सेसक्विलिनियर फॉर्म: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
एक प्रेरक विशेष स्थिति मिश्रित सदिश समष्टि, {{math|''V''}} पर सेस्क्वीरैखिक रूप है। यह प्रतिचित्र है {{math|''V'' × ''V'' → '''C'''}} है, जो तर्क में रैखिक है और मिश्रित संयुग्मी द्वारा दूसरे तर्क की रैखिकता को विकृत कर देता है (दूसरे तर्क में इसे [[प्रतिरेखीय]] कहा जाता है)। यह स्थिति गणितीय भौतिकी अनुप्रयोगों में स्वाभाविक रूप से उठता है। अन्य महत्वपूर्ण स्थिति अदिश को किसी भी क्षेत्र (गणित) से आने की अनुमति देता है और विकृत क्षेत्र स्वसमाकृतिकता द्वारा प्रदान किया जाता है। | एक प्रेरक विशेष स्थिति मिश्रित सदिश समष्टि, {{math|''V''}} पर सेस्क्वीरैखिक रूप है। यह प्रतिचित्र है {{math|''V'' × ''V'' → '''C'''}} है, जो तर्क में रैखिक है और मिश्रित संयुग्मी द्वारा दूसरे तर्क की रैखिकता को विकृत कर देता है (दूसरे तर्क में इसे [[प्रतिरेखीय]] कहा जाता है)। यह स्थिति गणितीय भौतिकी अनुप्रयोगों में स्वाभाविक रूप से उठता है। अन्य महत्वपूर्ण स्थिति अदिश को किसी भी क्षेत्र (गणित) से आने की अनुमति देता है और विकृत क्षेत्र स्वसमाकृतिकता द्वारा प्रदान किया जाता है। | ||
[[प्रक्षेप्य ज्यामिति]] में अनुप्रयोग के लिए आवश्यक है कि अदिश विभाजन वलय (तिरछा क्षेत्र), {{math|''K''}} से आएं, और इसका अर्थ है कि "सदिश" को {{math|''K''}}- | [[प्रक्षेप्य ज्यामिति]] में अनुप्रयोग के लिए आवश्यक है कि अदिश विभाजन वलय (तिरछा क्षेत्र), {{math|''K''}} से आएं, और इसका अर्थ है कि "सदिश" को {{math|''K''}}-मापांक के अवयवों द्वारा प्रतिस्थापित किया जाना चाहिए। बहुत ही सामान्य समायोजन में, सेस्क्वीरैखिक रूपों यादृच्छिक वलयों {{math|''R''}}के लिए {{math|''R''}}-मापांक पर परिभाषित किया जा सकता है। | ||
==अनौपचारिक परिचय== | ==अनौपचारिक परिचय== | ||
सेस्क्वीरैखिक मिश्रित सदिश समष्टि पर हर्मिटियन रूप की मूल धारणा को अमूर्त और सामान्यीकृत करता है। हर्मिटियन रूपों को सामान्यतः भौतिकी में मिश्रित [[हिल्बर्ट स्थान|हिल्बर्ट समष्टि]] पर आंतरिक गुणनफल के रूप में देखा जाता है। ऐसी स्थितियों में, {{math|'''C'''<sup>''n''</sup>}} पर मानक हर्मिटियन रूप | सेस्क्वीरैखिक मिश्रित सदिश समष्टि पर हर्मिटियन रूप की मूल धारणा को अमूर्त और सामान्यीकृत करता है। हर्मिटियन रूपों को सामान्यतः भौतिकी में मिश्रित [[हिल्बर्ट स्थान|हिल्बर्ट समष्टि]] पर आंतरिक गुणनफल के रूप में देखा जाता है। ऐसी स्थितियों में, {{math|'''C'''<sup>''n''</sup>}} पर मानक हर्मिटियन रूप | ||
Line 13: | Line 13: | ||
