स्पेक्ट्रम (टोपोलॉजी): Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
बीजगणितीय टोपोलॉजी में, गणित की एक शाखा, एक '''स्पेक्ट्रम''' एक सामान्यीकृत कोहोलॉजी सिद्धांत का प्रतिनिधित्व करने वाली एक वस्तु है। ऐसा प्रत्येक कोहोमोलोजी सिद्धांत प्रतिनिधित्वयोग्य है, जैसा कि ब्राउन के प्रतिनिधित्वयोग्यता प्रमेय से निम्नानुसार है। इसका मतलब यह है कि, एक कोहोमोलॉजी सिद्धांत दिया गया है | बीजगणितीय टोपोलॉजी में, गणित की एक शाखा, एक '''स्पेक्ट्रम''' एक सामान्यीकृत कोहोलॉजी सिद्धांत का प्रतिनिधित्व करने वाली एक वस्तु है। ऐसा प्रत्येक कोहोमोलोजी सिद्धांत प्रतिनिधित्वयोग्य है, जैसा कि ब्राउन के प्रतिनिधित्वयोग्यता प्रमेय से निम्नानुसार है। इसका मतलब यह है कि, एक कोहोमोलॉजी सिद्धांत दिया गया है | ||
Line 246: | Line 245: | ||
*{{cite web|url=https://mathoverflow.net/q/117684 |title=Are spectra really the same as cohomology theories?}} | *{{cite web|url=https://mathoverflow.net/q/117684 |title=Are spectra really the same as cohomology theories?}} | ||
{{DEFAULTSORT:Spectrum (Homotopy Theory)}} | {{DEFAULTSORT:Spectrum (Homotopy Theory)}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page|Spectrum (Homotopy Theory)]] | ||
[[Category:Created On 08/07/2023]] | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Vigyan Ready]] | [[Category:Created On 08/07/2023|Spectrum (Homotopy Theory)]] | ||
[[Category:Machine Translated Page|Spectrum (Homotopy Theory)]] | |||
[[Category:Pages with script errors|Spectrum (Homotopy Theory)]] | |||
[[Category:Templates Vigyan Ready|Spectrum (Homotopy Theory)]] | |||
[[Category:समरूपता सिद्धांत|Spectrum (Homotopy Theory)]] |
Latest revision as of 10:27, 15 July 2023
बीजगणितीय टोपोलॉजी में, गणित की एक शाखा, एक स्पेक्ट्रम एक सामान्यीकृत कोहोलॉजी सिद्धांत का प्रतिनिधित्व करने वाली एक वस्तु है। ऐसा प्रत्येक कोहोमोलोजी सिद्धांत प्रतिनिधित्वयोग्य है, जैसा कि ब्राउन के प्रतिनिधित्वयोग्यता प्रमेय से निम्नानुसार है। इसका मतलब यह है कि, एक कोहोमोलॉजी सिद्धांत दिया गया है
ऐसे स्थान उपस्थित हैं कि समिष्ट पर डिग्री में कोहोमोलॉजी सिद्धांत का मूल्यांकन करना समरूपता की गणना करने के समान है समिष्ट के मानचित्रों की श्रेणियाँ है अर्थात
