सेसक्विलिनियर फॉर्म: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Generalization of a bilinear form}} | {{Short description|Generalization of a bilinear form}} | ||
गणित में, | गणित में, सेस्क्वीरैखिक रूप द्विरेखीय रूप का सामान्यीकरण है, जो इसके स्थान पर, [[ यूक्लिडियन स्थान |यूक्लिडियन समष्टि]] के [[डॉट उत्पाद|बिंदु गुणनफल]] की अवधारणा का सामान्यीकरण है। [[द्विरेखीय रूप]] अपने प्रत्येक तर्क में रैखिक प्रतिचित्र होता है, परन्तु सेस्क्वीरैखिक रूप तर्क को अर्धरेखीय प्रतिचित्र रूप से विकृत करने की अनुमति देता है, इस प्रकार नाम; जो लैटिन [[संख्यात्मक उपसर्ग]]''सेस्क्वी-'' से उत्पन्न हुआ है जिसका अर्थ है डेढ़। बिंदु गुणनफल की मूल अवधारणा - सदिश के युग्म से अदिश (गणित) का गुणनफलन - अदिश मानों की विस्तृत श्रृंखला की अनुमति देकर और, संभवतः साथ, सदिश की परिभाषा को चौड़ा करके सामान्यीकृत किया जा सकता है। | ||
एक प्रेरक विशेष | एक प्रेरक विशेष स्थिति मिश्रित सदिश समष्टि, {{math|''V''}} पर सेस्क्वीरैखिक रूप है। यह प्रतिचित्र है {{math|''V'' × ''V'' → '''C'''}} है, जो तर्क में रैखिक है और मिश्रित संयुग्मी द्वारा दूसरे तर्क की रैखिकता को विकृत कर देता है (दूसरे तर्क में इसे [[प्रतिरेखीय]] कहा जाता है)। यह स्थिति गणितीय भौतिकी अनुप्रयोगों में स्वाभाविक रूप से उठता है। अन्य महत्वपूर्ण स्थिति अदिश को किसी भी क्षेत्र (गणित) से आने की अनुमति देता है और विकृत क्षेत्र स्वसमाकृतिकता द्वारा प्रदान किया जाता है। | ||
[[प्रक्षेप्य ज्यामिति]] में अनुप्रयोग के लिए आवश्यक है कि अदिश विभाजन वलय (तिरछा क्षेत्र) | [[प्रक्षेप्य ज्यामिति]] में अनुप्रयोग के लिए आवश्यक है कि अदिश विभाजन वलय (तिरछा क्षेत्र), {{math|''K''}} से आएं, और इसका अर्थ है कि "सदिश" को {{math|''K''}}-मॉड्यूल के अवयवों द्वारा प्रतिस्थापित किया जाना चाहिए। बहुत ही सामान्य समायोजन में, सेस्क्वीरैखिक रूपों यादृच्छिक वलयों {{math|''R''}}के लिए {{math|''R''}}-मॉड्यूल पर परिभाषित किया जा सकता है। | ||
==अनौपचारिक परिचय== | ==अनौपचारिक परिचय== | ||
सेस्क्वीरैखिक मिश्रित सदिश समष्टि पर हर्मिटियन रूप की मूल धारणा को अमूर्त और सामान्यीकृत करता है। हर्मिटियन रूपों को सामान्यतः भौतिकी में मिश्रित [[हिल्बर्ट स्थान|हिल्बर्ट समष्टि]] पर आंतरिक गुणनफल के रूप में देखा जाता है। ऐसी स्थितियों में, {{math|'''C'''<sup>''n''</sup>}} पर मानक हर्मिटियन रूप | |||
:<math>\langle w,z \rangle = \sum_{i=1}^n \overline{w}_i z_i | :<math>\langle w,z \rangle = \sum_{i=1}^n \overline{w}_i z_i</math> द्वारा दिया जाता है। | ||
जहाँ <math>\overline{w}_i</math>, <math>w_i ~</math> के मिश्रित संयुग्मी को दर्शाता है। इस गुणनफल को उन स्थितियों के लिए सामान्यीकृत किया जा सकता है जहां कोई {{math|'''C'''<sup>''n''</sup>}} के लिए प्रसामान्य लांबिक आधार या यहां तक कि किसी भी आधार पर कार्य नहीं कर रहा है। का अतिरिक्त गुणनखंड डालकर <math>i</math> गुणनफल में, व्यक्ति को तिरछा-हर्मिटियन रूप प्राप्त होता है, जिसे नीचे अधिक सटीक रूप से परिभाषित किया गया है। परिभाषा को सम्मिश्र संख्याओं तक सीमित रखने का कोई विशेष कारण नहीं है; इसे मनमाना रिंग (गणित) के लिए परिभाषित किया जा सकता है, जिसमें [[एंटीऑटोमोर्फिज्म|एंटीस्वसमाकृतिकता]] होता है, जिसे अनौपचारिक रूप से रिंग के लिए मिश्रित संयुग्मन की सामान्यीकृत अवधारणा के रूप में समझा जाता है। | |||
==सम्मेलन== | ==सम्मेलन== | ||
कौन सा तर्क रैखिक होना चाहिए, इसे लेकर परंपराएं अलग-अलग हैं। क्रमविनिमेय मामले में, हम पहले को रैखिक मानेंगे, जैसा कि गणितीय साहित्य में | कौन सा तर्क रैखिक होना चाहिए, इसे लेकर परंपराएं अलग-अलग हैं। क्रमविनिमेय मामले में, हम पहले को रैखिक मानेंगे, जैसा कि गणितीय साहित्य में सामान्य है, मिश्रित सदिश स्थानों पर सेस्क्वीरैखिक रूपों को समर्पित अनुभाग को छोड़कर। वहां हम दूसरी परिपाटी का उपयोग करते हैं और पहला तर्क संयुग्म-रैखिक (अर्थात एंटीलाइनियर) मानते हैं और दूसरा तर्क रैखिक मानते हैं। यह वह सम्मेलन है जिसका उपयोग अधिकतर भौतिक विज्ञानी करते हैं<ref>footnote 1 in [https://books.google.com/books?id=NSXCaGSVaX4C&dq=sesquilinear+forms+over+general+fields&pg=PA255 Anthony Knapp ''Basic Algebra'' (2007) pg. 255]</ref> और [[क्वांटम यांत्रिकी]] में पॉल डिराक|डिराक के ब्रा-केट नोटेशन से उत्पन्न हुआ है। | ||