कौन सा तर्क रैखिक होना चाहिए, इसे लेकर परंपराएं अलग-अलग हैं। क्रमविनिमेय स्थिति में, हम पूर्व को रैखिक मानेंगे, जैसा कि गणितीय साहित्य में सामान्य है, मिश्रित सदिश स्थानों पर सेस्क्वीरैखिक रूपों को समर्पित अनुभाग को छोड़कर। वहां हम दूसरी परिपाटी का उपयोग करते हैं और प्रथम तर्क संयुग्म-रैखिक (अर्थात एंटीलाइनियर) मानते हैं और दूसरा तर्क रैखिक मानते हैं। यह वह संकेतन है जिसका उपयोग अधिकतर भौतिकविदों द्वारा उपयोग किया जाता है<ref>footnote 1 in [https://books.google.com/books?id=NSXCaGSVaX4C&dq=sesquilinear+forms+over+general+fields&pg=PA255 Anthony Knapp ''Basic Algebra'' (2007) pg. 255]</ref> और [[क्वांटम यांत्रिकी]] में पॉल डिरैक के ब्रा-केट संकेतन से उत्पन्न हुआ है। | कौन सा तर्क रैखिक होना चाहिए, इसे लेकर परंपराएं अलग-अलग हैं। क्रमविनिमेय स्थिति में, हम पूर्व को रैखिक मानेंगे, जैसा कि गणितीय साहित्य में सामान्य है, मिश्रित सदिश स्थानों पर सेस्क्वीरैखिक रूपों को समर्पित अनुभाग को छोड़कर। वहां हम दूसरी परिपाटी का उपयोग करते हैं और प्रथम तर्क संयुग्म-रैखिक (अर्थात एंटीलाइनियर) मानते हैं और दूसरा तर्क रैखिक मानते हैं। यह वह संकेतन है जिसका उपयोग अधिकतर भौतिकविदों द्वारा उपयोग किया जाता है<ref>footnote 1 in [https://books.google.com/books?id=NSXCaGSVaX4C&dq=sesquilinear+forms+over+general+fields&pg=PA255 Anthony Knapp ''Basic Algebra'' (2007) pg. 255]</ref> और [[क्वांटम यांत्रिकी]] में पॉल डिरैक के ब्रा-केट संकेतन से उत्पन्न हुआ है। | ||
अधिक सामान्य गैर विनिमेय समायोजन में, दाएं | अधिक सामान्य गैर विनिमेय समायोजन में, दाएं मापांक के साथ हम दूसरे तर्क को रैखिक मानते हैं और बाएं मापांक के साथ हम पूर्व तर्क को रैखिक मानते हैं। | ||
==संमिश्र सदिश समष्टि == | ==संमिश्र सदिश समष्टि == | ||
Line 53: | Line 53: | ||
=== तिरछा-हर्मिटियन रूप === | === तिरछा-हर्मिटियन रूप === | ||
एक मिश्रित तिरछा-हर्मिटियन रूप (जिसे एंटीसिमेट्रिक सेस्क्वीरैखिक रूप भी कहा जाता है), मिश्रित सेस्क्वीरैखिक रूप | एक मिश्रित तिरछा-हर्मिटियन रूप (जिसे एंटीसिमेट्रिक सेस्क्वीरैखिक रूप भी कहा जाता है), मिश्रित सेस्क्वीरैखिक रूप <math>s : V \times V \to \Complex</math> है जैसे कि<math display="block">s(w,z) = -\overline{s(z, w)}.</math>प्रत्येक मिश्रित तिरछा-हर्मिटियन रूप को हर्मिटियन रूप की [[काल्पनिक इकाई]] <math>i := \sqrt{-1}</math> गुना के रूप में लिखा जा सकता है। | ||
एक मिश्रित तिरछा-हर्मिटियन रूप का आव्यूह प्रतिनिधित्व [[तिरछा-हर्मिटियन मैट्रिक्स|तिरछा-हर्मिटियन आव्यूह]] है। | |||
एकल सदिश पर<math display="block">|z|_s = s(z, z)</math> | |||
पर लागू किया गया एक मिश्रित तिरछा-हर्मिटियन रूप सदैव पूर्णतः [[काल्पनिक संख्या]] होती है। | |||
== | ==विभाजन वलय के ऊपर== | ||
विभाजन | जब विभाजन वलय {{math|''K''}} [[क्रमविनिमेय वलय]] होता है तो यह खंड अपरिवर्तित लागू होता है। अधिक विशिष्ट शब्दावली तब भी लागू होती है: विभाजन वलय क्षेत्र है, प्रति-स्वसमाकृतिकता भी स्वसमाकृतिकता है, और उचित मापांक सदिश समष्टि है। निम्नलिखित भावों के उपयुक्त पुनर्क्रमण के साथ बाएं मापांक पर लागू होता है। | ||
===परिभाषा=== | ===परिभाषा=== | ||