ध्यान दें कि स्पेक्ट्रा की कई अलग-अलग श्रेणियां हैं जो कई तकनीकी कठिनाइयों का कारण बनती हैं[1] किंतु वे सभी एक ही होमोटॉपी श्रेणी निर्धारित करती हैं, जिसे स्थिर होमोटॉपी श्रेणी के रूप में जाना जाता है। यह स्पेक्ट्रा प्रारंभ करने के लिए प्रमुख बिंदुओं में से एक है क्योंकि वे स्थिर होमोटॉपी सिद्धांत के लिए एक प्राकृतिक घर बनाते हैं।
स्पेक्ट्रम की परिभाषा
परिभाषा के कई रूप हैं: सामान्यतः एक स्पेक्ट्रम नुकीले टोपोलॉजिकल स्थानों या नुकीले स्थानों का कोई अनुक्रम होता है संरचना मानचित्र के साथ सरल समुच्चय, जहां स्मैश उत्पाद है। ए का स्मैश उत्पाद एक वृत्त के साथ नुकीला स्थान का निलंबन, दर्शाया गया है।
निम्नलिखित फ्रैंक एडम्स (1974) के कारण है: एक स्पेक्ट्रम (या सीडब्ल्यू-स्पेक्ट्रम) सीडब्ल्यू का एक अनुक्रम है के उप-कॉम्प्लेक्स के रूप में निलंबन के समावेशन के साथ कॉम्प्लेक्स है।
अन्य परिभाषाओं के लिए, सममित स्पेक्ट्रम और सरल स्पेक्ट्रम देखें।
एक स्पेक्ट्रम के समरूप समूह
स्पेक्ट्रा के सबसे महत्वपूर्ण अपरिवर्तनीयों में से एक स्पेक्ट्रम के होमोटॉपी समूह हैं। ये समूह रिक्त स्थान के स्थिर समरूप समूहों की परिभाषा को प्रतिबिंबित करते हैं क्योंकि निलंबन मानचित्रों की संरचना इसकी परिभाषा में अभिन्न है। एक स्पेक्ट्रम को देखते हुए होमोटोपी समूह को कोलिमिट के रूप में परिभाषित करें
जहां मानचित्र मानचित्र की संरचना से प्रेरित होते हैं (अर्थात, , की कार्यात्मकता द्वारा दिया गया है) और संरचना मानचित्र एक स्पेक्ट्रम को संयोजी कहा जाता है यदि इसका ऋणात्मक k के लिए शून्य है।
उदाहरण
ईलेनबर्ग-मैकलेन स्पेक्ट्रम
एक एबेलियन समूह ए में गुणांक के साथ एकवचन सह-समरूपता पर विचार करें। CW कॉम्प्लेक्स के लिए, समूह को मानचित्रों के समरूप वर्गों के समुच्चय से पहचाना जा सकता है से
को तक मानचित्रों के समरूप वर्गों के समुच्चय से पहचाना जा सकता है, डिग्री में केंद्रित समरूपता के साथ ईलेनबर्ग-मैकलेन स्पेस हम इसे इस प्रकार लिखते हैं
तब संगत स्पेक्ट्रम में n-वाँ स्थान है; इसे का ईलेनबर्ग-मैकलेन स्पेक्ट्रम कहा जाता है। ध्यान दें कि इस निर्माण का उपयोग किसी भी वलय को स्पेक्ट्रा की श्रेणी में एम्बेड करने के लिए किया जा सकता है। यह एम्बेडिंग वर्णक्रमीय ज्यामिति का आधार बनाती है, जो व्युत्पन्न बीजगणितीय ज्यामिति के लिए एक मॉडल है। इस एम्बेडिंग के महत्वपूर्ण गुणों में से एक आइसोमोर्फिज्म हैं