अधिक सामान्य नॉनकम्यूटेटिव | अधिक सामान्य नॉनकम्यूटेटिव समायोजन में, दाएं मॉड्यूल के साथ हम दूसरे तर्क को रैखिक मानते हैं और बाएं मॉड्यूल के साथ हम पहले तर्क को रैखिक मानते हैं। | ||
==संमिश्र सदिश समष्टि == | ==संमिश्र सदिश समष्टि == | ||
{{See also|Antidual space|Dual system}} | {{See also|Antidual space|Dual system}} | ||
:धारणा: इस खंड में, | :धारणा: इस खंड में, सेस्क्वीरैखिक रूप अपने पहले तर्क में एंटीलीनियर प्रतिचित्र और दूसरे में रैखिक प्रतिचित्र हैं। | ||
एक | एक मिश्रित सदिश समष्टि पर <math>V</math> नक्षा <math>\varphi : V \times V \to \Complex</math> यदि यह सेस्क्वीरैखिक है | ||
:<math>\begin{align} | :<math>\begin{align} | ||
&\varphi(x + y, z + w) = \varphi(x, z) + \varphi(x, w) + \varphi(y, z) + \varphi(y, w)\\ | &\varphi(x + y, z + w) = \varphi(x, z) + \varphi(x, w) + \varphi(y, z) + \varphi(y, w)\\ | ||
&\varphi(a x, b y) = \overline{a}b\,\varphi(x,y)\end{align}</math> | &\varphi(a x, b y) = \overline{a}b\,\varphi(x,y)\end{align}</math> | ||
सभी के लिए <math>x, y, z, w \in V</math> और सभी <math>a, b \in \Complex.</math> यहाँ, <math>\overline{a}</math> अदिश राशि का | सभी के लिए <math>x, y, z, w \in V</math> और सभी <math>a, b \in \Complex.</math> यहाँ, <math>\overline{a}</math> अदिश राशि का मिश्रित संयुग्मी है <math>a.</math> | ||
एक | एक मिश्रित सेस्क्वीरैखिक रूप को मिश्रित द्विरेखीय प्रतिचित्र के रूप में भी देखा जा सकता है<math display="block">\overline{V} \times V \to \Complex</math>जहाँ <math>\overline{V}</math> का मिश्रित संयुग्मी सदिश समष्टि है <math>V.</math> [[टेंसर उत्पाद|टेंसर गुणनफल]]ों की [[सार्वभौमिक संपत्ति]] के अनुसार ये मिश्रित रैखिक प्रतिचित्रों के साथ एक-से-एक पत्राचार में हैं<math display="block">\overline{V} \otimes V \to \Complex.</math>एक निश्चित के लिए <math>z \in V</math> वो प्रतिचित्र <math>w \mapsto \varphi(z, w)</math> पर [[रैखिक कार्यात्मक]] है <math>V</math> (अर्थात दोहरे समष्टि का अवयव <math>V^*</math>). इसी प्रकार, प्रतिचित्र <math>w \mapsto \varphi(w, z)</math> [[संयुग्म-रैखिक]] [[कार्यात्मक (गणित)]] पर है <math>V.</math> | ||
किसी भी | किसी भी मिश्रित सेस्क्वीरैखिक रूप को देखते हुए <math>\varphi</math> पर <math>V</math> हम दूसरे मिश्रित सेस्क्वीरैखिक रूप को परिभाषित कर सकते हैं <math>\psi</math> संयुग्मी स्थानान्तरण के माध्यम से:<math display="block">\psi(w,z) = \overline{\varphi(z,w)}.</math>सामान्य रूप में, <math>\psi</math> और <math>\varphi</math> अलग होगा. यदि वे वही हैं तो <math>\varphi</math> बताया गया {{em|Hermitian}}. यदि वे एक-दूसरे के प्रति नकारात्मक हैं, तो <math>\varphi</math> बताया गया {{em|skew-Hermitian}}. प्रत्येक सेस्क्वीरैखिक रूप को हर्मिटियन रूप और स्क्यू-हर्मिटियन रूप के योग के रूप में लिखा जा सकता है। | ||
=== मैट्रिक्स प्रतिनिधित्व === | === मैट्रिक्स प्रतिनिधित्व === | ||
अगर <math>V</math> परिमित-आयामी | अगर <math>V</math> परिमित-आयामी मिश्रित सदिश समष्टि है, फिर किसी भी [[आधार (रैखिक बीजगणित)]] के सापेक्ष <math>\left\{ e_i \right\}_i</math> का <math>V,</math> सेस्क्वीरैखिक रूप को [[मैट्रिक्स (गणित)]] द्वारा दर्शाया जाता है <math>A,</math> और द्वारा दिया गया<math display="block">\varphi(w,z) = \varphi \left(\sum_i w_i e_i, \sum_j z_j e_j \right) = \sum_i \sum_j \overline{w_i} z_j \varphi\left(e_i, e_j\right) = w^\dagger A z .</math>जहाँ <math>w^\dagger</math> संयुग्मी स्थानान्तरण है। मैट्रिक्स के घटक <math>A</math> द्वारा दिए गए हैं <math>A_{ij} := \varphi\left(e_i, e_j\right).</math> | ||
=== हर्मिटियन रूप === | === हर्मिटियन रूप === | ||
:शब्द 'हर्मिटियन | :शब्द 'हर्मिटियन रूप' नीचे बताई गई अवधारणा से भिन्न अवधारणा को भी संदर्भित कर सकता है: यह [[हर्मिटियन मैनिफोल्ड]] पर निश्चित अंतर रूप को संदर्भित कर सकता है। | ||
