सेसक्विलिनियर फॉर्म: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Generalization of a bilinear form}} गणित में, एक सेसक्विलिनियर फॉर्म एक बिलिनियर...")
 
No edit summary
Line 1: Line 1:
{{Short description|Generalization of a bilinear form}}
{{Short description|Generalization of a bilinear form}}
गणित में, एक सेसक्विलिनियर फॉर्म एक बिलिनियर फॉर्म का एक सामान्यीकरण है, जो बदले में, [[ यूक्लिडियन स्थान ]] के [[डॉट उत्पाद]] की अवधारणा का एक सामान्यीकरण है। एक [[द्विरेखीय रूप]] अपने प्रत्येक तर्क में रैखिक मानचित्र होता है, लेकिन एक सेसक्विलिनियर रूप एक तर्क को सेमीलिनियर मानचित्र तरीके से मोड़ने की अनुमति देता है, इस प्रकार नाम; जो लैटिन [[संख्यात्मक उपसर्ग]] Wiktionary:sesqui-|''sesqui-'' से उत्पन्न हुआ है जिसका अर्थ है डेढ़। डॉट उत्पाद की मूल अवधारणा - वैक्टर की एक जोड़ी से एक स्केलर (गणित) का उत्पादन - स्केलर मानों की एक विस्तृत श्रृंखला की अनुमति देकर और, शायद एक साथ, एक वेक्टर की परिभाषा को चौड़ा करके सामान्यीकृत किया जा सकता है।
गणित में, सेसक्विलिनियर फॉर्म बिलिनियर फॉर्म का सामान्यीकरण है, जो बदले में, [[ यूक्लिडियन स्थान ]] के [[डॉट उत्पाद]] की अवधारणा का सामान्यीकरण है। [[द्विरेखीय रूप]] अपने प्रत्येक तर्क में रैखिक मानचित्र होता है, लेकिन सेसक्विलिनियर रूप तर्क को सेमीलिनियर मानचित्र तरीके से मोड़ने की अनुमति देता है, इस प्रकार नाम; जो लैटिन [[संख्यात्मक उपसर्ग]] Wiktionary:sesqui-|''sesqui-'' से उत्पन्न हुआ है जिसका अर्थ है डेढ़। डॉट उत्पाद की मूल अवधारणा - वैक्टर की जोड़ी से स्केलर (गणित) का उत्पादन - स्केलर मानों की विस्तृत श्रृंखला की अनुमति देकर और, शायद साथ, वेक्टर की परिभाषा को चौड़ा करके सामान्यीकृत किया जा सकता है।
 
एक प्रेरक विशेष मामला एक जटिल सदिश समष्टि पर एक सेसक्विलिनियर रूप है, {{math|''V''}}. यह एक नक्शा है {{math|''V'' × ''V'' → '''C'''}} जो एक तर्क में रैखिक है और जटिल संयुग्म द्वारा दूसरे तर्क की रैखिकता को मोड़ देता है (दूसरे तर्क में इसे [[प्रतिरेखीय]] कहा जाता है)। यह मामला गणितीय भौतिकी अनुप्रयोगों में स्वाभाविक रूप से उठता है। एक अन्य महत्वपूर्ण मामला अदिश को किसी भी क्षेत्र (गणित) से आने की अनुमति देता है और मोड़ एक क्षेत्र ऑटोमोर्फिज्म द्वारा प्रदान किया जाता है।
 
[[प्रक्षेप्य ज्यामिति]] में एक अनुप्रयोग के लिए आवश्यक है कि अदिश एक विभाजन वलय (तिरछा क्षेत्र) से आएं, {{math|''K''}}, और इसका मतलब है कि वैक्टर को आर-मॉड्यूल के तत्वों द्वारा प्रतिस्थापित किया जाना चाहिए{{math|''K''}}-मापांक। एक बहुत ही सामान्य सेटिंग में, सेसक्विलिनियर रूपों को परिभाषित किया जा सकता है {{math|''R''}}-मनमानी रिंग के लिए मॉड्यूल (गणित) {{math|''R''}}.
<!-- Old lead
In [[mathematics]], a '''sesquilinear form''' on a [[complex vector space]] {{math|''V''}} is a map {{math|''V'' × ''V'' → '''C'''}} that is [[linear operator|linear]] in one argument and [[antilinear]] in the other. The name originates from the Latin [[numerical prefix]] [[Wiktionary:sesqui-|''sesqui-'']] meaning "one and a half". Compare with a [[bilinear form]], which is linear in both arguments. However many authors, especially when working solely in a [[complex number|complex]] setting, refer to sesquilinear forms as bilinear forms.
 
A motivating example is the [[inner product]] on a complex vector space, which is not bilinear, but instead sesquilinear. See {{section link||Geometric motivation}} below.
 
Sesquilinear forms are not restricted to the complex numbers and may be defined on any [[R-module|''K''-module]] where ''K'' is a [[division ring]] (see {{section link||Generalization}} below).<ref>also see {{harvnb|Gruenberg|Weir|1977|page=121}}</ref>
-->


एक प्रेरक विशेष मामला जटिल सदिश समष्टि पर सेसक्विलिनियर रूप है, {{math|''V''}}. यह नक्शा है {{math|''V'' × ''V'' → '''C'''}} जो तर्क में रैखिक है और जटिल संयुग्म द्वारा दूसरे तर्क की रैखिकता को मोड़ देता है (दूसरे तर्क में इसे [[प्रतिरेखीय]] कहा जाता है)। यह मामला गणितीय भौतिकी अनुप्रयोगों में स्वाभाविक रूप से उठता है। अन्य महत्वपूर्ण मामला अदिश को किसी भी क्षेत्र (गणित) से आने की अनुमति देता है और मोड़ क्षेत्र ऑटोमोर्फिज्म द्वारा प्रदान किया जाता है।


[[प्रक्षेप्य ज्यामिति]] में अनुप्रयोग के लिए आवश्यक है कि अदिश विभाजन वलय (तिरछा क्षेत्र) से आएं, {{math|''K''}}, और इसका मतलब है कि वैक्टर को आर-मॉड्यूल के तत्वों द्वारा प्रतिस्थापित किया जाना चाहिए{{math|''K''}}-मापांक। बहुत ही सामान्य सेटिंग में, सेसक्विलिनियर रूपों को परिभाषित किया जा सकता है {{math|''R''}}-मनमानी रिंग के लिए मॉड्यूल (गणित) {{math|''R''}}.
==अनौपचारिक परिचय==
==अनौपचारिक परिचय==
सेसक्विलिनियर जटिल वेक्टर स्पेस पर हर्मिटियन फॉर्म की मूल धारणा को अमूर्त और सामान्यीकृत करता है। हर्मिटियन रूपों को आमतौर पर भौतिकी में जटिल [[हिल्बर्ट स्थान]] पर आंतरिक उत्पाद के रूप में देखा जाता है। ऐसे मामलों में, मानक हर्मिटियन फॉर्म चालू होता है {{math|'''C'''<sup>''n''</sup>}} द्वारा दिया गया है
सेसक्विलिनियर जटिल वेक्टर स्पेस पर हर्मिटियन फॉर्म की मूल धारणा को अमूर्त और सामान्यीकृत करता है। हर्मिटियन रूपों को आमतौर पर भौतिकी में जटिल [[हिल्बर्ट स्थान]] पर आंतरिक उत्पाद के रूप में देखा जाता है। ऐसे मामलों में, मानक हर्मिटियन फॉर्म चालू होता है {{math|'''C'''<sup>''n''</sup>}} द्वारा दिया गया है
:<math>\langle w,z \rangle = \sum_{i=1}^n \overline{w}_i z_i.</math>
:<math>\langle w,z \rangle = \sum_{i=1}^n \overline{w}_i z_i.</math>
कहाँ <math>\overline{w}_i</math> के जटिल संयुग्म को दर्शाता है <math>w_i ~.</math> इस उत्पाद को उन स्थितियों के लिए सामान्यीकृत किया जा सकता है जहां कोई ऑर्थोनॉर्मल आधार के साथ काम नहीं कर रहा है {{math|'''C'''<sup>''n''</sup>}}, या यहां तक ​​कि कोई भी आधार। का एक अतिरिक्त गुणनखंड डालकर <math>i</math> उत्पाद में, व्यक्ति को तिरछा-हर्मिटियन रूप प्राप्त होता है, जिसे नीचे अधिक सटीक रूप से परिभाषित किया गया है। परिभाषा को सम्मिश्र संख्याओं तक सीमित रखने का कोई विशेष कारण नहीं है; इसे मनमाना रिंग (गणित) के लिए परिभाषित किया जा सकता है, जिसमें [[एंटीऑटोमोर्फिज्म]] होता है, जिसे अनौपचारिक रूप से रिंग के लिए जटिल संयुग्मन की एक सामान्यीकृत अवधारणा के रूप में समझा जाता है।
कहाँ <math>\overline{w}_i</math> के जटिल संयुग्म को दर्शाता है <math>w_i ~.</math> इस उत्पाद को उन स्थितियों के लिए सामान्यीकृत किया जा सकता है जहां कोई ऑर्थोनॉर्मल आधार के साथ काम नहीं कर रहा है {{math|'''C'''<sup>''n''</sup>}}, या यहां तक ​​कि कोई भी आधार। का अतिरिक्त गुणनखंड डालकर <math>i</math> उत्पाद में, व्यक्ति को तिरछा-हर्मिटियन रूप प्राप्त होता है, जिसे नीचे अधिक सटीक रूप से परिभाषित किया गया है। परिभाषा को सम्मिश्र संख्याओं तक सीमित रखने का कोई विशेष कारण नहीं है; इसे मनमाना रिंग (गणित) के लिए परिभाषित किया जा सकता है, जिसमें [[एंटीऑटोमोर्फिज्म]] होता है, जिसे अनौपचारिक रूप से रिंग के लिए जटिल संयुग्मन की सामान्यीकृत अवधारणा के रूप में समझा जाता है।