स्पेक्ट्रा की श्रेणी दिखाने से कम्यूटेटिव वलय की व्युत्पन्न जानकारी पर नज़र रखी जाती है, जहां स्मैश उत्पाद व्युत्पन्न टेंसर उत्पाद के रूप में कार्य करता है। इसके अतिरिक्त ईलेनबर्ग-मैकलेन स्पेक्ट्रा का उपयोग कम्यूटेटिव वलय के लिए टोपोलॉजिकल होशचाइल्ड होमोलॉजी जैसे सिद्धांतों को परिभाषित करने के लिए किया जा सकता है, जो मौलिक होशचाइल्ड होमोलॉजी की तुलना में अधिक परिष्कृत सिद्धांत है।
टोपोलॉजिकल कॉम्प्लेक्स के-सिद्धांत
दूसरे महत्वपूर्ण उदाहरण के रूप में, टोपोलॉजिकल के-सिद्धांत पर विचार करें। कम से कम एक्स कॉम्पैक्ट के लिए, इसे X पर जटिल सदिश बंडलों के मोनोइड के ग्रोथेंडिक समूह के रूप में परिभाषित किया गया है। इसके अतिरिक्त , एक्स के निलंबन पर सदिश बंडलों के अनुरूप समूह है। टोपोलॉजिकल के-सिद्धांत एक सामान्यीकृत कोहोमोलॉजी सिद्धांत है, इसलिए यह एक स्पेक्ट्रम देता है। शून्यवाँ स्थान है जबकि पहला स्थान है . यहाँ अनंत एकात्मक समूह है और इसका वर्गीकरण स्थान है। बॉट आवधिकता से हमें प्राप्त होता है और सभी n के लिए, इसलिए टोपोलॉजिकल K-थ्योरी स्पेक्ट्रम में सभी स्थान या तो दिए गए हैं या . जटिल सदिश बंडलों के अतिरिक्त वास्तविक सदिश बंडलों का उपयोग करके एक संबंधित निर्माण होता है, जो 8-आवधिक स्पेक्ट्रम देता है।
क्षेत्र स्पेक्ट्रम
स्पेक्ट्रम के सर्वोत्कृष्ट उदाहरणों में से एक गोलाकार स्पेक्ट्रम है। यह एक ऐसा स्पेक्ट्रम है जिसके समरूपी समूह गोले के स्थिर समरूपी समूहों द्वारा दिए जाते हैं
हम इस स्पेक्ट्रम को स्पष्ट रूप से जहां के रूप में लिख सकते हैं। ध्यान दें कि स्मैश उत्पाद इस स्पेक्ट्रम पर एक उत्पाद संरचना देता है
पर एक वलय संरचना उत्पन्न करता है। इसके अतिरिक्त यदि सममित स्पेक्ट्रा की श्रेणी पर विचार किया जाए, तो यह प्रारंभिक वस्तु बनाता है, जो क्रमविनिमेय वलय की श्रेणी में के अनुरूप है।
थॉम स्पेक्ट्रा
स्पेक्ट्रा का एक और विहित उदाहरण थॉम स्पेक्ट्रा से आता है जो विभिन्न सह-बॉर्डिज्म सिद्धांतों का प्रतिनिधित्व करता है। इसमें वास्तविक कोबॉर्डिज्म जटिल कोबॉर्डिज्म फ्रेम्ड कोबॉर्डिज्म, स्पिन कोबर्डिज्म , स्ट्रिंग कोबर्डिज्म इत्यादि सम्मिलित हैं। वास्तव में, किसी भी टोपोलॉजिकल समूह के लिए एक थॉम स्पेक्ट्रम है।
सस्पेंशन स्पेक्ट्रम
एक स्पेक्ट्रम का निर्माण एक स्थान से किया जा सकता है। निलंबन किसी स्थान का स्पेक्ट्रम, जिसे दर्शाया गया है, एक स्पेक्ट्रम (संरचना) है मानचित्र पहचान हैं।) उदाहरण के लिए, 0-गोले का निलंबन स्पेक्ट्रम ऊपर चर्चा किया गया गोलाकार स्पेक्ट्रम है। इस स्पेक्ट्रम के होमोटॉपी समूह तब के स्थिर होमोटॉपी समूह होते हैं