एक | एक मिश्रित 'हर्मिटियन रूप' (जिसे 'सममित सेस्क्वीरैखिक रूप' भी कहा जाता है), सेस्क्वीरैखिक रूप है <math>h : V \times V \to \Complex</math> ऐसा है कि<math display="block">h(w,z) = \overline{h(z, w)}.</math>मानक हर्मिटियन रूप पर <math>\Complex^n</math> (फिर से, दूसरे में रैखिकता और पहले चर में संयुग्मित रैखिकता के भौतिकी सम्मेलन का उपयोग करके) दिया गया है<math display="block">\langle w,z \rangle = \sum_{i=1}^n \overline{w}_i z_i.</math>अधिक सामान्यतः, किसी भी मिश्रित हिल्बर्ट समष्टि पर आंतरिक गुणनफल हर्मिटियन रूप है। | ||
हर्मिटियन रूप में ऋण चिह्न प्रस्तुत किया गया है <math>w w^* - z z^*</math> समूह SU(1,1) को परिभाषित करने के लिए। | हर्मिटियन रूप में ऋण चिह्न प्रस्तुत किया गया है <math>w w^* - z z^*</math> समूह SU(1,1) को परिभाषित करने के लिए। | ||
हर्मिटियन रूप वाला सदिश | हर्मिटियन रूप वाला सदिश समष्टि <math>(V, h)</math> हर्मिटियन समष्टि कहा जाता है। | ||
एक | एक मिश्रित हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व [[हर्मिटियन मैट्रिक्स]] है। | ||
एक एकल | एक एकल सदिश पर लागू मिश्रित हर्मिटियन रूप<math display="block">|z|_h = h(z, z)</math>हमेशा [[वास्तविक संख्या]] होती है. कोई यह दिखा सकता है कि मिश्रित सेस्क्वीरैखिक रूप हर्मिटियन है यदि और केवल तभी जब संबंधित [[द्विघात रूप]] सभी के लिए वास्तविक हो <math>z \in V.</math> | ||
=== तिरछा-हर्मिटियन रूप === | === तिरछा-हर्मिटियन रूप === | ||
एक | एक मिश्रित तिरछा-हर्मिटियन रूप (जिसे एंटीसिमेट्रिक सेस्क्वीरैखिक रूप भी कहा जाता है), मिश्रित सेस्क्वीरैखिक रूप है <math>s : V \times V \to \Complex</math> ऐसा है कि<math display="block">s(w,z) = -\overline{s(z, w)}.</math>प्रत्येक मिश्रित तिरछा-हर्मिटियन रूप को [[काल्पनिक इकाई]] के रूप में लिखा जा सकता है <math>i := \sqrt{-1}</math> कई बार हर्मिटियन रूप। | ||
एक एकल | एक मिश्रित तिरछा-हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व [[तिरछा-हर्मिटियन मैट्रिक्स]] है। | ||
एक एकल सदिश पर लागू मिश्रित तिरछा-हर्मिटियन रूप<math display="block">|z|_s = s(z, z)</math>हमेशा पूर्णतः [[काल्पनिक संख्या]] होती है. | |||
==डिवीजन रिंग के ऊपर== | ==डिवीजन रिंग के ऊपर== | ||
विभाजन बजने पर यह धारा अपरिवर्तित लागू होती है {{math|''K''}} [[क्रमविनिमेय वलय]] है। अधिक विशिष्ट शब्दावली तब भी लागू होती है: डिवीजन रिंग फ़ील्ड है, एंटी- | विभाजन बजने पर यह धारा अपरिवर्तित लागू होती है {{math|''K''}} [[क्रमविनिमेय वलय]] है। अधिक विशिष्ट शब्दावली तब भी लागू होती है: डिवीजन रिंग फ़ील्ड है, एंटी-स्वसमाकृतिकता भी स्वसमाकृतिकता है, और सही मॉड्यूल सदिश समष्टि है। निम्नलिखित भावों के उपयुक्त पुनर्क्रमण के साथ बाएं मॉड्यूल पर लागू होता है। | ||
===परिभाषा=== | ===परिभाषा=== | ||
ए{{math|''σ''}}-दाईं ओर | ए{{math|''σ''}}-दाईं ओर सेस्क्वीरैखिक रूप {{math|''K''}}-मापांक {{math|''M''}} [[द्वि-योगात्मक मानचित्र|द्वि-योगात्मक प्रतिचित्र]] है {{math|''φ'' : ''M'' × ''M'' → ''K''}} संबद्ध [[स्वप्रतिरोधी]] के साथ {{math|''σ''}} विभाजन वलय का {{math|''K''}} ऐसा कि, सबके लिए {{math|''x'', ''y''}} में {{math|''M''}} और सभी {{math|''α'', ''β''}} में {{math|''K''}}, | ||
:<math>\varphi(x \alpha, y \beta) = \sigma(\alpha) \, \varphi(x, y) \, \beta .</math> | :<math>\varphi(x \alpha, y \beta) = \sigma(\alpha) \, \varphi(x, y) \, \beta .</math> | ||
संबद्ध एंटी- | संबद्ध एंटी-स्वसमाकृतिकता {{math|''σ''}} किसी भी शून्येतर सेस्क्वीरैखिक रूप के लिए {{math|''φ''}} विशिष्ट रूप से निर्धारित होता है {{math|''φ''}}. | ||
===रूढ़िवादिता=== | ===रूढ़िवादिता=== | ||
एक | एक सेस्क्वीरैखिक रूप दिया गया है {{math|''φ''}} मॉड्यूल पर {{math|''M''}} और उपसमष्टि ([[सबमॉड्यूल]]) {{math|''W''}} का {{math|''M''}}, का ओर्थोगोनल पूरक {{math|''W''}} इसके संबंध में {{math|''φ''}} है | ||
:<math>W^{\perp}=\{\mathbf{v} \in M \mid \varphi (\mathbf{v}, \mathbf{w})=0,\ \forall \mathbf{w}\in W\} . </math> | :<math>W^{\perp}=\{\mathbf{v} \in M \mid \varphi (\mathbf{v}, \mathbf{w})=0,\ \forall \mathbf{w}\in W\} . </math> | ||