दाएं {{math|''K''}}-मापांक {{math|''M''}} पर {{math|''σ''}}-सेस्क्वीरैखिक रूप [[द्वि-योगात्मक मानचित्र|द्वि-योगात्मक प्रतिचित्र]] {{math|''φ'' : ''M'' × ''M'' → ''K''}} है, जो विभाजन वलय {{math|''K''}} के संबद्ध [[स्वप्रतिरोधी]] {{math|''σ''}} के साथ है, जैसे कि, {{math|''M''}} में सभी {{math|''x'', ''y''}} और {{math|''K''}}, | |||
:<math>\varphi(x \alpha, y \beta) = \sigma(\alpha) \, \varphi(x, y) \, \beta | :<math>\varphi(x \alpha, y \beta) = \sigma(\alpha) \, \varphi(x, y) \, \beta </math> में सभी {{math|''α'', ''β''}} के लिए । | ||
किसी भी गैर-शून्य सेस्क्वीरैखिक रूप φ के लिए संबंधित प्रति-स्वसमाकृतिकता σ विशिष्ट रूप से φ द्वारा निर्धारित किया जाता है। | |||
=== | ===लंबिकता=== | ||
मापांक {{math|''M''}} और {{math|''M''}} के उपसमष्टि ([[सबमॉड्यूल|उपमापांक]]) {{math|''W''}} पर सेस्क्वीरैखिक रूप {{math|''φ''}} दिया गया है, {{math|''φ''}} के संबंध में {{math|''W''}} का लांबिक पूरक | |||
:<math>W^{\perp}=\{\mathbf{v} \in M \mid \varphi (\mathbf{v}, \mathbf{w})=0,\ \forall \mathbf{w}\in W\} | :<math>W^{\perp}=\{\mathbf{v} \in M \mid \varphi (\mathbf{v}, \mathbf{w})=0,\ \forall \mathbf{w}\in W\} </math> है। | ||
इसी प्रकार, | इसी प्रकार, '''''x ∈ M, φ''''' के संबंध में '''''y ∈ M''''' का लांबिक है, जिसे '''''x ⊥φ y''''' लिखा जाता है (या मात्र '''''x ⊥ y''''' यदि φ संदर्भ से अनुमान लगाया जा सकता है), जब '''''φ(x, y) = 0'''''। इस [[द्विआधारी संबंध]] को [[सममित संबंध]] होने की आवश्यकता नहीं है, अर्थात '''''{{math|''x'' ⊥ ''y''}}''''' का अर्थ y ⊥ x नहीं है (परन्तु नीचे {{section link||प्रतिबिम्बता}} देखें)। | ||
===प्रतिबिम्बता=== | ===प्रतिबिम्बता=== | ||
Line 100: | Line 101: | ||
स्क्यूफील्ड्स के लिए उपरोक्त अनुभाग की विशेषज्ञता प्रक्षेप्य ज्यामिति के अनुप्रयोग का परिणाम थी, और सेस्क्वीरैखिक रूपों की प्रकृति के लिए आंतरिक नहीं थी। गुणन की गैर-अनुक्रमणात्मकता को ध्यान में रखने के लिए मात्र छोटे संशोधनों की आवश्यकता होती है, जो परिभाषा के यादृच्छिक क्षेत्र संस्करण को यादृच्छिक छल्ले में सामान्यीकृत करने के लिए आवश्यक हैं। | स्क्यूफील्ड्स के लिए उपरोक्त अनुभाग की विशेषज्ञता प्रक्षेप्य ज्यामिति के अनुप्रयोग का परिणाम थी, और सेस्क्वीरैखिक रूपों की प्रकृति के लिए आंतरिक नहीं थी। गुणन की गैर-अनुक्रमणात्मकता को ध्यान में रखने के लिए मात्र छोटे संशोधनों की आवश्यकता होती है, जो परिभाषा के यादृच्छिक क्षेत्र संस्करण को यादृच्छिक छल्ले में सामान्यीकृत करने के लिए आवश्यक हैं। | ||
होने देना {{math|''R''}} अंगूठी बनें (गणित), {{math|''V''}} {{math|''R''}}-[[मॉड्यूल (गणित)]] और {{math|''σ''}} का प्रतिस्वसमाकृतिकता {{math|''R''}}। | होने देना {{math|''R''}} अंगूठी बनें (गणित), {{math|''V''}} {{math|''R''}}-[[मॉड्यूल (गणित)|मापांक (गणित)]] और {{math|''σ''}} का प्रतिस्वसमाकृतिकता {{math|''R''}}। | ||