==सम्मेलन==
==सम्मेलन==
Line 33: Line 24:
&\varphi(x + y, z + w) = \varphi(x, z) + \varphi(x, w) + \varphi(y, z) + \varphi(y, w)\\
&\varphi(x + y, z + w) = \varphi(x, z) + \varphi(x, w) + \varphi(y, z) + \varphi(y, w)\\
&\varphi(a x, b y) = \overline{a}b\,\varphi(x,y)\end{align}</math>
&\varphi(a x, b y) = \overline{a}b\,\varphi(x,y)\end{align}</math>
सभी के लिए <math>x, y, z, w \in V</math> और सभी <math>a, b \in \Complex.</math> यहाँ, <math>\overline{a}</math> एक अदिश राशि का जटिल संयुग्म है <math>a.</math>
सभी के लिए <math>x, y, z, w \in V</math> और सभी <math>a, b \in \Complex.</math> यहाँ, <math>\overline{a}</math> अदिश राशि का जटिल संयुग्म है <math>a.</math>
एक जटिल सेसक्विलिनियर फॉर्म को एक जटिल बिलिनियर मानचित्र के रूप में भी देखा जा सकता है
एक जटिल सेसक्विलिनियर फॉर्म को जटिल बिलिनियर मानचित्र के रूप में भी देखा जा सकता है<math display="block">\overline{V} \times V \to \Complex</math>कहाँ <math>\overline{V}</math> का जटिल संयुग्म सदिश समष्टि है <math>V.</math> [[टेंसर उत्पाद]]ों की [[सार्वभौमिक संपत्ति]] के अनुसार ये जटिल रैखिक मानचित्रों के साथ एक-से-एक पत्राचार में हैं<math display="block">\overline{V} \otimes V \to \Complex.</math>एक निश्चित के लिए <math>z \in V</math> वो नक्शा <math>w \mapsto \varphi(z, w)</math> पर [[रैखिक कार्यात्मक]] है <math>V</math> (अर्थात दोहरे स्थान का तत्व <math>V^*</math>). इसी प्रकार, मानचित्र <math>w \mapsto \varphi(w, z)</math> [[संयुग्म-रैखिक]] [[कार्यात्मक (गणित)]] पर है <math>V.</math>
<math display="block">\overline{V} \times V \to \Complex</math>
किसी भी जटिल सेसक्विलिनियर रूप को देखते हुए <math>\varphi</math> पर <math>V</math> हम दूसरे जटिल सेसक्विलिनियर रूप को परिभाषित कर सकते हैं <math>\psi</math> संयुग्म स्थानान्तरण के माध्यम से:<math display="block">\psi(w,z) = \overline{\varphi(z,w)}.</math>सामान्य रूप में, <math>\psi</math> और <math>\varphi</math> अलग होगा. यदि वे वही हैं तो <math>\varphi</math> बताया गया {{em|Hermitian}}. यदि वे एक-दूसरे के प्रति नकारात्मक हैं, तो <math>\varphi</math> बताया गया {{em|skew-Hermitian}}. प्रत्येक सेसक्विलिनियर फॉर्म को हर्मिटियन फॉर्म और स्क्यू-हर्मिटियन फॉर्म के योग के रूप में लिखा जा सकता है।
कहाँ <math>\overline{V}</math> का जटिल संयुग्म सदिश समष्टि है <math>V.</math> [[टेंसर उत्पाद]]ों की [[सार्वभौमिक संपत्ति]] के अनुसार ये जटिल रैखिक मानचित्रों के साथ एक-से-एक पत्राचार में हैं
<math display="block">\overline{V} \otimes V \to \Complex.</math>
एक निश्चित के लिए <math>z \in V</math> वो नक्शा <math>w \mapsto \varphi(z, w)</math> पर एक [[रैखिक कार्यात्मक]] है <math>V</math> (अर्थात दोहरे स्थान का एक तत्व <math>V^*</math>). इसी प्रकार, मानचित्र <math>w \mapsto \varphi(w, z)</math> एक [[संयुग्म-रैखिक]] [[कार्यात्मक (गणित)]] पर है <math>V.</math>
किसी भी जटिल सेसक्विलिनियर रूप को देखते हुए <math>\varphi</math> पर <math>V</math> हम एक दूसरे जटिल सेसक्विलिनियर रूप को परिभाषित कर सकते हैं <math>\psi</math> संयुग्म स्थानान्तरण के माध्यम से:
<math display="block">\psi(w,z) = \overline{\varphi(z,w)}.</math>
सामान्य रूप में, <math>\psi</math> और <math>\varphi</math> अलग होगा. यदि वे वही हैं तो <math>\varphi</math> बताया गया {{em|Hermitian}}. यदि वे एक-दूसरे के प्रति नकारात्मक हैं, तो <math>\varphi</math> बताया गया {{em|skew-Hermitian}}. प्रत्येक सेसक्विलिनियर फॉर्म को हर्मिटियन फॉर्म और स्क्यू-हर्मिटियन फॉर्म के योग के रूप में लिखा जा सकता है।


=== मैट्रिक्स प्रतिनिधित्व ===
=== मैट्रिक्स प्रतिनिधित्व ===


अगर <math>V</math> एक परिमित-आयामी जटिल वेक्टर स्थान है, फिर किसी भी [[आधार (रैखिक बीजगणित)]] के सापेक्ष <math>\left\{ e_i \right\}_i</math> का <math>V,</math> एक सेसक्विलिनियर फॉर्म को एक [[मैट्रिक्स (गणित)]] द्वारा दर्शाया जाता है <math>A,</math> और द्वारा दिया गया
अगर <math>V</math> परिमित-आयामी जटिल वेक्टर स्थान है, फिर किसी भी [[आधार (रैखिक बीजगणित)]] के सापेक्ष <math>\left\{ e_i \right\}_i</math> का <math>V,</math> सेसक्विलिनियर फॉर्म को [[मैट्रिक्स (गणित)]] द्वारा दर्शाया जाता है <math>A,</math> और द्वारा दिया गया<math display="block">\varphi(w,z) = \varphi \left(\sum_i w_i e_i, \sum_j z_j e_j \right) = \sum_i \sum_j \overline{w_i} z_j \varphi\left(e_i, e_j\right) = w^\dagger A z .</math>कहाँ <math>w^\dagger</math> संयुग्मी स्थानान्तरण है। मैट्रिक्स के घटक <math>A</math> द्वारा दिए गए हैं <math>A_{ij} := \varphi\left(e_i, e_j\right).</math>
<math display="block">\varphi(w,z) = \varphi \left(\sum_i w_i e_i, \sum_j z_j e_j \right) = \sum_i \sum_j \overline{w_i} z_j \varphi\left(e_i, e_j\right) = w^\dagger A z .</math>
कहाँ <math>w^\dagger</math> संयुग्मी स्थानान्तरण है। मैट्रिक्स के घटक <math>A</math> द्वारा दिए गए हैं <math>A_{ij} := \varphi\left(e_i, e_j\right).</math>
 