इसी प्रकार, {{math|''x'' ∈ ''M''}} ऑर्थोगोनल है {{math|''y'' ∈ ''M''}} इसके संबंध में {{math|''φ''}}, लिखा हुआ {{math|''x'' ⊥<sub>''φ''</sub> ''y''}} (या केवल {{math|''x'' ⊥ ''y''}} अगर {{math|''φ''}}संदर्भ से अनुमान लगाया जा सकता है), कब {{math|1=''φ''(''x'', ''y'') = 0}}. इस [[द्विआधारी संबंध]] को [[सममित संबंध]] होने की आवश्यकता नहीं है, अर्थात। {{math|''x'' ⊥ ''y''}} का तात्पर्य नहीं है {{math|''y'' ⊥ ''x''}} ( | इसी प्रकार, {{math|''x'' ∈ ''M''}} ऑर्थोगोनल है {{math|''y'' ∈ ''M''}} इसके संबंध में {{math|''φ''}}, लिखा हुआ {{math|''x'' ⊥<sub>''φ''</sub> ''y''}} (या केवल {{math|''x'' ⊥ ''y''}} अगर {{math|''φ''}}संदर्भ से अनुमान लगाया जा सकता है), कब {{math|1=''φ''(''x'', ''y'') = 0}}. इस [[द्विआधारी संबंध]] को [[सममित संबंध]] होने की आवश्यकता नहीं है, अर्थात। {{math|''x'' ⊥ ''y''}} का तात्पर्य नहीं है {{math|''y'' ⊥ ''x''}} (परन्तु देखें{{section link||Reflexivity}} नीचे)। | ||
===प्रतिबिम्बता=== | ===प्रतिबिम्बता=== | ||
एक | एक सेस्क्वीरैखिक रूप {{math|''φ''}} प्रतिवर्ती है यदि, सभी के लिए {{math|''x'', ''y''}} में {{math|''M''}}, | ||
:<math>\varphi(x, y) = 0</math> तात्पर्य <math>\varphi(y, x) = 0.</math> | :<math>\varphi(x, y) = 0</math> तात्पर्य <math>\varphi(y, x) = 0.</math> | ||
अर्थात्, | अर्थात्, सेस्क्वीरैखिक रूप ठीक उसी समय रिफ्लेक्सिव होता है जब व्युत्पन्न ऑर्थोगोनैलिटी संबंध सममित होता है। | ||
===हर्मिटियन विविधताएं=== | ===हर्मिटियन विविधताएं=== | ||
ए {{math|''σ''}}- | ए {{math|''σ''}}-सेस्क्वीरैखिक रूप {{math|''φ''}} कहा जाता है{{math|(''σ'', ''ε'')}}-हर्मिटियन यदि मौजूद है {{math|''ε''}} में {{math|''K''}} ऐसा कि, सबके लिए {{math|''x'', ''y''}} में {{math|''M''}}, | ||
:<math>\varphi(x, y) = \sigma ( \varphi (y, x)) \, \varepsilon .</math> | :<math>\varphi(x, y) = \sigma ( \varphi (y, x)) \, \varepsilon .</math> | ||
अगर {{math|1=''ε'' = 1}}, | अगर {{math|1=''ε'' = 1}}, रूप कहा जाता है {{math|''σ''}}-हर्मिटियन, और यदि {{math|1=''ε'' = −1}}, यह कहा जाता है {{math|''σ''}}-एंटी-हर्मिटियन। (कब {{math|''σ''}} निहित है, क्रमशः केवल हर्मिटियन या एंटी-हर्मिटियन।) | ||
एक शून्येतर के लिए {{math|(''σ'', ''ε'')}}-हर्मिटियन रूप, यह सभी के लिए इसका अनुसरण करता है {{math|''α''}} में {{math|''K''}}, | एक शून्येतर के लिए {{math|(''σ'', ''ε'')}}-हर्मिटियन रूप, यह सभी के लिए इसका अनुसरण करता है {{math|''α''}} में {{math|''K''}}, | ||
:<math> \sigma ( \varepsilon ) = \varepsilon^{-1} </math> | :<math> \sigma ( \varepsilon ) = \varepsilon^{-1} </math> | ||
:<math> \sigma ( \sigma ( \alpha ) ) = \varepsilon \alpha \varepsilon^{-1} .</math> | :<math> \sigma ( \sigma ( \alpha ) ) = \varepsilon \alpha \varepsilon^{-1} .</math> | ||
यह उसका अनुसरण भी करता है {{math|''φ''(''x'', ''x'')}} | यह उसका अनुसरण भी करता है {{math|''φ''(''x'', ''x'')}} प्रतिचित्र का [[निश्चित बिंदु (गणित)]] है {{math|''α'' ↦ ''σ''(''α'')''ε''}}. इस प्रतिचित्र के निश्चित बिंदु [[योगात्मक समूह]] का [[उपसमूह]] बनाते हैं {{math|''K''}}. | ||
ए {{math|(''σ'', ''ε'')}}-हर्मिटियन रूप प्रतिवर्ती है, और प्रत्येक प्रतिवर्ती है {{math|''σ''}}- | ए {{math|(''σ'', ''ε'')}}-हर्मिटियन रूप प्रतिवर्ती है, और प्रत्येक प्रतिवर्ती है {{math|''σ''}}-सेस्क्वीरैखिक रूप है {{math|(''σ'', ''ε'')}}-कुछ के लिए हर्मिटियन {{math|''ε''}}.<ref> | ||
{{citation|year=1975|title=Combinatorics|journal=Proceedings of the NATO Advanced Study Institute, Held at Nijenrode Castle, Breukelen, the Netherlands, 8–20 July 1974|publisher=[[D. Reidel]]|pages=456–457}} – [https://books.google.com/books?id=S9q8uKabV60C&pg=PA456] | {{citation|year=1975|title=Combinatorics|journal=Proceedings of the NATO Advanced Study Institute, Held at Nijenrode Castle, Breukelen, the Netherlands, 8–20 July 1974|publisher=[[D. Reidel]]|pages=456–457}} – [https://books.google.com/books?id=S9q8uKabV60C&pg=PA456] | ||
</ref><ref> | </ref><ref> | ||
Line 90: | Line 91: | ||
{{harvnb|Dembowski|1968|page=42}} | {{harvnb|Dembowski|1968|page=42}} | ||
</ref> | </ref> | ||