नक्षा {{math|''φ'' : ''V'' × ''V'' → ''R''}} है{{math|''σ''}}-सेस्क्वीरैखिक यदि | नक्षा {{math|''φ'' : ''V'' × ''V'' → ''R''}} है{{math|''σ''}}-सेस्क्वीरैखिक यदि | ||
Line 115: | Line 116: | ||
सभी के लिए {{math|''x'', ''y''}} में {{math|''V''}}। हर्मिटियन रूप आवश्यक रूप से प्रतिवर्ती है, और यदि यह गैर-शून्य है, तो संबंधित प्रतिस्वसमाकृतिकता है {{math|''σ''}} इनवोलुशन (गणित) है (अर्थात् क्रम 2 का)। | सभी के लिए {{math|''x'', ''y''}} में {{math|''V''}}। हर्मिटियन रूप आवश्यक रूप से प्रतिवर्ती है, और यदि यह गैर-शून्य है, तो संबंधित प्रतिस्वसमाकृतिकता है {{math|''σ''}} इनवोलुशन (गणित) है (अर्थात् क्रम 2 का)। | ||
चूंकि प्रतिस्वसमाकृतिकता के लिए {{math|''σ''}} अपने पास {{math|1=''σ''(''st'') = ''σ''(''t'')''σ''(''s'')}} सभी के लिए {{math|''s'', ''t''}} में {{math|''R''}}, यदि {{math|1=''σ'' = id}}, तब {{math|''R''}} क्रमविनिमेय होना चाहिए और {{math|''φ''}} द्विरेखीय रूप है। विशेषकर, यदि, इस स्थिति में, {{math|''R''}} तो फिर | चूंकि प्रतिस्वसमाकृतिकता के लिए {{math|''σ''}} अपने पास {{math|1=''σ''(''st'') = ''σ''(''t'')''σ''(''s'')}} सभी के लिए {{math|''s'', ''t''}} में {{math|''R''}}, यदि {{math|1=''σ'' = id}}, तब {{math|''R''}} क्रमविनिमेय होना चाहिए और {{math|''φ''}} द्विरेखीय रूप है। विशेषकर, यदि, इस स्थिति में, {{math|''R''}} तो फिर स्क्यूक्षेत्र है {{math|''R''}} क्षेत्र है और {{math|''V''}} द्विरेखीय रूप वाला सदिश समष्टि है। | ||
एक प्रतिस्वसमाकृतिकता {{math|''σ'' : ''R'' → ''R''}} को वलय समरूपता के रूप में भी देखा जा सकता है {{math|''R'' → ''R''<sup>op</sup>}}, जहाँ {{math|''R''<sup>op</sup>}} का विपरीत वलय है {{math|''R''}}, जिसमें समान अंतर्निहित सेट और समान जोड़ है, परन्तु जिसका गुणन संक्रिया ({{math|∗}}) द्वारा परिभाषित किया गया है {{math|1=''a'' ∗ ''b'' = ''ba''}}, जहां दाहिनी ओर का गुणनफल अंदर का गुणनफल है {{math|''R''}}। इससे यह निष्कर्ष निकलता है कि दाएँ (बाएँ) {{math|''R''}}-मापांक {{math|''V''}} को बाएँ (दाएँ) में बदला जा सकता है {{math|''R''<sup>op</sup>}}-मापांक, {{math|''V''<sup>o</sup>}}।<ref>{{harvnb|Jacobson|2009|page=164}}</ref> इस प्रकार, सेस्क्वीरैखिक रूप {{math|''φ'' : ''V'' × ''V'' → ''R''}} को द्विरेखीय रूप के रूप में देखा जा सकता है {{math|''φ''′ : ''V'' × ''V''<sup>o</sup> → ''R''}}। | एक प्रतिस्वसमाकृतिकता {{math|''σ'' : ''R'' → ''R''}} को वलय समरूपता के रूप में भी देखा जा सकता है {{math|''R'' → ''R''<sup>op</sup>}}, जहाँ {{math|''R''<sup>op</sup>}} का विपरीत वलय है {{math|''R''}}, जिसमें समान अंतर्निहित सेट और समान जोड़ है, परन्तु जिसका गुणन संक्रिया ({{math|∗}}) द्वारा परिभाषित किया गया है {{math|1=''a'' ∗ ''b'' = ''ba''}}, जहां दाहिनी ओर का गुणनफल अंदर का गुणनफल है {{math|''R''}}। इससे यह निष्कर्ष निकलता है कि दाएँ (बाएँ) {{math|''R''}}-मापांक {{math|''V''}} को बाएँ (दाएँ) में बदला जा सकता है {{math|''R''<sup>op</sup>}}-मापांक, {{math|''V''<sup>o</sup>}}।