=== हर्मिटियन रूप ===
=== हर्मिटियन रूप ===
:शब्द 'हर्मिटियन फॉर्म' नीचे बताई गई अवधारणा से भिन्न अवधारणा को भी संदर्भित कर सकता है: यह [[हर्मिटियन मैनिफोल्ड]] पर एक निश्चित अंतर रूप को संदर्भित कर सकता है।
:शब्द 'हर्मिटियन फॉर्म' नीचे बताई गई अवधारणा से भिन्न अवधारणा को भी संदर्भित कर सकता है: यह [[हर्मिटियन मैनिफोल्ड]] पर निश्चित अंतर रूप को संदर्भित कर सकता है।


एक जटिल 'हर्मिटियन रूप' (जिसे 'सममित सेसक्विलिनियर फॉर्म' भी कहा जाता है), एक सेसक्विलिनियर रूप है <math>h : V \times V \to \Complex</math> ऐसा है कि
एक जटिल 'हर्मिटियन रूप' (जिसे 'सममित सेसक्विलिनियर फॉर्म' भी कहा जाता है), सेसक्विलिनियर रूप है <math>h : V \times V \to \Complex</math> ऐसा है कि<math display="block">h(w,z) = \overline{h(z, w)}.</math>मानक हर्मिटियन फॉर्म पर <math>\Complex^n</math> (फिर से, दूसरे में रैखिकता और पहले चर में संयुग्मित रैखिकता के भौतिकी सम्मेलन का उपयोग करके) दिया गया है<math display="block">\langle w,z \rangle = \sum_{i=1}^n \overline{w}_i z_i.</math>अधिक सामान्यतः, किसी भी जटिल हिल्बर्ट स्थान पर आंतरिक उत्पाद हर्मिटियन रूप है।
<math display="block">h(w,z) = \overline{h(z, w)}.</math>
मानक हर्मिटियन फॉर्म पर <math>\Complex^n</math> (फिर से, दूसरे में रैखिकता और पहले चर में संयुग्मित रैखिकता के भौतिकी सम्मेलन का उपयोग करके) दिया गया है
<math display="block">\langle w,z \rangle = \sum_{i=1}^n \overline{w}_i z_i.</math>
अधिक सामान्यतः, किसी भी जटिल हिल्बर्ट स्थान पर आंतरिक उत्पाद एक हर्मिटियन रूप है।


हर्मिटियन रूप में एक ऋण चिह्न प्रस्तुत किया गया है <math>w w^* - z z^*</math> समूह SU(1,1) को परिभाषित करने के लिए।


हर्मिटियन रूप वाला एक सदिश स्थान <math>(V, h)</math> हर्मिटियन स्पेस कहा जाता है।
हर्मिटियन रूप में ऋण चिह्न प्रस्तुत किया गया है <math>w w^* - z z^*</math> समूह SU(1,1) को परिभाषित करने के लिए।


एक जटिल हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व एक [[हर्मिटियन मैट्रिक्स]] है।
हर्मिटियन रूप वाला सदिश स्थान <math>(V, h)</math> हर्मिटियन स्पेस कहा जाता है।


एक एकल वेक्टर पर लागू एक जटिल हर्मिटियन फॉर्म
एक जटिल हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व [[हर्मिटियन मैट्रिक्स]] है।
<math display="block">|z|_h = h(z, z)</math>
हमेशा एक [[वास्तविक संख्या]] होती है. कोई यह दिखा सकता है कि एक जटिल सेसक्विलिनियर रूप हर्मिटियन है यदि और केवल तभी जब संबंधित [[द्विघात रूप]] सभी के लिए वास्तविक हो <math>z \in V.</math>


एक एकल वेक्टर पर लागू जटिल हर्मिटियन फॉर्म<math display="block">|z|_h = h(z, z)</math>हमेशा [[वास्तविक संख्या]] होती है. कोई यह दिखा सकता है कि जटिल सेसक्विलिनियर रूप हर्मिटियन है यदि और केवल तभी जब संबंधित [[द्विघात रूप]] सभी के लिए वास्तविक हो <math>z \in V.</math>


=== तिरछा-हर्मिटियन रूप ===
=== तिरछा-हर्मिटियन रूप ===


एक जटिल तिरछा-हर्मिटियन रूप (जिसे एंटीसिमेट्रिक सेसक्विलिनियर फॉर्म भी कहा जाता है), एक जटिल सेसक्विलिनियर रूप है <math>s : V \times V \to \Complex</math> ऐसा है कि
एक जटिल तिरछा-हर्मिटियन रूप (जिसे एंटीसिमेट्रिक सेसक्विलिनियर फॉर्म भी कहा जाता है), जटिल सेसक्विलिनियर रूप है <math>s : V \times V \to \Complex</math> ऐसा है कि<math display="block">s(w,z) = -\overline{s(z, w)}.</math>प्रत्येक जटिल तिरछा-हर्मिटियन रूप को [[काल्पनिक इकाई]] के रूप में लिखा जा सकता है <math>i := \sqrt{-1}</math> कई बार हर्मिटियन रूप।
<math display="block">s(w,z) = -\overline{s(z, w)}.</math>
प्रत्येक जटिल तिरछा-हर्मिटियन रूप को [[काल्पनिक इकाई]] के रूप में लिखा जा सकता है <math>i := \sqrt{-1}</math> कई बार हर्मिटियन रूप।


एक जटिल तिरछा-हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व एक [[तिरछा-हर्मिटियन मैट्रिक्स]] है।


एक एकल वेक्टर पर लागू एक जटिल तिरछा-हर्मिटियन रूप
एक जटिल तिरछा-हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व [[तिरछा-हर्मिटियन मैट्रिक्स]] है।
<math display="block">|z|_s = s(z, z)</math>
 
हमेशा एक पूर्णतः [[काल्पनिक संख्या]] होती है.
एक एकल वेक्टर पर लागू जटिल तिरछा-हर्मिटियन रूप<math display="block">|z|_s = s(z, z)</math>हमेशा पूर्णतः [[काल्पनिक संख्या]] होती है.


==डिवीजन रिंग के ऊपर==
==डिवीजन रिंग के ऊपर==
विभाजन बजने पर यह धारा अपरिवर्तित लागू होती है {{math|''K''}} [[क्रमविनिमेय वलय]] है। अधिक विशिष्ट शब्दावली तब भी लागू होती है: डिवीजन रिंग एक फ़ील्ड है, एंटी-ऑटोमोर्फिज्म भी एक ऑटोमोर्फिज्म है, और सही मॉड्यूल एक वेक्टर स्पेस है। निम्नलिखित भावों के उपयुक्त पुनर्क्रमण के साथ बाएं मॉड्यूल पर लागू होता है।
विभाजन बजने पर यह धारा अपरिवर्तित लागू होती है {{math|''K''}} [[क्रमविनिमेय वलय]] है। अधिक विशिष्ट शब्दावली तब भी लागू होती है: डिवीजन रिंग फ़ील्ड है, एंटी-ऑटोमोर्फिज्म भी ऑटोमोर्फिज्म है, और सही मॉड्यूल वेक्टर स्पेस है। निम्नलिखित भावों के उपयुक्त पुनर्क्रमण के साथ बाएं मॉड्यूल पर लागू होता है।