विशेष मामले में वह {{math|''σ''}} [[पहचान मानचित्र]] है (अर्थात्, {{math|1=''σ'' = id}}), {{math|''K''}} क्रमविनिमेय है, {{math|''φ''}} द्विरेखीय रूप है और {{math|1=''ε''<sup>2</sup> = 1}}. फिर के लिए {{math|1=''ε'' = 1}} द्विरेखीय रूप को सममित कहा जाता है, और के लिए {{math|1=''ε'' = −1}} को तिरछा-सममितीय कहा जाता है।<ref>When {{math|1=[[Characteristic (algebra)|char]] ''K'' = 2}}, skew-symmetric and symmetric bilinear forms coincide since then {{math|1=1 = −1}}. In all cases, alternating bilinear forms are a subset of skew-symmetric bilinear forms, and need not be considered separately.</ref> | विशेष मामले में वह {{math|''σ''}} [[पहचान मानचित्र|पहचान प्रतिचित्र]] है (अर्थात्, {{math|1=''σ'' = id}}), {{math|''K''}} क्रमविनिमेय है, {{math|''φ''}} द्विरेखीय रूप है और {{math|1=''ε''<sup>2</sup> = 1}}. फिर के लिए {{math|1=''ε'' = 1}} द्विरेखीय रूप को सममित कहा जाता है, और के लिए {{math|1=''ε'' = −1}} को तिरछा-सममितीय कहा जाता है।<ref>When {{math|1=[[Characteristic (algebra)|char]] ''K'' = 2}}, skew-symmetric and symmetric bilinear forms coincide since then {{math|1=1 = −1}}. In all cases, alternating bilinear forms are a subset of skew-symmetric bilinear forms, and need not be considered separately.</ref> | ||
== मनमाने छल्ले पर == | == मनमाने छल्ले पर == | ||
स्क्यूफील्ड्स के लिए उपरोक्त अनुभाग की विशेषज्ञता प्रक्षेप्य ज्यामिति के अनुप्रयोग का परिणाम थी, और | स्क्यूफील्ड्स के लिए उपरोक्त अनुभाग की विशेषज्ञता प्रक्षेप्य ज्यामिति के अनुप्रयोग का परिणाम थी, और सेस्क्वीरैखिक रूपों की प्रकृति के लिए आंतरिक नहीं थी। गुणन की गैर-अनुक्रमणात्मकता को ध्यान में रखने के लिए केवल छोटे संशोधनों की आवश्यकता होती है, जो परिभाषा के मनमाने क्षेत्र संस्करण को मनमाने छल्ले में सामान्यीकृत करने के लिए आवश्यक हैं। | ||
होने देना {{math|''R''}} अंगूठी बनें (गणित), {{math|''V''}} {{math|''R''}}-[[मॉड्यूल (गणित)]] और {{math|''σ''}} का | होने देना {{math|''R''}} अंगूठी बनें (गणित), {{math|''V''}} {{math|''R''}}-[[मॉड्यूल (गणित)]] और {{math|''σ''}} का एंटीस्वसमाकृतिकता {{math|''R''}}. | ||
नक्षा {{math|''φ'' : ''V'' × ''V'' → ''R''}} है{{math|''σ''}}- | नक्षा {{math|''φ'' : ''V'' × ''V'' → ''R''}} है{{math|''σ''}}-सेस्क्वीरैखिक यदि | ||
:<math>\varphi(x + y, z + w) = \varphi(x, z) + \varphi(x, w) + \varphi(y, z) + \varphi(y, w)</math> | :<math>\varphi(x + y, z + w) = \varphi(x, z) + \varphi(x, w) + \varphi(y, z) + \varphi(y, w)</math> | ||
:<math>\varphi(c x, d y) = c \, \varphi(x,y) \, \sigma(d)</math> | :<math>\varphi(c x, d y) = c \, \varphi(x,y) \, \sigma(d)</math> | ||
सभी के लिए {{math|''x'', ''y'', ''z'', ''w''}} में {{math|''V''}} और सभी {{math|''c'', ''d''}} में {{math|''R''}}. | सभी के लिए {{math|''x'', ''y'', ''z'', ''w''}} में {{math|''V''}} और सभी {{math|''c'', ''d''}} में {{math|''R''}}. | ||
अवयव {{math|''x''}} किसी अन्य अवयव के लिए ओर्थोगोनल है {{math|''y''}} सेस्क्वीरैखिक रूप के संबंध में {{math|''φ''}} (लिखा हुआ {{math|''x'' ⊥ ''y''}}) अगर {{math|1=''φ''(''x'', ''y'') = 0}}. इस संबंध को सममित होने की आवश्यकता नहीं है, अर्थात। {{math|''x'' ⊥ ''y''}} का तात्पर्य नहीं है {{math|''y'' ⊥ ''x''}}. | |||
एक | एक सेस्क्वीरैखिक रूप {{math|''φ'' : ''V'' × ''V'' → ''R''}} रिफ्लेक्सिव (या ''ऑर्थोसिमेट्रिक'') है यदि {{math|1=''φ''(''x'', ''y'') = 0}} तात्पर्य {{math|1=''φ''(''y'', ''x'') = 0}} सभी के लिए {{math|''x'', ''y''}} में {{math|''V''}}. | ||
एक | एक सेस्क्वीरैखिक रूप {{math|''φ'' : ''V'' × ''V'' → ''R''}} यदि मौजूद है तो हर्मिटियन है {{math|''σ''}} ऐसा है कि<ref>{{citation|last1=Faure|first1=Claude-Alain|last2=Frölicher|first2=Alfred|year=2000|title=Modern Projective Geometry|publisher=[[Kluwer Academic Publishers]]}}</ref>{{rp|325}} | ||
:<math>\varphi(x, y) = \sigma(\varphi(y, x))</math> | :<math>\varphi(x, y) = \sigma(\varphi(y, x))</math> | ||