निलंबन स्पेक्ट्रम के निर्माण से पता चलता है कि प्रत्येक स्थान को कोहोमोलॉजी सिद्धांत के रूप में माना जा सकता है। वास्तव में, यह एक कारक को परिभाषित करता है
सीडब्ल्यू कॉम्प्लेक्स की होमोटॉपी श्रेणी से लेकर स्पेक्ट्रा की होमोटॉपी श्रेणी तक। आकारिकी द्वारा दी गई है
जो फ्रायडेन्थल निलंबन प्रमेय द्वारा अंततः स्थिर हो जाता है। इससे हमारा तात्पर्य से है
और
कुछ परिमित पूर्णांक के लिए . सीडब्ल्यू कॉम्प्लेक्स के लिए एक उलटा निर्माण है जो एक स्पेक्ट्रम लेता है और एक स्थान बनाता है
स्पेक्ट्रम का अनंत लूप स्पेस कहा जाता है। सीडब्ल्यू कॉम्प्लेक्स के लिए
और यह निर्माण प्रत्येक के लिए समावेशन के साथ आता है, इसलिए एक नक्शा देता है
जो कि इंजेक्शन है. दुर्भाग्य से, ये दो संरचनाएं, स्मैश उत्पाद के जुड़ने से, स्पेक्ट्रा के सिद्धांत में महत्वपूर्ण जटिलता उत्पन्न करती हैं क्योंकि स्पेक्ट्रा की एक भी श्रेणी उपस्थित नहीं हो सकती है जो इन संरचनाओं से संबंधित पांच सिद्धांतों की सूची को संतुष्ट करती हो।[1] उपरोक्त संयोजन केवल रिक्त स्थान और स्पेक्ट्रा की होमोटॉपी श्रेणियों में मान्य है, किंतु सदैव स्पेक्ट्रा की एक विशिष्ट श्रेणी (होमोटॉपी श्रेणी नहीं) के साथ नहीं है
Ω-स्पेक्ट्रम
Ω-स्पेक्ट्रम एक स्पेक्ट्रम है जैसे कि संरचना मानचित्र का जोड़ (अथार्त , मैप ) एक अशक्त तुल्यता है। वलय का K-सिद्धांत स्पेक्ट्रम Ω-स्पेक्ट्रम का एक उदाहरण है।
वलय स्पेक्ट्रम
एक वलय स्पेक्ट्रम एक स्पेक्ट्रम X है, जैसे कि स्मैश उत्पादों के संदर्भ में वलय स्वयंसिद्ध का वर्णन करने वाले आरेख होमोटॉपी तक पहुंचते हैं ( पहचान से मेल खाता है।) उदाहरण के लिए, टोपोलॉजिकल के-सिद्धांत का स्पेक्ट्रम एक वलय स्पेक्ट्रम है। एक 'मॉड्यूल स्पेक्ट्रम' को अनुरूप रूप से परिभाषित किया जा सकता है।
कई और उदाहरणों के लिए, कोहोमोलॉजी सिद्धांतों की सूची देखें।
स्पेक्ट्रा के कार्य, मानचित्र और समरूपता
तीन प्राकृतिक श्रेणियां हैं जिनकी वस्तुएं स्पेक्ट्रा हैं, जिनकी आकृतियाँ कार्य , या मानचित्र, या होमोटॉपी वर्ग हैं जिन्हें नीचे परिभाषित किया गया है।
दो स्पेक्ट्रा E और F के बीच एक कार्य En से Fn तक मानचित्रों का एक अनुक्रम है जो मानचित्रों ΣEn → En+1 and ΣFn → Fn+1 के साथ आवागमन करता है।