===परिभाषा===
===परिभाषा===
ए{{math|''σ''}}-दाईं ओर सेसक्विलिनियर फॉर्म {{math|''K''}}-मापांक {{math|''M''}} एक [[द्वि-योगात्मक मानचित्र]] है {{math|''φ'' : ''M'' × ''M'' → ''K''}} संबद्ध [[स्वप्रतिरोधी]] के साथ {{math|''σ''}} एक विभाजन वलय का {{math|''K''}} ऐसा कि, सबके लिए {{math|''x'', ''y''}} में {{math|''M''}} और सभी {{math|''α'', ''β''}} में {{math|''K''}},
ए{{math|''σ''}}-दाईं ओर सेसक्विलिनियर फॉर्म {{math|''K''}}-मापांक {{math|''M''}} [[द्वि-योगात्मक मानचित्र]] है {{math|''φ'' : ''M'' × ''M'' → ''K''}} संबद्ध [[स्वप्रतिरोधी]] के साथ {{math|''σ''}} विभाजन वलय का {{math|''K''}} ऐसा कि, सबके लिए {{math|''x'', ''y''}} में {{math|''M''}} और सभी {{math|''α'', ''β''}} में {{math|''K''}},
:<math>\varphi(x \alpha, y \beta) = \sigma(\alpha) \, \varphi(x, y) \, \beta .</math>
:<math>\varphi(x \alpha, y \beta) = \sigma(\alpha) \, \varphi(x, y) \, \beta .</math>
संबद्ध एंटी-ऑटोमोर्फिज्म {{math|''σ''}} किसी भी शून्येतर सेसक्विलिनियर रूप के लिए {{math|''φ''}} विशिष्ट रूप से निर्धारित होता है {{math|''φ''}}.
संबद्ध एंटी-ऑटोमोर्फिज्म {{math|''σ''}} किसी भी शून्येतर सेसक्विलिनियर रूप के लिए {{math|''φ''}} विशिष्ट रूप से निर्धारित होता है {{math|''φ''}}.


===रूढ़िवादिता===
===रूढ़िवादिता===
एक sesquilinear रूप दिया गया है {{math|''φ''}} एक मॉड्यूल पर {{math|''M''}} और एक उपस्थान ([[सबमॉड्यूल]]) {{math|''W''}} का {{math|''M''}}, का ओर्थोगोनल पूरक {{math|''W''}} इसके संबंध में {{math|''φ''}} है
एक sesquilinear रूप दिया गया है {{math|''φ''}} मॉड्यूल पर {{math|''M''}} और उपस्थान ([[सबमॉड्यूल]]) {{math|''W''}} का {{math|''M''}}, का ओर्थोगोनल पूरक {{math|''W''}} इसके संबंध में {{math|''φ''}} है
:<math>W^{\perp}=\{\mathbf{v} \in M \mid \varphi (\mathbf{v}, \mathbf{w})=0,\ \forall \mathbf{w}\in W\} . </math>
:<math>W^{\perp}=\{\mathbf{v} \in M \mid \varphi (\mathbf{v}, \mathbf{w})=0,\ \forall \mathbf{w}\in W\} . </math>
इसी प्रकार, {{math|''x'' ∈ ''M''}} ऑर्थोगोनल है {{math|''y'' ∈ ''M''}} इसके संबंध में {{math|''φ''}}, लिखा हुआ {{math|''x'' ⊥<sub>''φ''</sub> ''y''}} (या केवल {{math|''x'' ⊥ ''y''}} अगर {{math|''φ''}}संदर्भ से अनुमान लगाया जा सकता है), कब {{math|1=''φ''(''x'', ''y'') = 0}}. इस [[द्विआधारी संबंध]] को [[सममित संबंध]] होने की आवश्यकता नहीं है, अर्थात। {{math|''x'' ⊥ ''y''}} का तात्पर्य नहीं है {{math|''y'' ⊥ ''x''}} (लेकिन देखें{{section link||Reflexivity}} नीचे)।
इसी प्रकार, {{math|''x'' ∈ ''M''}} ऑर्थोगोनल है {{math|''y'' ∈ ''M''}} इसके संबंध में {{math|''φ''}}, लिखा हुआ {{math|''x'' ⊥<sub>''φ''</sub> ''y''}} (या केवल {{math|''x'' ⊥ ''y''}} अगर {{math|''φ''}}संदर्भ से अनुमान लगाया जा सकता है), कब {{math|1=''φ''(''x'', ''y'') = 0}}. इस [[द्विआधारी संबंध]] को [[सममित संबंध]] होने की आवश्यकता नहीं है, अर्थात। {{math|''x'' ⊥ ''y''}} का तात्पर्य नहीं है {{math|''y'' ⊥ ''x''}} (लेकिन देखें{{section link||Reflexivity}} नीचे)।
Line 98: Line 71:
एक sesquilinear रूप {{math|''φ''}} प्रतिवर्ती है यदि, सभी के लिए {{math|''x'', ''y''}} में {{math|''M''}},
एक sesquilinear रूप {{math|''φ''}} प्रतिवर्ती है यदि, सभी के लिए {{math|''x'', ''y''}} में {{math|''M''}},
:<math>\varphi(x, y) = 0</math> तात्पर्य <math>\varphi(y, x) = 0.</math>
:<math>\varphi(x, y) = 0</math> तात्पर्य <math>\varphi(y, x) = 0.</math>
अर्थात्, एक सेसक्विलिनियर रूप ठीक उसी समय रिफ्लेक्सिव होता है जब व्युत्पन्न ऑर्थोगोनैलिटी संबंध सममित होता है।
अर्थात्, सेसक्विलिनियर रूप ठीक उसी समय रिफ्लेक्सिव होता है जब व्युत्पन्न ऑर्थोगोनैलिटी संबंध सममित होता है।


===हर्मिटियन विविधताएं===
===हर्मिटियन विविधताएं===
Line 108: Line 81:
:<math> \sigma ( \varepsilon ) = \varepsilon^{-1} </math>
:<math> \sigma ( \varepsilon ) = \varepsilon^{-1} </math>
:<math> \sigma ( \sigma ( \alpha ) ) = \varepsilon \alpha \varepsilon^{-1} .</math>
:<math> \sigma ( \sigma ( \alpha ) ) = \varepsilon \alpha \varepsilon^{-1} .</math>
यह उसका अनुसरण भी करता है {{math|''φ''(''x'', ''x'')}} मानचित्र का एक [[निश्चित बिंदु (गणित)]] है {{math|''α'' ↦ ''σ''(''α'')''ε''}}. इस मानचित्र के निश्चित बिंदु [[योगात्मक समूह]] का एक [[उपसमूह]] बनाते हैं {{math|''K''}}.
यह उसका अनुसरण भी करता है {{math|''φ''(''x'', ''x'')}} मानचित्र का [[निश्चित बिंदु (गणित)]] है {{math|''α'' ↦ ''σ''(''α'')''ε''}}. इस मानचित्र के निश्चित बिंदु [[योगात्मक समूह]] का [[उपसमूह]] बनाते हैं {{math|''K''}}.


ए {{math|(''σ'', ''ε'')}}-हर्मिटियन रूप प्रतिवर्ती है, और प्रत्येक प्रतिवर्ती है {{math|''σ''}}-सेसक्विलिनियर फॉर्म है {{math|(''σ'', ''ε'')}}-कुछ के लिए हर्मिटियन {{math|''ε''}}.<ref>
ए {{math|(''σ'', ''ε'')}}-हर्मिटियन रूप प्रतिवर्ती है, और प्रत्येक प्रतिवर्ती है {{math|''σ''}}-सेसक्विलिनियर फॉर्म है {{math|(''σ'', ''ε'')}}-कुछ के लिए हर्मिटियन {{math|''ε''}}.<ref>
Line 117: Line 90:
{{harvnb|Dembowski|1968|page=42}}
{{harvnb|Dembowski|1968|page=42}}
</ref>
</ref>
विशेष मामले में वह {{math|''σ''}} [[पहचान मानचित्र]] है (अर्थात्, {{math|1=''σ'' = id}}), {{math|''K''}} क्रमविनिमेय है, {{math|''φ''}} एक द्विरेखीय रूप है और {{math|1=''ε''<sup>2</sup> = 1}}. फिर के लिए {{math|1=''ε'' = 1}} द्विरेखीय रूप को सममित कहा जाता है, और के लिए {{math|1=''ε'' = −1}} को तिरछा-सममितीय कहा जाता है।<ref>When {{math|1=[[Characteristic (algebra)|char]] ''K'' = 2}}, skew-symmetric and symmetric bilinear forms coincide since then {{math|1=1 = −1}}.  In all cases, alternating bilinear forms are a subset of skew-symmetric bilinear forms, and need not be considered separately.</ref>
विशेष मामले में वह {{math|''σ''}} [[पहचान मानचित्र]] है (अर्थात्, {{math|1=''σ'' = id}}), {{math|''K''}} क्रमविनिमेय है, {{math|''φ''}} द्विरेखीय रूप है और {{math|1=''ε''<sup>2</sup> = 1}}. फिर के लिए {{math|1=''ε'' = 1}} द्विरेखीय रूप को सममित कहा जाता है, और के लिए {{math|1=''ε'' = −1}} को तिरछा-सममितीय कहा जाता है।<ref>When {{math|1=[[Characteristic (algebra)|char]] ''K'' = 2}}, skew-symmetric and symmetric bilinear forms coincide since then {{math|1=1 = −1}}.  In all cases, alternating bilinear forms are a subset of skew-symmetric bilinear forms, and need not be considered separately.</ref>
<!--
 