सभी के लिए {{math|''x'', ''y''}} में {{math|''V''}}. हर्मिटियन रूप आवश्यक रूप से प्रतिवर्ती है, और यदि यह गैर-शून्य है, तो संबंधित | सभी के लिए {{math|''x'', ''y''}} में {{math|''V''}}. हर्मिटियन रूप आवश्यक रूप से प्रतिवर्ती है, और यदि यह गैर-शून्य है, तो संबंधित एंटीस्वसमाकृतिकता है {{math|''σ''}} इनवोलुशन (गणित) है (अर्थात् क्रम 2 का)। | ||
चूंकि | चूंकि एंटीस्वसमाकृतिकता के लिए {{math|''σ''}} अपने पास {{math|1=''σ''(''st'') = ''σ''(''t'')''σ''(''s'')}} सभी के लिए {{math|''s'', ''t''}} में {{math|''R''}}, अगर {{math|1=''σ'' = id}}, तब {{math|''R''}} क्रमविनिमेय होना चाहिए और {{math|''φ''}} द्विरेखीय रूप है। विशेषकर, यदि, इस मामले में, {{math|''R''}} तो फिर स्क्यूफ़ील्ड है {{math|''R''}} फ़ील्ड है और {{math|''V''}} द्विरेखीय रूप वाला सदिश समष्टि है। | ||
एक | एक एंटीस्वसमाकृतिकता {{math|''σ'' : ''R'' → ''R''}} को रिंग समरूपता के रूप में भी देखा जा सकता है {{math|''R'' → ''R''<sup>op</sup>}}, जहाँ {{math|''R''<sup>op</sup>}} का विपरीत वलय है {{math|''R''}}, जिसमें समान अंतर्निहित सेट और समान जोड़ है, परन्तु जिसका गुणन संक्रिया ({{math|∗}}) द्वारा परिभाषित किया गया है {{math|1=''a'' ∗ ''b'' = ''ba''}}, जहां दाहिनी ओर का गुणनफल अंदर का गुणनफल है {{math|''R''}}. इससे यह निष्कर्ष निकलता है कि दाएँ (बाएँ) {{math|''R''}}-मापांक {{math|''V''}} को बाएँ (दाएँ) में बदला जा सकता है {{math|''R''<sup>op</sup>}}-मापांक, {{math|''V''<sup>o</sup>}}.<ref>{{harvnb|Jacobson|2009|page=164}}</ref> इस प्रकार, सेस्क्वीरैखिक रूप {{math|''φ'' : ''V'' × ''V'' → ''R''}} को द्विरेखीय रूप के रूप में देखा जा सकता है {{math|''φ''′ : ''V'' × ''V''<sup>o</sup> → ''R''}}. | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 09:26, 11 July 2023
गणित में, सेस्क्वीरैखिक रूप द्विरेखीय रूप का सामान्यीकरण है, जो इसके स्थान पर, यूक्लिडियन समष्टि के बिंदु गुणनफल की अवधारणा का सामान्यीकरण है। द्विरेखीय रूप अपने प्रत्येक तर्क में रैखिक प्रतिचित्र होता है, परन्तु सेस्क्वीरैखिक रूप तर्क को अर्धरेखीय प्रतिचित्र रूप से विकृत करने की अनुमति देता है, इस प्रकार नाम; जो लैटिन संख्यात्मक उपसर्गसेस्क्वी- से उत्पन्न हुआ है जिसका अर्थ है डेढ़। बिंदु गुणनफल की मूल अवधारणा - सदिश के युग्म से अदिश (गणित) का गुणनफलन - अदिश मानों की विस्तृत श्रृंखला की अनुमति देकर और, संभवतः साथ, सदिश की परिभाषा को चौड़ा करके सामान्यीकृत किया जा सकता है।
एक प्रेरक विशेष स्थिति मिश्रित सदिश समष्टि, V पर सेस्क्वीरैखिक रूप है। यह प्रतिचित्र है V × V → C है, जो तर्क में रैखिक है और मिश्रित संयुग्मी द्वारा दूसरे तर्क की रैखिकता को विकृत कर देता है (दूसरे तर्क में इसे प्रतिरेखीय कहा जाता है)। यह स्थिति गणितीय भौतिकी अनुप्रयोगों में स्वाभाविक रूप से उठता है। अन्य महत्वपूर्ण स्थिति अदिश को किसी भी क्षेत्र (गणित) से आने की अनुमति देता है और विकृत क्षेत्र स्वसमाकृतिकता द्वारा प्रदान किया जाता है।
प्रक्षेप्य ज्यामिति में अनुप्रयोग के लिए आवश्यक है कि अदिश विभाजन वलय (तिरछा क्षेत्र), K से आएं, और इसका अर्थ है कि "सदिश" को K-मॉड्यूल के अवयवों द्वारा प्रतिस्थापित किया जाना चाहिए। बहुत ही सामान्य समायोजन में, सेस्क्वीरैखिक रूपों यादृच्छिक वलयों Rके लिए R-मॉड्यूल पर परिभाषित किया जा सकता है।
अनौपचारिक परिचय
सेस्क्वीरैखिक मिश्रित सदिश समष्टि पर हर्मिटियन रूप की मूल धारणा को अमूर्त और सामान्यीकृत करता है। हर्मिटियन रूपों को सामान्यतः भौतिकी में मिश्रित हिल्बर्ट समष्टि पर आंतरिक गुणनफल के रूप में देखा जाता है। ऐसी स्थितियों में, Cn पर मानक हर्मिटियन रूप
- द्वारा दिया जाता है।
जहाँ , के मिश्रित संयुग्मी को दर्शाता है। इस गुणनफल को उन स्थितियों के लिए सामान्यीकृत किया जा सकता है जहां कोई Cn के लिए प्रसामान्य लांबिक आधार या यहां तक कि किसी भी आधार पर कार्य नहीं कर रहा है। का अतिरिक्त गुणनखंड डालकर गुणनफल में, व्यक्ति को तिरछा-हर्मिटियन रूप प्राप्त होता है, जिसे नीचे अधिक सटीक रूप से परिभाषित किया गया है। परिभाषा को सम्मिश्र संख्याओं तक सीमित रखने का कोई विशेष कारण नहीं है; इसे मनमाना रिंग (गणित) के लिए परिभाषित किया जा सकता है, जिसमें एंटीस्वसमाकृतिकता होता है, जिसे अनौपचारिक रूप से रिंग के लिए मिश्रित संयुग्मन की सामान्यीकृत अवधारणा के रूप में समझा जाता है।