एक स्पेक्ट्रम दिया गया है, एक सबस्पेक्ट्रम उप-कॉम्प्लेक्स का एक क्रम है जो एक स्पेक्ट्रम भी है। चूंकि में प्रत्येक i-सेल में एक (i + 1)-सेल पर निलंबित होता है, एक सह-अंतिम उप-स्पेक्ट्रम एक उप-स्पेक्ट्रम होता है, जिसके लिए मूल स्पेक्ट्रम की प्रत्येक कोशिका अंततः उप-स्पेक्ट्रम में समाहित होती है। निलंबन की एक सीमित संख्या के बाद. स्पेक्ट्रा को तब स्पेक्ट्रा के मानचित्र को E से F के सह-अंतिम उप-स्पेक्ट्रम G से एक कार्य के रूप में परिभाषित करके एक श्रेणी में बदला जा सकता है, जहां दो ऐसे कार्य एक ही मानचित्र का प्रतिनिधित्व करते हैं यदि वे कुछ सह-अंतिम उप-स्पेक्ट्रम पर मेल खाते हैं। सहज रूप से स्पेक्ट्रा के ऐसे मानचित्र को हर जगह परिभाषित करने की आवश्यकता नहीं होती है, बस अंततः परिभाषित हो जाता है, और दो मानचित्र जो एक सह-अंतिम उप-स्पेक्ट्रम पर मेल खाते हैं, समतुल्य कहे जाते हैं। यह स्पेक्ट्रा (और मानचित्र) की श्रेणी देता है, जो एक प्रमुख उपकरण है। इस श्रेणी में नुकीले सीडब्ल्यू कॉम्प्लेक्स की श्रेणी का एक स्वाभाविक एम्बेडिंग है: यह को सस्पेंशन स्पेक्ट्रम में ले जाता है जिसमें nth कॉम्प्लेक्स है।
एक स्पेक्ट्रम का स्मैश उत्पाद और एक नुकीला परिसर द्वारा दिया गया एक स्पेक्ट्रम है (स्मैश उत्पाद की संबद्धता से तुरंत पता चलता है कि यह वास्तव में एक स्पेक्ट्रम है)। स्पेक्ट्रा के बीच मानचित्रों की एक समरूपता एक मानचित्र से मेल खाती है , जहाँ असंयुक्त संघ है साथ आधारबिंदु माना जाता है।
स्थिर होमोटॉपी श्रेणी, या (सीडब्ल्यू) स्पेक्ट्रा की होमोटॉपी श्रेणी को उस श्रेणी के रूप में परिभाषित किया गया है जिसकी वस्तुएं स्पेक्ट्रा हैं और जिनकी आकृतियाँ स्पेक्ट्रा के बीच मानचित्रों की होमोटॉपी कक्षाएं हैं। स्पेक्ट्रम की कई अन्य परिभाषाएँ, जिनमें से कुछ बहुत भिन्न दिखाई देती हैं, समतुल्य स्थिर समरूप श्रेणियों की ओर ले जाती हैं।
अंत में, हम स्पेक्ट्रम के निलंबन को द्वारा परिभाषित कर सकते हैं। यह अनुवाद निलंबन उलटा है, क्योंकि हम समुच्चय करके निलंबित भी कर सकते हैं।
स्पेक्ट्रा की त्रिकोणीय समरूप श्रेणी
स्थिर होमोटॉपी श्रेणी योगात्मक है: होमोटॉपी समूहों को परिभाषित करने के लिए उपयोग किए जाने वाले ट्रैक जोड़ के एक प्रकार का उपयोग करके मानचित्र जोड़े जा सकते हैं। इस प्रकार एक स्पेक्ट्रम से दूसरे स्पेक्ट्रम तक समरूप वर्ग एक एबेलियन समूह बनाते हैं। इसके अतिरिक्त स्थिर होमोटॉपी श्रेणी त्रिकोणीय श्रेणी (वोग्ट (1970)) है, जो बदलाव निलंबन द्वारा दिया जा रहा है और स्पेक्ट्रा के मैपिंग शंकु (टोपोलॉजी) अनुक्रमों द्वारा प्रतिष्ठित त्रिकोण हैं।
- .
