु P है। यह इकाई वृत्त पर बिंदुओं की प्रवणता तक एक फलन को निर्धारित करती है। त्रिकोणमितीय फलन इकाई वृत्त पर कोणों से बिंदुओं तक एक फलन निर्धारित करते हैं और इन दो फलनों के संयोजन से हमारे पास कोणों के प्रतिस्थापन के लिए एक फलन होता है।
आकृति
अतिपरवलीय फलन
त्रिकोणमितीय फलनों और अतिपरवलीय फलनों के बीच साझा किए गए अन्य गुणों की तरह प्रतिस्थापन के समान रूप का निर्माण करने के लिए अतिपरवलीय फलन का उपयोग करना संभव है:
ज्यामितीय रूप से चरों का यह रूपांतरण पोंकारे वृत्त प्रक्षेपण का एक आयामी बिन्दु है।
यह भी देखें
- तर्कसंगत वक्र
- त्रिविम प्रक्षेपण
- स्पर्शरेखीय अर्ध-कोण सूत्र
- त्रिकोणमितीय प्रतिस्थापन
- यूलर प्रतिस्थापन
अग्रिम पठन
- Courant, Richard (1937) [1934]. "1.4.6. Integration of Some Other Classes of Functions §1–3". Differential and Integral Calculus. Vol. 1. Blackie & Son. pp. 234–237.
- Edwards, Joseph (1921). "§1.6.193". A Treatise on the Integral Calculus. Vol. 1. Macmillan. pp. 187–188.
- Hardy, Godfrey Harold (1905). "VI. Transcendental functions". The integration of functions of a single variable. Cambridge. pp. 42–51. Second edition 1916, pp. 52–62
- Hermite, Charles (1873). "Intégration des fonctions transcendentes" [Integration of transcendental functions]. Cours d'analyse de l'école polytechnique (in français). Vol. 1. Gauthier-Villars. pp. 320–380.
नोट्स और संदर्भ
- ↑ Other trigonometric functions can be written in terms of sine and cosine.
- ↑ Gunter, Edmund (1673) [1624]. एडमंड गंटर का कार्य. Francis Eglesfield. p. 73
- ↑ Legendre, Adrien-Marie (1817). Exercices de calcul intégral [Exercises in integral calculus] (in français). Vol. 2. Courcier. p. 245–246.
- ↑ For example, in chronological order,
- Hermite (1873) https://archive.org/details/coursdanalysedel01hermuoft/page/320/
- Johnson (1883) https://archive.org/details/anelementarytre00johngoog/page/n66
- Picard (1891) https://archive.org/details/traitdanalyse03picagoog/page/77
- Goursat (1904) [1902] https://archive.org/details/courseinmathemat01gouruoft/page/236
- Wilson (1911) https://archive.org/details/advancedcalculus00wils/page/21/
- Edwards (1921) https://archive.org/details/treatiseonintegr01edwauoft/page/188
- Courant (1961) [1934] https://archive.org/details/ost-math-courant-differentialintegralcalculusvoli/page/n250
- Peterson (1950) https://archive.org/details/elementsofcalcul00pete/page/201/
- Apostol (1967) https://archive.org/details/calculus0000apos/page/264/
- Swokowski (1979) https://archive.org/details/calculuswithanal02edswok/page/482
- Larson, Hostetler, & Edwards (1998) https://archive.org/details/calculusofsingle00lars/page/520
- Rogawski (2011) https://books.google.com/books?id=rn4paEb8izYC&pg=PA435
- Salas, Etgen, & Hille (2021) https://books.google.com/books?id=R-1ZEAAAQBAJ&pg=PA409
- ↑ Piskunov, Nikolai (1969). डिफरेंशियल और इंटीग्रल कैलकुलस. Mir. p. 379
- ↑ James Stewart mentioned Karl Weierstrass when discussing the substitution in his popular calculus textbook, first published in 1987:
Stewart, James (1987). "§7.5 Rationalizing substitutions". Calculus. Brooks/Cole. p. 431.
The German mathematician Karl Weierstrauss (1815–1897) noticed that the substitution t = tan(x/2) will convert any rational function of sin x and cos x into an ordinary rational function.
Later authors, citing Stewart, have sometimes referred to this as the Weierstrass substitution, for instance:
Jeffrey, David J.; Rich, Albert D. (1994). "The evaluation of trigonometric integrals avoiding spurious discontinuities". Transactions on Mathematical Software. 20 (1): 124–135. doi:10.1145/174603.174409. S2CID 13891212.
Merlet, Jean-Pierre (2004). "A Note on the History of Trigonometric Functions" (PDF). In Ceccarelli, Marco (ed.). International Symposium on History of Machines and Mechanisms. Kluwer. pp. 195–200. doi:10.1007/1-4020-2204-2_16. ISBN 978-1-4020-2203-6.
Weisstein, Eric W. (2011). "Weierstrass Substitution". MathWorld. Retrieved 2020-04-01.
Stewart provided no evidence for the attribution to Weierstrass. A related substitution appears in Weierstrass’s Mathematical Works, from an 1875 lecture wherein Weierstrass credits Carl Gauss (1818) with the idea of solving an integral of the form by the substitution
Weierstrass, Karl (1915) [1875]. "8. Bestimmung des Integrals ...". Mathematische Werke von Karl Weierstrass (in Deutsch). Vol. 6. Mayer & Müller. pp. 89–99.
- ↑ Spivak, Michael (1967). "Ch. 9, problems 9–10". गणना. Benjamin. pp. 325–326.