===उदाहरण===
होने देना {{math|''V''}}[[परिमित क्षेत्र]] पर त्रिविम सदिश समष्टि हो {{math|1=''F'' = GF(''q''<sup>2</sup>)}}, कहाँ {{math|''q''}} एक प्रधान शक्ति है. मानक आधार के संबंध में हम लिख सकते हैं {{math|1= ''x'' = (''x''<sub>1</sub>, ''x''<sub>2</sub>, ''x''<sub>3</sub>)}} और {{math|1= ''y'' = (''y''<sub>1</sub>, ''y''<sub>2</sub>, ''y''<sub>3</sub>)}} और मानचित्र को परिभाषित करें {{math|''φ''}} द्वारा:
:<math>\varphi(x, y) = x_1 y_1{}^q + x_2 y_2{}^q + x_3 y_3{}^q.</math>
वो नक्शा {{math|''σ'' : ''t'' ↦ ''t''<sup>''q''</sup>}} का एक इनवोल्यूशन (गणित) ऑटोमोर्फिज्म है {{math|''F''}}. वो नक्शा {{math|''φ''}} तो एक है {{math|''σ''}}-सेसक्विलिनियर फॉर्म। गणित का सवाल {{math|''M''<sub>''φ''</sub>}}इस फॉर्म से जुड़ा पहचान मैट्रिक्स है। यह एक हर्मिटियन रूप है।
 
==प्रक्षेप्य ज्यामिति में==
 
:धारणा: इस खंड में, सेसक्विलिनियर फॉर्म अपने दूसरे (रेस्पॉन पहले) तर्क में एंटीलीनियर मैप (रिस्पॉन्स लीनियर मैप) हैं।
 
प्रक्षेप्य ज्यामिति में {{math|''G''}}, एक क्रम[[परिवर्तन]] {{math|''δ''}} उप-स्थान जो समावेशन को उलट देता है, अर्थात
: {{math|''S'' ⊆ ''T'' ⇒ ''T''<sup>''δ''</sup> ⊆ ''S''<sup>''δ''</sup>}} सभी उप-स्थानों के लिए {{math|''S''}}, {{math|''T''}} का {{math|''G''}},
सहसंबंध (प्रोजेक्टिव ज्योमेट्री) कहा जाता है। बिरखॉफ़ और वॉन न्यूमैन का परिणाम (1936)<ref>{{citation|first1=G.|last1=Birkhoff|first2=J.|last2=von Neumann|title=The logic of quantum mechanics|journal=Annals of Mathematics|year=1936|volume=37|issue=4|pages=823–843|doi=10.2307/1968621|jstor=1968621}}</ref> दर्शाता है कि [[desarguesian]] प्रक्षेप्य ज्यामिति के सहसंबंध अंतर्निहित वेक्टर स्थान पर गैर-अपक्षयी सेसक्विलिनियर रूपों के अनुरूप हैं।<ref name=Demb42 />एक sesquilinear रूप {{math|''φ''}} अविक्षिप्त है यदि {{math|1=''φ''(''x'', ''y'') = 0}} सभी के लिए {{math|''y''}} में {{math|''V''}} (अगर और केवल अगर {{math|1=''x'' = 0}}.
 
इस कथन की पूर्ण व्यापकता प्राप्त करने के लिए, और चूंकि प्रत्येक डिजार्गेसियन प्रक्षेप्य ज्यामिति को एक डिवीजन रिंग द्वारा समन्वित किया जा सकता है, [[रीनहोल्ड बेयर]] ने एक सेसक्विलिनियर फॉर्म की परिभाषा को एक डिवीजन रिंग तक बढ़ा दिया, जिसके लिए वेक्टर रिक्त स्थान को मॉड्यूल (गणित) द्वारा प्रतिस्थापित करने की आवश्यकता होती है।{{math|''R''}}-मॉड्यूल.<ref>{{citation|first=Reinhold|last=Baer|title=Linear Algebra and Projective Geometry|publisher=Dover|year=2005|orig-year=1952|isbn=978-0-486-44565-6}}</ref> (ज्यामितीय साहित्य में इन्हें अभी भी स्क्यूफील्ड्स पर बाएँ या दाएँ वेक्टर रिक्त स्थान के रूप में संदर्भित किया जाता है।)<ref>Baer's terminology gives a third way to refer to these ideas, so he must be read with caution.</ref>
<!--
A generalization called a '''{{visible anchor|semi-bilinear form}}''' was used by [[Reinhold Baer]] to characterize linear manifolds ([[projective space]]s) that are dual to each other in chapter 4 of his book ''Linear Algebra and Projective Geometry'' (1952).<ref>{{citation|first=Reinhold|last=Baer|title=Linear Algebra and Projective Geometry|publisher=Dover|year=2005|orig-year=1952|isbn=978-0-486-44565-6}}</ref> For a [[vector space]] {{math|''A''}} over a [[division ring|skewfield]] {{math|''F''}} he requires:<ref>Baer uses the term ''(not necessarily commutative) field'' for [[division ring]] (= skewfield) and refers to {{math|''A''}} as an abelian group linear over {{math|''F''}}, meaning an [[Module (mathematics)|{{math|''F''}}-module]] (more colloquially known as a vector space over a skewfield).</ref>
 
:A pair consisting of an [[anti-automorphism]] {{math|''α''}} of the skewfield {{math|''F''}} and a function {{math|''f'' : ''A'' × ''A'' → ''F''}} satisfying
:for all {{math|''a'', ''b'', ''c'' ∈ ''A''}}: {{math|1=''f''(''a'' + ''b'', ''c'') = ''f''(''a'', ''c'') + ''f''(''b'', ''c'')}}, {{math|1=''f''(''a'', ''b'' + ''c'') = ''f''(''a'', ''b'') + ''f''(''a'', ''c'')}}, and
:for all {{math|''t'' ∈ ''F''}} and {{math|''x'', ''y'' ∈ ''A''}}: {{math|1=''f''(''tx'', ''y'') = ''tf''(''x'', y'')''}}, {{math|1=''f''(''x'', ''ty'') = ''f''(''x'', ''y'') ''t<sup>α</sup>''}} (page 101)
:(The "transformation exponential notation" {{math|''t'' ↦ ''t<sup>α</sup>''}} is adopted in group theory literature.)
 
Baer calls such a form an {{math|''α''}}-form over {{math|''A''}}. The complex sesquilinear form described above has [[complex conjugation]] for {{math|''α''}}.  When {{math|''α''}} is the identity, then {{math|''f''}} is a [[bilinear form]].
 
In the algebraic structure called a [[*-ring]] the anti-automorphism is denoted by * and forms are constructed as indicated for {{math|''α''}}. Special constructions such as skew-symmetric bilinear forms, Hermitian forms, and skew-Hermitian forms are all considered in the broader context.
 