<ref>{{harvnb|Jacobson|2009|page=164}}</ref> इस प्रकार, सेस्क्वीरैखिक रूप {{math|''φ'' : ''V'' × ''V'' → ''R''}} को द्विरेखीय रूप के रूप में देखा जा सकता है {{math|''φ''′ : ''V'' × ''V''<sup>o</sup> → ''R''}}। |
Revision as of 11:46, 11 July 2023
गणित में, सेस्क्वीरैखिक रूप द्विरेखीय रूप का सामान्यीकरण है, जो इसके स्थान पर, यूक्लिडियन समष्टि के बिंदु गुणनफल की अवधारणा का सामान्यीकरण है। द्विरेखीय रूप अपने प्रत्येक तर्क में रैखिक प्रतिचित्र होता है, परन्तु सेस्क्वीरैखिक रूप तर्क को अर्धरेखीय प्रतिचित्र रूप से विकृत करने की अनुमति देता है, इस प्रकार नाम; जो लैटिन संख्यात्मक उपसर्गसेस्क्वी- से उत्पन्न हुआ है जिसका अर्थ है डेढ़। बिंदु गुणनफल की मूल अवधारणा - सदिश के युग्म से अदिश (गणित) का गुणनफलन - अदिश मानों की विस्तृत श्रृंखला की अनुमति देकर और, संभवतः साथ, सदिश की परिभाषा को चौड़ा करके सामान्यीकृत किया जा सकता है।
एक प्रेरक विशेष स्थिति मिश्रित सदिश समष्टि, V पर सेस्क्वीरैखिक रूप है। यह प्रतिचित्र है V × V → C है, जो तर्क में रैखिक है और मिश्रित संयुग्मी द्वारा दूसरे तर्क की रैखिकता को विकृत कर देता है (दूसरे तर्क में इसे प्रतिरेखीय कहा जाता है)। यह स्थिति गणितीय भौतिकी अनुप्रयोगों में स्वाभाविक रूप से उठता है। अन्य महत्वपूर्ण स्थिति अदिश को किसी भी क्षेत्र (गणित) से आने की अनुमति देता है और विकृत क्षेत्र स्वसमाकृतिकता द्वारा प्रदान किया जाता है।
प्रक्षेप्य ज्यामिति में अनुप्रयोग के लिए आवश्यक है कि अदिश विभाजन वलय (तिरछा क्षेत्र), K से आएं, और इसका अर्थ है कि "सदिश" को K-मापांक के अवयवों द्वारा प्रतिस्थापित किया जाना चाहिए। बहुत ही सामान्य समायोजन में, सेस्क्वीरैखिक रूपों यादृच्छिक वलयों Rके लिए R-मापांक पर परिभाषित किया जा सकता है।
अनौपचारिक परिचय
सेस्क्वीरैखिक मिश्रित सदिश समष्टि पर हर्मिटियन रूप की मूल धारणा को अमूर्त और सामान्यीकृत करता है। हर्मिटियन रूपों को सामान्यतः भौतिकी में मिश्रित हिल्बर्ट समष्टि पर आंतरिक गुणनफल के रूप में देखा जाता है। ऐसी स्थितियों में, Cn पर मानक हर्मिटियन रूप
- द्वारा दिया जाता है।
जहाँ , के मिश्रित संयुग्मी को दर्शाता है। इस गुणनफल को उन स्थितियों के लिए सामान्यीकृत किया जा सकता है जहां कोई Cn के लिए प्रसामान्य लांबिक आधार या यहां तक कि किसी भी आधार पर कार्य नहीं कर रहा है। गुणनफल में का एक अतिरिक्त कारक डालने से, व्यक्ति को तिरछा-हर्मिटियन रूप प्राप्त होता है, जिसे निम्न अधिक यथार्थ रूप से परिभाषित किया गया है। परिभाषा को सम्मिश्र संख्याओं तक सीमित रखने का कोई विशेष कारण नहीं है; इसे यादृच्छिक वलय (गणित) के लिए परिभाषित किया जा सकता है, जिसमें प्रतिस्वसमाकृतिकता होता है, जिसे अनौपचारिक रूप से वलय के लिए मिश्रित संयुग्मन की सामान्यीकृत अवधारणा के रूप में समझा जाता है।