सम्मेलन
कौन सा तर्क रैखिक होना चाहिए, इसे लेकर परंपराएं अलग-अलग हैं। क्रमविनिमेय मामले में, हम पहले को रैखिक मानेंगे, जैसा कि गणितीय साहित्य में सामान्य है, मिश्रित सदिश स्थानों पर सेस्क्वीरैखिक रूपों को समर्पित अनुभाग को छोड़कर। वहां हम दूसरी परिपाटी का उपयोग करते हैं और पहला तर्क संयुग्म-रैखिक (अर्थात एंटीलाइनियर) मानते हैं और दूसरा तर्क रैखिक मानते हैं। यह वह सम्मेलन है जिसका उपयोग अधिकतर भौतिक विज्ञानी करते हैं[1] और क्वांटम यांत्रिकी में पॉल डिराक|डिराक के ब्रा-केट नोटेशन से उत्पन्न हुआ है।
अधिक सामान्य नॉनकम्यूटेटिव समायोजन में, दाएं मॉड्यूल के साथ हम दूसरे तर्क को रैखिक मानते हैं और बाएं मॉड्यूल के साथ हम पहले तर्क को रैखिक मानते हैं।
संमिश्र सदिश समष्टि
- धारणा: इस खंड में, सेस्क्वीरैखिक रूप अपने पहले तर्क में एंटीलीनियर प्रतिचित्र और दूसरे में रैखिक प्रतिचित्र हैं।
एक मिश्रित सदिश समष्टि पर नक्षा यदि यह सेस्क्वीरैखिक है
सभी के लिए और सभी यहाँ, अदिश राशि का मिश्रित संयुग्मी है एक मिश्रित सेस्क्वीरैखिक रूप को मिश्रित द्विरेखीय प्रतिचित्र के रूप में भी देखा जा सकता है
मैट्रिक्स प्रतिनिधित्व
अगर परिमित-आयामी मिश्रित सदिश समष्टि है, फिर किसी भी आधार (रैखिक बीजगणित) के सापेक्ष का सेस्क्वीरैखिक रूप को मैट्रिक्स (गणित) द्वारा दर्शाया जाता है और द्वारा दिया गया
हर्मिटियन रूप
- शब्द 'हर्मिटियन रूप' नीचे बताई गई अवधारणा से भिन्न अवधारणा को भी संदर्भित कर सकता है: यह हर्मिटियन मैनिफोल्ड पर निश्चित अंतर रूप को संदर्भित कर सकता है।
एक मिश्रित 'हर्मिटियन रूप' (जिसे 'सममित सेस्क्वीरैखिक रूप' भी कहा जाता है), सेस्क्वीरैखिक रूप है ऐसा है कि
हर्मिटियन रूप में ऋण चिह्न प्रस्तुत किया गया है समूह SU(1,1) को परिभाषित करने के लिए।
हर्मिटियन रूप वाला सदिश समष्टि हर्मिटियन समष्टि कहा जाता है।
एक मिश्रित हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व हर्मिटियन मैट्रिक्स है।
एक एकल सदिश पर लागू मिश्रित हर्मिटियन रूप
तिरछा-हर्मिटियन रूप
एक मिश्रित तिरछा-हर्मिटियन रूप (जिसे एंटीसिमेट्रिक सेस्क्वीरैखिक रूप भी कहा जाता है), मिश्रित सेस्क्वीरैखिक रूप है ऐसा है कि
एक मिश्रित तिरछा-हर्मिटियन रूप का मैट्रिक्स प्रतिनिधित्व तिरछा-हर्मिटियन मैट्रिक्स है।
एक एकल सदिश पर लागू मिश्रित तिरछा-हर्मिटियन रूप
डिवीजन रिंग के ऊपर
विभाजन बजने पर यह धारा अपरिवर्तित लागू होती है K क्रमविनिमेय वलय है। अधिक विशिष्ट शब्दावली तब भी लागू होती है: डिवीजन रिंग फ़ील्ड है, एंटी-स्वसमाकृतिकता भी स्वसमाकृतिकता है, और सही मॉड्यूल सदिश समष्टि है। निम्नलिखित भावों के उपयुक्त पुनर्क्रमण के साथ बाएं मॉड्यूल पर लागू होता है।
परिभाषा
एσ-दाईं ओर सेस्क्वीरैखिक रूप K-मापांक M द्वि-योगात्मक प्रतिचित्र है φ : M × M → K संबद्ध स्वप्रतिरोधी के साथ σ विभाजन वलय का K ऐसा कि, सबके लिए x, y में M और सभी α, β में K,
संबद्ध एंटी-स्वसमाकृतिकता σ किसी भी शून्येतर सेस्क्वीरैखिक रूप के लिए φ विशिष्ट रूप से निर्धारित होता है φ.
रूढ़िवादिता
एक सेस्क्वीरैखिक रूप दिया गया है φ मॉड्यूल पर M और उपसमष्टि (सबमॉड्यूल) W का M, का ओर्थोगोनल पूरक W इसके संबंध में φ है
इसी प्रकार, x ∈ M ऑर्थोगोनल है y ∈ M इसके संबंध में φ, लिखा हुआ x ⊥φ y (या केवल x ⊥ y अगर φसंदर्भ से अनुमान लगाया जा सकता है), कब φ(x, y) = 0. इस द्विआधारी संबंध को सममित संबंध होने की आवश्यकता नहीं है, अर्थात। x ⊥ y का तात्पर्य नहीं है y ⊥ x (परन्तु देखें§ Reflexivity नीचे)।
प्रतिबिम्बता
एक सेस्क्वीरैखिक रूप φ प्रतिवर्ती है यदि, सभी के लिए x, y में M,
- तात्पर्य
अर्थात्, सेस्क्वीरैखिक रूप ठीक उसी समय रिफ्लेक्सिव होता है जब व्युत्पन्न ऑर्थोगोनैलिटी संबंध सममित होता है।
हर्मिटियन विविधताएं
ए σ-सेस्क्वीरैखिक रूप φ कहा जाता है(σ, ε)-हर्मिटियन यदि मौजूद है ε में K ऐसा कि, सबके लिए x, y में M,
अगर ε = 1, रूप कहा जाता है σ-हर्मिटियन, और यदि ε = −1, यह कहा जाता है σ-एंटी-हर्मिटियन। (कब σ निहित है, क्रमशः केवल हर्मिटियन या एंटी-हर्मिटियन।)
एक शून्येतर के लिए (σ, ε)-हर्मिटियन रूप, यह सभी के लिए इसका अनुसरण करता है α में K,
यह उसका अनुसरण भी करता है φ(x, x) प्रतिचित्र का निश्चित बिंदु (गणित) है α ↦ σ(α)ε. इस प्रतिचित्र के निश्चित बिंदु योगात्मक समूह का उपसमूह बनाते हैं K.