Particularly in [[L-theory]], one also sees the term '''{{math|''ε''}}-symmetric''' form, where {{math|1=''ε'' = ±1}}, to refer to both symmetric and skew-symmetric forms.
-->
 
 
== मनमाने छल्ले पर ==
== मनमाने छल्ले पर ==
स्क्यूफील्ड्स के लिए उपरोक्त अनुभाग की विशेषज्ञता प्रक्षेप्य ज्यामिति के अनुप्रयोग का परिणाम थी, और सेसक्विलिनियर रूपों की प्रकृति के लिए आंतरिक नहीं थी। गुणन की गैर-अनुक्रमणात्मकता को ध्यान में रखने के लिए केवल छोटे संशोधनों की आवश्यकता होती है, जो परिभाषा के मनमाने क्षेत्र संस्करण को मनमाने छल्ले में सामान्यीकृत करने के लिए आवश्यक हैं।
स्क्यूफील्ड्स के लिए उपरोक्त अनुभाग की विशेषज्ञता प्रक्षेप्य ज्यामिति के अनुप्रयोग का परिणाम थी, और सेसक्विलिनियर रूपों की प्रकृति के लिए आंतरिक नहीं थी। गुणन की गैर-अनुक्रमणात्मकता को ध्यान में रखने के लिए केवल छोटे संशोधनों की आवश्यकता होती है, जो परिभाषा के मनमाने क्षेत्र संस्करण को मनमाने छल्ले में सामान्यीकृत करने के लिए आवश्यक हैं।


होने देना {{math|''R''}} एक अंगूठी बनें (गणित), {{math|''V''}} एक {{math|''R''}}-[[मॉड्यूल (गणित)]] और {{math|''σ''}} का एक एंटीऑटोमोर्फिज्म {{math|''R''}}.
होने देना {{math|''R''}} अंगूठी बनें (गणित), {{math|''V''}} {{math|''R''}}-[[मॉड्यूल (गणित)]] और {{math|''σ''}} का एंटीऑटोमोर्फिज्म {{math|''R''}}.


नक्षा {{math|''φ'' : ''V'' × ''V'' → ''R''}} है{{math|''σ''}}-सेसक्विलिनियर यदि
नक्षा {{math|''φ'' : ''V'' × ''V'' → ''R''}} है{{math|''σ''}}-सेसक्विलिनियर यदि
Line 166: Line 107:
एक sesquilinear रूप {{math|''φ'' : ''V'' × ''V'' → ''R''}} यदि मौजूद है तो हर्मिटियन है {{math|''σ''}} ऐसा है कि<ref>{{citation|last1=Faure|first1=Claude-Alain|last2=Frölicher|first2=Alfred|year=2000|title=Modern Projective Geometry|publisher=[[Kluwer Academic Publishers]]}}</ref>{{rp|325}}
एक sesquilinear रूप {{math|''φ'' : ''V'' × ''V'' → ''R''}} यदि मौजूद है तो हर्मिटियन है {{math|''σ''}} ऐसा है कि<ref>{{citation|last1=Faure|first1=Claude-Alain|last2=Frölicher|first2=Alfred|year=2000|title=Modern Projective Geometry|publisher=[[Kluwer Academic Publishers]]}}</ref>{{rp|325}}
:<math>\varphi(x, y) = \sigma(\varphi(y, x))</math>
:<math>\varphi(x, y) = \sigma(\varphi(y, x))</math>
सभी के लिए {{math|''x'', ''y''}} में {{math|''V''}}. एक हर्मिटियन रूप आवश्यक रूप से प्रतिवर्ती है, और यदि यह गैर-शून्य है, तो संबंधित एंटीऑटोमोर्फिज्म है {{math|''σ''}} एक इनवोलुशन (गणित) है (अर्थात् क्रम 2 का)।
सभी के लिए {{math|''x'', ''y''}} में {{math|''V''}}. हर्मिटियन रूप आवश्यक रूप से प्रतिवर्ती है, और यदि यह गैर-शून्य है, तो संबंधित एंटीऑटोमोर्फिज्म है {{math|''σ''}} इनवोलुशन (गणित) है (अर्थात् क्रम 2 का)।


चूंकि एक एंटीऑटोमोर्फिज्म के लिए {{math|''σ''}} अपने पास {{math|1=''σ''(''st'') = ''σ''(''t'')''σ''(''s'')}} सभी के लिए {{math|''s'', ''t''}} में {{math|''R''}}, अगर {{math|1=''σ'' = id}}, तब {{math|''R''}} क्रमविनिमेय होना चाहिए और {{math|''φ''}} एक द्विरेखीय रूप है। विशेषकर, यदि, इस मामले में, {{math|''R''}} तो फिर एक स्क्यूफ़ील्ड है {{math|''R''}} एक फ़ील्ड है और {{math|''V''}} द्विरेखीय रूप वाला एक सदिश समष्टि है।
चूंकि एंटीऑटोमोर्फिज्म के लिए {{math|''σ''}} अपने पास {{math|1=''σ''(''st'') = ''σ''(''t'')''σ''(''s'')}} सभी के लिए {{math|''s'', ''t''}} में {{math|''R''}}, अगर {{math|1=''σ'' = id}}, तब {{math|''R''}} क्रमविनिमेय होना चाहिए और {{math|''φ''}} द्विरेखीय रूप है। विशेषकर, यदि, इस मामले में, {{math|''R''}} तो फिर स्क्यूफ़ील्ड है {{math|''R''}} फ़ील्ड है और {{math|''V''}} द्विरेखीय रूप वाला सदिश समष्टि है।


एक एंटीऑटोमोर्फिज्म {{math|''σ'' : ''R'' → ''R''}} को रिंग समरूपता के रूप में भी देखा जा सकता है {{math|''R'' → ''R''<sup>op</sup>}}, कहाँ {{math|''R''<sup>op</sup>}} का विपरीत वलय है {{math|''R''}}, जिसमें समान अंतर्निहित सेट और समान जोड़ है, लेकिन जिसका गुणन संक्रिया ({{math|∗}}) द्वारा परिभाषित किया गया है {{math|1=''a'' ∗ ''b'' = ''ba''}}, जहां दाहिनी ओर का उत्पाद अंदर का उत्पाद है {{math|''R''}}. इससे यह निष्कर्ष निकलता है कि दाएँ (बाएँ) {{math|''R''}}-मापांक {{math|''V''}} को बाएँ (दाएँ) में बदला जा सकता है {{math|''R''<sup>op</sup>}}-मापांक, {{math|''V''<sup>o</sup>}}.<ref>{{harvnb|Jacobson|2009|page=164}}</ref> इस प्रकार, सेसक्विलिनियर रूप {{math|''φ'' : ''V'' × ''V'' → ''R''}} को द्विरेखीय रूप के रूप में देखा जा सकता है {{math|''φ''′ : ''V'' × ''V''<sup>o</sup> → ''R''}}.
एक एंटीऑटोमोर्फिज्म {{math|''σ'' : ''R'' → ''R''}} को रिंग समरूपता के रूप में भी देखा जा सकता है {{math|''R'' → ''R''<sup>op</sup>}}, कहाँ {{math|''R''<sup>op</sup>}} का विपरीत वलय है {{math|''R''}}, जिसमें समान अंतर्निहित सेट और समान जोड़ है, लेकिन जिसका गुणन संक्रिया ({{math|∗}}) द्वारा परिभाषित किया गया है {{math|1=''a'' ∗ ''b'' = ''ba''}}, जहां दाहिनी ओर का उत्पाद अंदर का उत्पाद है {{math|''R''}}. इससे यह निष्कर्ष निकलता है कि दाएँ (बाएँ) {{math|''R''}}-मापांक {{math|''V''}} को बाएँ (दाएँ) में बदला जा सकता है {{math|''R''<sup>op</sup>}}-मापांक, {{math|''V''<sup>o</sup>}}.<ref>{{harvnb|Jacobson|2009|page=164}}</ref> इस प्रकार, सेसक्विलिनियर रूप {{math|''φ'' : ''V'' × ''V'' → ''R''}} को द्विरेखीय रूप के रूप में देखा जा सकता है {{math|''φ''′ : ''V'' × ''V''<sup>o</sup> → ''R''}}.