संकेतन
कौन सा तर्क रैखिक होना चाहिए, इसे लेकर परंपराएं अलग-अलग हैं। क्रमविनिमेय स्थिति में, हम पूर्व को रैखिक मानेंगे, जैसा कि गणितीय साहित्य में सामान्य है, मिश्रित सदिश स्थानों पर सेस्क्वीरैखिक रूपों को समर्पित अनुभाग को छोड़कर। वहां हम दूसरी परिपाटी का उपयोग करते हैं और प्रथम तर्क संयुग्म-रैखिक (अर्थात एंटीलाइनियर) मानते हैं और दूसरा तर्क रैखिक मानते हैं। यह वह संकेतन है जिसका उपयोग अधिकतर भौतिकविदों द्वारा उपयोग किया जाता है[1] और क्वांटम यांत्रिकी में पॉल डिरैक के ब्रा-केट संकेतन से उत्पन्न हुआ है।
अधिक सामान्य गैर विनिमेय समायोजन में, दाएं मापांक के साथ हम दूसरे तर्क को रैखिक मानते हैं और बाएं मापांक के साथ हम पूर्व तर्क को रैखिक मानते हैं।
संमिश्र सदिश समष्टि
- धारणा: इस खंड में, सेस्क्वीरैखिक रूप अपने पूर्व तर्क में प्रतिरेखीय प्रतिचित्र और दूसरे में रैखिक प्रतिचित्र हैं।
एक मिश्रित सदिश समष्टि पर प्रतिचित्र सेस्क्वीरैखिक होता है यदि
सभी और सभी के लिए हो। यहाँ, अदिश राशि का मिश्रित संयुग्मी है। एक मिश्रित सेस्क्वीरैखिक रूप को मिश्रित द्विरेखीय प्रतिचित्र
एक निश्चित के लिए प्रतिचित्र पर रैखिक कार्यात्मक है (अर्थात दोहरे समष्टि का अवयव )। इसी प्रकार, प्रतिचित्र , पर संयुग्म-रैखिक कार्यात्मक (गणित) है।
पर किसी भी मिश्रित सेस्क्वीरैखिक रूप को देखते हुए हम संयुग्मी स्थानान्तरण के माध्यम से एक दूसरे मिश्रित सेस्क्वीरैखिक रूप को परिभाषित कर सकते हैं:
आव्यूह प्रतिनिधित्व
यदि परिमित-आयामी मिश्रित सदिश समष्टि है, तो के किसी भी आधार (रैखिक बीजगणित) के सापेक्ष सेस्क्वीरैखिक रूप को आव्यूह (गणित) द्वारा दर्शाया जाता है, और
जहाँ संयुग्मी स्थानान्तरण है। आव्यूह के घटक द्वारा दिए गए हैं।
हर्मिटियन रूप
- शब्द 'हर्मिटियन रूप' निम्न बताई गई अवधारणा से भिन्न अवधारणा को भी संदर्भित कर सकता है: यह हर्मिटियन मैनिफोल्ड पर निश्चित अंतर रूप को संदर्भित कर सकता है।
एक मिश्रित 'हर्मिटियन रूप' (जिसे 'सममित सेस्क्वीरैखिक रूप' भी कहा जाता है), सेस्क्वीरैखिक रूप है, जैसे कि
समूह SU(1,1) को परिभाषित करने के लिए हर्मिटियन रूप में ऋण चिह्न प्रस्तुत किया गया है।
हर्मिटियन रूप वाले सदिश समष्टि को हर्मिटियन समष्टि कहा जाता है।
एक मिश्रित हर्मिटियन रूप का आव्यूह प्रतिनिधित्व हर्मिटियन आव्यूह है।
एकल सदिश
तिरछा-हर्मिटियन रूप
एक मिश्रित तिरछा-हर्मिटियन रूप (जिसे एंटीसिमेट्रिक सेस्क्वीरैखिक रूप भी कहा जाता है), मिश्रित सेस्क्वीरैखिक रूप है जैसे कि
एक मिश्रित तिरछा-हर्मिटियन रूप का आव्यूह प्रतिनिधित्व तिरछा-हर्मिटियन आव्यूह है।
एकल सदिश पर
पर लागू किया गया एक मिश्रित तिरछा-हर्मिटियन रूप सदैव पूर्णतः काल्पनिक संख्या होती है।
विभाजन वलय के ऊपर