ए (σ, ε)-हर्मिटियन रूप प्रतिवर्ती है, और प्रत्येक प्रतिवर्ती है σ-सेस्क्वीरैखिक रूप है (σ, ε)-कुछ के लिए हर्मिटियन ε.[2][3][4][5] विशेष मामले में वह σ पहचान प्रतिचित्र है (अर्थात्, σ = id), K क्रमविनिमेय है, φ द्विरेखीय रूप है और ε2 = 1. फिर के लिए ε = 1 द्विरेखीय रूप को सममित कहा जाता है, और के लिए ε = −1 को तिरछा-सममितीय कहा जाता है।[6]
मनमाने छल्ले पर
स्क्यूफील्ड्स के लिए उपरोक्त अनुभाग की विशेषज्ञता प्रक्षेप्य ज्यामिति के अनुप्रयोग का परिणाम थी, और सेस्क्वीरैखिक रूपों की प्रकृति के लिए आंतरिक नहीं थी। गुणन की गैर-अनुक्रमणात्मकता को ध्यान में रखने के लिए केवल छोटे संशोधनों की आवश्यकता होती है, जो परिभाषा के मनमाने क्षेत्र संस्करण को मनमाने छल्ले में सामान्यीकृत करने के लिए आवश्यक हैं।
होने देना R अंगूठी बनें (गणित), V R-मॉड्यूल (गणित) और σ का एंटीस्वसमाकृतिकता R.
नक्षा φ : V × V → R हैσ-सेस्क्वीरैखिक यदि
सभी के लिए x, y, z, w में V और सभी c, d में R.
अवयव x किसी अन्य अवयव के लिए ओर्थोगोनल है y सेस्क्वीरैखिक रूप के संबंध में φ (लिखा हुआ x ⊥ y) अगर φ(x, y) = 0. इस संबंध को सममित होने की आवश्यकता नहीं है, अर्थात। x ⊥ y का तात्पर्य नहीं है y ⊥ x.
एक सेस्क्वीरैखिक रूप φ : V × V → R रिफ्लेक्सिव (या ऑर्थोसिमेट्रिक) है यदि φ(x, y) = 0 तात्पर्य φ(y, x) = 0 सभी के लिए x, y में V.
एक सेस्क्वीरैखिक रूप φ : V × V → R यदि मौजूद है तो हर्मिटियन है σ ऐसा है कि[7]: 325
सभी के लिए x, y में V. हर्मिटियन रूप आवश्यक रूप से प्रतिवर्ती है, और यदि यह गैर-शून्य है, तो संबंधित एंटीस्वसमाकृतिकता है σ इनवोलुशन (गणित) है (अर्थात् क्रम 2 का)।
चूंकि एंटीस्वसमाकृतिकता के लिए σ अपने पास σ(st) = σ(t)σ(s) सभी के लिए s, t में R, अगर σ = id, तब R क्रमविनिमेय होना चाहिए और φ द्विरेखीय रूप है। विशेषकर, यदि, इस मामले में, R तो फिर स्क्यूफ़ील्ड है R फ़ील्ड है और V द्विरेखीय रूप वाला सदिश समष्टि है।
एक एंटीस्वसमाकृतिकता σ : R → R को रिंग समरूपता के रूप में भी देखा जा सकता है R → Rop, जहाँ Rop का विपरीत वलय है R, जिसमें समान अंतर्निहित सेट और समान जोड़ है, परन्तु जिसका गुणन संक्रिया (∗) द्वारा परिभाषित किया गया है a ∗ b = ba, जहां दाहिनी ओर का गुणनफल अंदर का गुणनफल है R. इससे यह निष्कर्ष निकलता है कि दाएँ (बाएँ) R-मापांक V को बाएँ (दाएँ) में बदला जा सकता है Rop-मापांक, Vo.[8] इस प्रकार, सेस्क्वीरैखिक रूप φ : V × V → R को द्विरेखीय रूप के रूप में देखा जा सकता है φ′ : V × Vo → R.
यह भी देखें
टिप्पणियाँ
- ↑ footnote 1 in Anthony Knapp Basic Algebra (2007) pg. 255
- ↑ "Combinatorics", Proceedings of the NATO Advanced Study Institute, Held at Nijenrode Castle, Breukelen, the Netherlands, 8–20 July 1974, D. Reidel: 456–457, 1975 – [1]
- ↑ Sesquilinear form at EOM
- ↑ Simeon Ball (2015), Finite Geometry and Combinatorial Applications, Cambridge University Press, p. 28 – [2]
- ↑ Dembowski 1968, p. 42
- ↑ When char K = 2, skew-symmetric and symmetric bilinear forms coincide since then 1 = −1. In all cases, alternating bilinear forms are a subset of skew-symmetric bilinear forms, and need not be considered separately.
- ↑ Faure, Claude-Alain; Frölicher, Alfred (2000), Modern Projective Geometry, Kluwer Academic Publishers
- ↑ Jacobson 2009, p. 164
संदर्भ
- Dembowski, Peter (1968), Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Berlin, New York: Springer-Verlag, ISBN 3-540-61786-8, MR 0233275
- Gruenberg, K.W.; Weir, A.J. (1977), Linear Geometry (2nd ed.), Springer, ISBN 0-387-90227-9
- Jacobson, Nathan J. (2009) [1985], Basic Algebra I (2nd ed.), Dover, ISBN 978-0-486-47189-1
बाहरी संबंध
- "Sesquilinear form", Encyclopedia of Mathematics, EMS Press, 2001 [1994]