Revision as of 22:46, 10 July 2023

गणित में, सेसक्विलिनियर फॉर्म बिलिनियर फॉर्म का सामान्यीकरण है, जो बदले में, यूक्लिडियन स्थान के डॉट उत्पाद की अवधारणा का सामान्यीकरण है। द्विरेखीय रूप अपने प्रत्येक तर्क में रैखिक मानचित्र होता है, लेकिन सेसक्विलिनियर रूप तर्क को सेमीलिनियर मानचित्र तरीके से मोड़ने की अनुमति देता है, इस प्रकार नाम; जो लैटिन संख्यात्मक उपसर्ग Wiktionary:sesqui-|sesqui- से उत्पन्न हुआ है जिसका अर्थ है डेढ़। डॉट उत्पाद की मूल अवधारणा - वैक्टर की जोड़ी से स्केलर (गणित) का उत्पादन - स्केलर मानों की विस्तृत श्रृंखला की अनुमति देकर और, शायद साथ, वेक्टर की परिभाषा को चौड़ा करके सामान्यीकृत किया जा सकता है।

एक प्रेरक विशेष मामला जटिल सदिश समष्टि पर सेसक्विलिनियर रूप है, V. यह नक्शा है V × VC जो तर्क में रैखिक है और जटिल संयुग्म द्वारा दूसरे तर्क की रैखिकता को मोड़ देता है (दूसरे तर्क में इसे प्रतिरेखीय कहा जाता है)। यह मामला गणितीय भौतिकी अनुप्रयोगों में स्वाभाविक रूप से उठता है। अन्य महत्वपूर्ण मामला अदिश को किसी भी क्षेत्र (गणित) से आने की अनुमति देता है और मोड़ क्षेत्र ऑटोमोर्फिज्म द्वारा प्रदान किया जाता है।

प्रक्षेप्य ज्यामिति में अनुप्रयोग के लिए आवश्यक है कि अदिश विभाजन वलय (तिरछा क्षेत्र) से आएं, K, और इसका मतलब है कि वैक्टर को आर-मॉड्यूल के तत्वों द्वारा प्रतिस्थापित किया जाना चाहिएK-मापांक। बहुत ही सामान्य सेटिंग में, सेसक्विलिनियर रूपों को परिभाषित किया जा सकता है R-मनमानी रिंग के लिए मॉड्यूल (गणित) R.

अनौपचारिक परिचय

सेसक्विलिनियर जटिल वेक्टर स्पेस पर हर्मिटियन फॉर्म की मूल धारणा को अमूर्त और सामान्यीकृत करता है। हर्मिटियन रूपों को आमतौर पर भौतिकी में जटिल हिल्बर्ट स्थान पर आंतरिक उत्पाद के रूप में देखा जाता है। ऐसे मामलों में, मानक हर्मिटियन फॉर्म चालू होता है Cn द्वारा दिया गया है

कहाँ के जटिल संयुग्म को दर्शाता है इस उत्पाद को उन स्थितियों के लिए सामान्यीकृत किया जा सकता है जहां कोई ऑर्थोनॉर्मल आधार के साथ काम नहीं कर रहा है Cn, या यहां तक ​​कि कोई भी आधार। का अतिरिक्त गुणनखंड डालकर उत्पाद में, व्यक्ति को तिरछा-हर्मिटियन रूप प्राप्त होता है, जिसे नीचे अधिक सटीक रूप से परिभाषित किया गया है। परिभाषा को सम्मिश्र संख्याओं तक सीमित रखने का कोई विशेष कारण नहीं है; इसे मनमाना रिंग (गणित) के लिए परिभाषित किया जा सकता है, जिसमें एंटीऑटोमोर्फिज्म होता है, जिसे अनौपचारिक रूप से रिंग के लिए जटिल संयुग्मन की सामान्यीकृत अवधारणा के रूप में समझा जाता है।

सम्मेलन

कौन सा तर्क रैखिक होना चाहिए, इसे लेकर परंपराएं अलग-अलग हैं। क्रमविनिमेय मामले में, हम पहले को रैखिक मानेंगे, जैसा कि गणितीय साहित्य में आम है, जटिल वेक्टर स्थानों पर सेसक्विलिनियर रूपों को समर्पित अनुभाग को छोड़कर। वहां हम दूसरी परिपाटी का उपयोग करते हैं और पहला तर्क संयुग्म-रैखिक (अर्थात एंटीलाइनियर) मानते हैं और दूसरा तर्क रैखिक मानते हैं। यह वह सम्मेलन है जिसका उपयोग अधिकतर भौतिक विज्ञानी करते हैं[1] और क्वांटम यांत्रिकी में पॉल डिराक|डिराक के ब्रा-केट नोटेशन से उत्पन्न हुआ है।

अधिक सामान्य नॉनकम्यूटेटिव सेटिंग में, दाएं मॉड्यूल के साथ हम दूसरे तर्क को रैखिक मानते हैं और बाएं मॉड्यूल के साथ हम पहले तर्क को रैखिक मानते हैं।

संमिश्र सदिश समष्टि

धारणा: इस खंड में, सेसक्विलिनियर रूप अपने पहले तर्क में एंटीलीनियर मानचित्र और दूसरे में रैखिक मानचित्र हैं।

एक जटिल सदिश समष्टि पर नक्षा यदि यह सेसक्विलिनियर है

सभी के लिए और सभी यहाँ, अदिश राशि का जटिल संयुग्म है एक जटिल सेसक्विलिनियर फॉर्म को जटिल बिलिनियर मानचित्र के रूप में भी देखा जा सकता है

कहाँ का जटिल संयुग्म सदिश समष्टि है टेंसर उत्पादों की सार्वभौमिक संपत्ति के अनुसार ये जटिल रैखिक मानचित्रों के साथ एक-से-एक पत्राचार में हैं
एक निश्चित के लिए वो नक्शा पर रैखिक कार्यात्मक है (अर्थात दोहरे स्थान का तत्व ). इसी प्रकार, मानचित्र संयुग्म-रैखिक कार्यात्मक (गणित) पर है किसी भी जटिल सेसक्विलिनियर रूप को देखते हुए पर हम दूसरे जटिल सेसक्विलिनियर रूप को परिभाषित कर सकते हैं संयुग्म स्थानान्तरण के माध्यम से:
सामान्य रूप में, और अलग होगा. यदि वे वही हैं तो बताया गया Hermitian. यदि वे एक-दूसरे के प्रति नकारात्मक हैं, तो बताया गया skew-Hermitian. प्रत्येक सेसक्विलिनियर फॉर्म को हर्मिटियन फॉर्म और स्क्यू-हर्मिटियन फॉर्म के योग के रूप में लिखा जा सकता है।

मैट्रिक्स प्रतिनिधित्व

अगर परिमित-आयामी जटिल वेक्टर स्थान है, फिर किसी भी आधार (रैखिक बीजगणित) के सापेक्ष का सेसक्विलिनियर फॉर्म को मैट्रिक्स (गणित) द्वारा दर्शाया जाता है और द्वारा दिया गया

कहाँ संयुग्मी स्थानान्तरण है। मैट्रिक्स के घटक द्वारा दिए गए हैं

हर्मिटियन रूप

शब्द 'हर्मिटियन फॉर्म' नीचे बताई गई अवधारणा से भिन्न अवधारणा को भी संदर्भित कर सकता है: यह हर्मिटियन मैनिफोल्ड पर निश्चित अंतर रूप को संदर्भित कर सकता है।

एक जटिल 'हर्मिटियन रूप' (जिसे 'सममित सेसक्विलिनियर फॉर्म' भी कहा जाता है), सेसक्विलिनियर रूप है ऐसा है कि

मानक हर्मिटियन फॉर्म पर (फिर से, दूसरे में रैखिकता और पहले चर में संयुग्मित रैखिकता के भौतिकी सम्मेलन का उपयोग करके) दिया गया है
अधिक सामान्यतः, किसी भी जटिल हिल्बर्ट स्थान पर आंतरिक उत्पाद हर्मिटियन रूप है।


हर्मिटियन रूप में ऋण चिह्न प्रस्तुत किया गया है समूह SU(1,1) को परिभाषित करने के लिए।

हर्मिटियन रूप वाला सदिश स्थान हर्मिटियन स्पेस कहा जाता है।

एक जटिल हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व हर्मिटियन मैट्रिक्स है।

एक एकल वेक्टर पर लागू जटिल हर्मिटियन फॉर्म

हमेशा वास्तविक संख्या होती है. कोई यह दिखा सकता है कि जटिल सेसक्विलिनियर रूप हर्मिटियन है यदि और केवल तभी जब संबंधित द्विघात रूप सभी के लिए वास्तविक हो

तिरछा-हर्मिटियन रूप

एक जटिल तिरछा-हर्मिटियन रूप (जिसे एंटीसिमेट्रिक सेसक्विलिनियर फॉर्म भी कहा जाता है), जटिल सेसक्विलिनियर रूप है ऐसा है कि

प्रत्येक जटिल तिरछा-हर्मिटियन रूप को काल्पनिक इकाई के रूप में लिखा जा सकता है कई बार हर्मिटियन रूप।


एक जटिल तिरछा-हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व तिरछा-हर्मिटियन मैट्रिक्स है।

एक एकल वेक्टर पर लागू जटिल तिरछा-हर्मिटियन रूप

हमेशा पूर्णतः काल्पनिक संख्या होती है.