जब विभाजन वलय K क्रमविनिमेय वलय होता है तो यह खंड अपरिवर्तित लागू होता है। अधिक विशिष्ट शब्दावली तब भी लागू होती है: विभाजन वलय क्षेत्र है, प्रति-स्वसमाकृतिकता भी स्वसमाकृतिकता है, और उचित मापांक सदिश समष्टि है। निम्नलिखित भावों के उपयुक्त पुनर्क्रमण के साथ बाएं मापांक पर लागू होता है।
परिभाषा
दाएं K-मापांक M पर σ-सेस्क्वीरैखिक रूप द्वि-योगात्मक प्रतिचित्र φ : M × M → K है, जो विभाजन वलय K के संबद्ध स्वप्रतिरोधी σ के साथ है, जैसे कि, M में सभी x, y और K,
- में सभी α, β के लिए ।
किसी भी गैर-शून्य सेस्क्वीरैखिक रूप φ के लिए संबंधित प्रति-स्वसमाकृतिकता σ विशिष्ट रूप से φ द्वारा निर्धारित किया जाता है।
लंबिकता
मापांक M और M के उपसमष्टि (उपमापांक) W पर सेस्क्वीरैखिक रूप φ दिया गया है, φ के संबंध में W का लांबिक पूरक
- है।
इसी प्रकार, x ∈ M, φ के संबंध में y ∈ M का लांबिक है, जिसे x ⊥φ y लिखा जाता है (या मात्र x ⊥ y यदि φ संदर्भ से अनुमान लगाया जा सकता है), जब φ(x, y) = 0। इस द्विआधारी संबंध को सममित संबंध होने की आवश्यकता नहीं है, अर्थात x ⊥ y का अर्थ y ⊥ x नहीं है (परन्तु नीचे § प्रतिबिम्बता देखें)।
प्रतिबिम्बता
एक सेस्क्वीरैखिक रूप φ प्रतिवर्ती है यदि, सभी के लिए x, y में M,
- तात्पर्य
अर्थात्, सेस्क्वीरैखिक रूप ठीक उसी समय रिफ्लेक्सिव होता है जब व्युत्पन्न ऑर्थोगोनैलिटी संबंध सममित होता है।
हर्मिटियन विविधताएं
ए σ-सेस्क्वीरैखिक रूप φ कहा जाता है(σ, ε)-हर्मिटियन यदि मौजूद है ε में K ऐसा कि, सबके लिए x, y में M,
यदि ε = 1, रूप कहा जाता है σ-हर्मिटियन, और यदि ε = −1, यह कहा जाता है σ-एंटी-हर्मिटियन। (कब σ निहित है, क्रमशः मात्र हर्मिटियन या एंटी-हर्मिटियन।)
एक शून्येतर के लिए (σ, ε)-हर्मिटियन रूप, यह सभी के लिए इसका अनुसरण करता है α में K,
यह उसका अनुसरण भी करता है φ(x, x) प्रतिचित्र का निश्चित बिंदु (गणित) है α ↦ σ(α)ε। इस प्रतिचित्र के निश्चित बिंदु योगात्मक समूह का उपसमूह बनाते हैं K।
ए (σ, ε)-हर्मिटियन रूप प्रतिवर्ती है, और प्रत्येक प्रतिवर्ती है σ-सेस्क्वीरैखिक रूप है (σ, ε)-कुछ के लिए हर्मिटियन ε।[2][3][4][5] विशेष स्थिति में वह σ पहचान प्रतिचित्र है (अर्थात्, σ = id), K क्रमविनिमेय है, φ द्विरेखीय रूप है और ε2 = 1। फिर के लिए ε = 1 द्विरेखीय रूप को सममित कहा जाता है, और के लिए ε = −1 को तिरछा-सममितीय कहा जाता है।[6]
यादृच्छिक छल्ले पर
स्क्यूफील्ड्स के लिए उपरोक्त अनुभाग की विशेषज्ञता प्रक्षेप्य ज्यामिति के अनुप्रयोग का परिणाम थी, और सेस्क्वीरैखिक रूपों की प्रकृति के लिए आंतरिक नहीं थी। गुणन की गैर-अनुक्रमणात्मकता को ध्यान में रखने के लिए मात्र छोटे संशोधनों की आवश्यकता होती है, जो परिभाषा के यादृच्छिक क्षेत्र संस्करण को यादृच्छिक छल्ले में सामान्यीकृत करने के लिए आवश्यक हैं।
होने देना R अंगूठी बनें (गणित), V R-मापांक (गणित) और σ का प्रतिस्वसमाकृतिकता R।
नक्षा φ : V × V → R हैσ-सेस्क्वीरैखिक यदि
सभी के लिए x, y, z, w में V और सभी c, d में R।