डिवीजन रिंग के ऊपर

विभाजन बजने पर यह धारा अपरिवर्तित लागू होती है K क्रमविनिमेय वलय है। अधिक विशिष्ट शब्दावली तब भी लागू होती है: डिवीजन रिंग फ़ील्ड है, एंटी-ऑटोमोर्फिज्म भी ऑटोमोर्फिज्म है, और सही मॉड्यूल वेक्टर स्पेस है। निम्नलिखित भावों के उपयुक्त पुनर्क्रमण के साथ बाएं मॉड्यूल पर लागू होता है।

परिभाषा

σ-दाईं ओर सेसक्विलिनियर फॉर्म K-मापांक M द्वि-योगात्मक मानचित्र है φ : M × MK संबद्ध स्वप्रतिरोधी के साथ σ विभाजन वलय का K ऐसा कि, सबके लिए x, y में M और सभी α, β में K,

संबद्ध एंटी-ऑटोमोर्फिज्म σ किसी भी शून्येतर सेसक्विलिनियर रूप के लिए φ विशिष्ट रूप से निर्धारित होता है φ.

रूढ़िवादिता

एक sesquilinear रूप दिया गया है φ मॉड्यूल पर M और उपस्थान (सबमॉड्यूल) W का M, का ओर्थोगोनल पूरक W इसके संबंध में φ है

इसी प्रकार, xM ऑर्थोगोनल है yM इसके संबंध में φ, लिखा हुआ xφ y (या केवल xy अगर φसंदर्भ से अनुमान लगाया जा सकता है), कब φ(x, y) = 0. इस द्विआधारी संबंध को सममित संबंध होने की आवश्यकता नहीं है, अर्थात। xy का तात्पर्य नहीं है yx (लेकिन देखें§ Reflexivity नीचे)।

प्रतिबिम्बता

एक sesquilinear रूप φ प्रतिवर्ती है यदि, सभी के लिए x, y में M,

तात्पर्य

अर्थात्, सेसक्विलिनियर रूप ठीक उसी समय रिफ्लेक्सिव होता है जब व्युत्पन्न ऑर्थोगोनैलिटी संबंध सममित होता है।

हर्मिटियन विविधताएं

σ-सेसक्विलिनियर फॉर्म φ कहा जाता है(σ, ε)-हर्मिटियन यदि मौजूद है ε में K ऐसा कि, सबके लिए x, y में M,

अगर ε = 1, फॉर्म कहा जाता है σ-हर्मिटियन, और यदि ε = −1, यह कहा जाता है σ-एंटी-हर्मिटियन। (कब σ निहित है, क्रमशः केवल हर्मिटियन या एंटी-हर्मिटियन।)

एक शून्येतर के लिए (σ, ε)-हर्मिटियन रूप, यह सभी के लिए इसका अनुसरण करता है α में K,

यह उसका अनुसरण भी करता है φ(x, x) मानचित्र का निश्चित बिंदु (गणित) है ασ(α)ε. इस मानचित्र के निश्चित बिंदु योगात्मक समूह का उपसमूह बनाते हैं K.

(σ, ε)-हर्मिटियन रूप प्रतिवर्ती है, और प्रत्येक प्रतिवर्ती है σ-सेसक्विलिनियर फॉर्म है (σ, ε)-कुछ के लिए हर्मिटियन ε.[2][3][4][5] विशेष मामले में वह σ पहचान मानचित्र है (अर्थात्, σ = id), K क्रमविनिमेय है, φ द्विरेखीय रूप है और ε2 = 1. फिर के लिए ε = 1 द्विरेखीय रूप को सममित कहा जाता है, और के लिए ε = −1 को तिरछा-सममितीय कहा जाता है।[6]

मनमाने छल्ले पर

स्क्यूफील्ड्स के लिए उपरोक्त अनुभाग की विशेषज्ञता प्रक्षेप्य ज्यामिति के अनुप्रयोग का परिणाम थी, और सेसक्विलिनियर रूपों की प्रकृति के लिए आंतरिक नहीं थी। गुणन की गैर-अनुक्रमणात्मकता को ध्यान में रखने के लिए केवल छोटे संशोधनों की आवश्यकता होती है, जो परिभाषा के मनमाने क्षेत्र संस्करण को मनमाने छल्ले में सामान्यीकृत करने के लिए आवश्यक हैं।

होने देना R अंगूठी बनें (गणित), V R-मॉड्यूल (गणित) और σ का एंटीऑटोमोर्फिज्म R.

नक्षा φ : V × VR हैσ-सेसक्विलिनियर यदि

सभी के लिए x, y, z, w में V और सभी c, d में R.

तत्व x किसी अन्य तत्व के लिए ओर्थोगोनल है y सेसक्विलिनियर फॉर्म के संबंध में φ (लिखा हुआ xy) अगर φ(x, y) = 0. इस संबंध को सममित होने की आवश्यकता नहीं है, अर्थात। xy का तात्पर्य नहीं है yx.

एक sesquilinear रूप φ : V × VR रिफ्लेक्सिव (या ऑर्थोसिमेट्रिक) है यदि φ(x, y) = 0 तात्पर्य φ(y, x) = 0 सभी के लिए x, y में V.

एक sesquilinear रूप φ : V × VR यदि मौजूद है तो हर्मिटियन है σ ऐसा है कि[7]: 325 

सभी के लिए x, y में V. हर्मिटियन रूप आवश्यक रूप से प्रतिवर्ती है, और यदि यह गैर-शून्य है, तो संबंधित एंटीऑटोमोर्फिज्म है σ इनवोलुशन (गणित) है (अर्थात् क्रम 2 का)।

चूंकि एंटीऑटोमोर्फिज्म के लिए σ अपने पास σ(st) = σ(t)σ(s) सभी के लिए s, t में R, अगर σ = id, तब R क्रमविनिमेय होना चाहिए और φ द्विरेखीय रूप है। विशेषकर, यदि, इस मामले में, R तो फिर स्क्यूफ़ील्ड है R फ़ील्ड है और V द्विरेखीय रूप वाला सदिश समष्टि है।

एक एंटीऑटोमोर्फिज्म σ : RR को रिंग समरूपता के रूप में भी देखा जा सकता है RRop, कहाँ Rop का विपरीत वलय है R, जिसमें समान अंतर्निहित सेट और समान जोड़ है, लेकिन जिसका गुणन संक्रिया () द्वारा परिभाषित किया गया है ab = ba, जहां दाहिनी ओर का उत्पाद अंदर का उत्पाद है R. इससे यह निष्कर्ष निकलता है कि दाएँ (बाएँ) R-मापांक V को बाएँ (दाएँ) में बदला जा सकता है Rop-मापांक, Vo.[8] इस प्रकार, सेसक्विलिनियर रूप φ : V × VR को द्विरेखीय रूप के रूप में देखा जा सकता है φ′ : V × VoR.

यह भी देखें

टिप्पणियाँ

  1. footnote 1 in Anthony Knapp Basic Algebra (2007) pg. 255
  2. "Combinatorics", Proceedings of the NATO Advanced Study Institute, Held at Nijenrode Castle, Breukelen, the Netherlands, 8–20 July 1974, D. Reidel: 456–457, 1975[1]
  3. Sesquilinear form at EOM
  4. Simeon Ball (2015), Finite Geometry and Combinatorial Applications, Cambridge University Press, p. 28[2]
  5. Dembowski 1968, p. 42
  6. When char K = 2, skew-symmetric and symmetric bilinear forms coincide since then 1 = −1. In all cases, alternating bilinear forms are a subset of skew-symmetric bilinear forms, and need not be considered separately.
  7. Faure, Claude-Alain; Frölicher, Alfred (2000), Modern Projective Geometry, Kluwer Academic Publishers
  8. Jacobson 2009, p. 164


संदर्भ


बाहरी संबंध