अवयव x किसी अन्य अवयव के लिए ओर्थोगोनल है y सेस्क्वीरैखिक रूप के संबंध में φ (लिखा हुआ x ⊥ y) यदि φ(x, y) = 0। इस संबंध को सममित होने की आवश्यकता नहीं है, अर्थात। x ⊥ y का तात्पर्य नहीं है y ⊥ x।
एक सेस्क्वीरैखिक रूप φ : V × V → R रिफ्लेक्सिव (या ऑर्थोसिमेट्रिक) है यदि φ(x, y) = 0 तात्पर्य φ(y, x) = 0 सभी के लिए x, y में V।
एक सेस्क्वीरैखिक रूप φ : V × V → R यदि मौजूद है तो हर्मिटियन है σ ऐसा है कि[7]: 325
सभी के लिए x, y में V। हर्मिटियन रूप आवश्यक रूप से प्रतिवर्ती है, और यदि यह गैर-शून्य है, तो संबंधित प्रतिस्वसमाकृतिकता है σ इनवोलुशन (गणित) है (अर्थात् क्रम 2 का)।
चूंकि प्रतिस्वसमाकृतिकता के लिए σ अपने पास σ(st) = σ(t)σ(s) सभी के लिए s, t में R, यदि σ = id, तब R क्रमविनिमेय होना चाहिए और φ द्विरेखीय रूप है। विशेषकर, यदि, इस स्थिति में, R तो फिर स्क्यूक्षेत्र है R क्षेत्र है और V द्विरेखीय रूप वाला सदिश समष्टि है।
एक प्रतिस्वसमाकृतिकता σ : R → R को वलय समरूपता के रूप में भी देखा जा सकता है R → Rop, जहाँ Rop का विपरीत वलय है R, जिसमें समान अंतर्निहित सेट और समान जोड़ है, परन्तु जिसका गुणन संक्रिया (∗) द्वारा परिभाषित किया गया है a ∗ b = ba, जहां दाहिनी ओर का गुणनफल अंदर का गुणनफल है R। इससे यह निष्कर्ष निकलता है कि दाएँ (बाएँ) R-मापांक V को बाएँ (दाएँ) में बदला जा सकता है Rop-मापांक, Vo।[8] इस प्रकार, सेस्क्वीरैखिक रूप φ : V × V → R को द्विरेखीय रूप के रूप में देखा जा सकता है φ′ : V × Vo → R।
यह भी देखें
टिप्पणियाँ
- ↑ footnote 1 in Anthony Knapp Basic Algebra (2007) pg. 255
- ↑ "Combinatorics", Proceedings of the NATO Advanced Study Institute, Held at Nijenrode Castle, Breukelen, the Netherlands, 8–20 July 1974, D. Reidel: 456–457, 1975 – [1]
- ↑ Sesquilinear form at EOM
- ↑ Simeon Ball (2015), Finite Geometry and Combinatorial Applications, Cambridge University Press, p. 28 – [2]
- ↑ Dembowski 1968, p. 42
- ↑ When char K = 2, skew-symmetric and symmetric bilinear forms coincide since then 1 = −1. In all cases, alternating bilinear forms are a subset of skew-symmetric bilinear forms, and need not be considered separately.
- ↑ Faure, Claude-Alain; Frölicher, Alfred (2000), Modern Projective Geometry, Kluwer Academic Publishers
- ↑ Jacobson 2009, p. 164
संदर्भ
- Dembowski, Peter (1968), Finite geometries, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44, Berlin, New York: Springer-Verlag, ISBN 3-540-61786-8, MR 0233275
- Gruenberg, K.W.; Weir, A.J. (1977), Linear Geometry (2nd ed.), Springer, ISBN 0-387-90227-9
- Jacobson, Nathan J. (2009) [1985], Basic Algebra I (2nd ed.), Dover, ISBN 978-0-486-47189-1
बाहरी संबंध
- "Sesquilinear form", Encyclopedia of Mathematics, EMS Press, 2001 [1994]