स्पेक्ट्रा के उत्पादों को तोड़ें
स्पेक्ट्रा का स्मैश उत्पाद सीडब्ल्यू कॉम्प्लेक्स के स्मैश उत्पाद का विस्तार करता है। यह स्थिर समरूप श्रेणी को एक मोनोइडल श्रेणी में बनाता है; दूसरे शब्दों में यह एबेलियन समूहों के (व्युत्पन्न) टेंसर उत्पाद की तरह व्यवहार करता है। स्मैश उत्पाद के साथ एक बड़ी समस्या यह है कि इसे परिभाषित करने के स्पष्ट विधि से इसे केवल समरूपता तक सहयोगी और क्रमविनिमेय बनाते हैं। स्पेक्ट्रा की कुछ और आधुनिक परिभाषाएँ, जैसे कि सममित स्पेक्ट्रम, इस समस्या को खत्म करती हैं, और होमोटॉपी कक्षाओं में जाने से पहले, मानचित्रों के स्तर पर एक सममित मोनोइडल संरचना देती हैं।
स्मैश उत्पाद त्रिकोणीय श्रेणी संरचना के अनुकूल है। विशेष रूप से स्पेक्ट्रम के साथ एक प्रतिष्ठित त्रिकोण का स्मैश उत्पाद एक विशिष्ट त्रिकोण है।
सामान्यीकृत होमोलॉजी और स्पेक्ट्रा की सह-होमोलॉजी
हम किसी स्पेक्ट्रम के स्थिर समरूप समूह या (स्थिर) समरूप समूह को परिभाषित कर सकते हैं
- ,
जहां गोलाकार स्पेक्ट्रम है और को तक के मानचित्रों के समरूप वर्गों का समूह है। हम स्पेक्ट्रम E के सामान्यीकृत समरूपता सिद्धांत को परिभाषित करते हैं
और इसके सामान्यीकृत कोहोमोलोजी सिद्धांत को परिभाषित करें
यहाँ एक स्पेक्ट्रम या (इसके निलंबन स्पेक्ट्रम का उपयोग करके) एक स्थान हो सकता है।
स्पेक्ट्रा के साथ तकनीकी जटिलताएँ
स्पेक्ट्रा के साथ काम करते समय और स्पेक्ट्रा की एक श्रेणी को परिभाषित करते समय विहित जटिलताओं में से एक इस तथ्य से आती है कि इनमें से प्रत्येक श्रेणी स्पेक्ट्रम के अनंत लूप स्थान से संबंधित पांच स्पष्ट रूप से स्पष्ट सिद्धांतों को संतुष्ट नहीं कर सकती है।
भेज रहा है
रिक्त स्थान की श्रेणी और स्पेक्ट्रा की श्रेणी दोनों में सहायक कारक की एक जोड़ी, और स्मैश उत्पाद यदि हम को आधारित, सघन रूप से उत्पन्न, अशक्त हॉसडॉर्फ रिक्त स्थान की श्रेणी को निरूपित करने देते हैं, और को स्पेक्ट्रा की एक श्रेणी को निरूपित करने देते हैं, तो निम्नलिखित पांच सिद्धांत स्पेक्ट्रा के विशिष्ट मॉडल से कभी भी संतुष्ट नहीं हो सकते हैं:[1]
- स्मैश उत्पाद के संबंध में एक सममित मोनोइडल श्रेणी है
- फनकार , बायीं ओर से जुड़ा हुआ है
- स्मैश उत्पाद की इकाई गोला स्पेक्ट्रम है।
- या तो एक प्राकृतिक परिवर्तन है या एक प्राकृतिक परिवर्तन है जो दोनों श्रेणियों में इकाई वस्तु के साथ चलता है, और दोनों श्रेणियों में क्रमविनिमेय और साहचर्य समरूपता है।
- के लिए एक प्राकृतिक अशक्त तुल्यता है जो कि एक आवागमन आरेख है:
जहाँ अनुलग्नक में इकाई मानचित्र है।
इस वजह से, उपयोग किए जा रहे मॉडल के आधार पर स्पेक्ट्रा का अध्ययन खंडित हो गया है। एक अवलोकन के लिए, ऊपर उद्धृत लेख देखें।
इतिहास
स्पेक्ट्रम की अवधारणा का एक संस्करण 1958 में एलोन लागेस लीमा के डॉक्टरेट शोध प्रबंध में प्रस्तुत किया गया था। उनके सलाहकार एडविन स्पैनियार्ड ने 1959 में इस विषय पर आगे लिखा। स्पेक्ट्रा को 1960 के दशक की प्रारंभिक में सामान्यीकृत होमोलॉजी सिद्धांतों पर अपने काम में माइकल अतियाह और जॉर्ज डब्ल्यू व्हाइटहेड द्वारा अपनाया गया था। माइकल बोर्डमैन या जे की 1964 डॉक्टरेट थीसिस। माइकल बोर्डमैन ने स्पेक्ट्रा और उनके बीच के मानचित्रों (सिर्फ होमोटॉपी वर्ग नहीं) की एक श्रेणी की एक व्यावहारिक परिभाषा दी, जो स्थिर होमोटॉपी सिद्धांत में उतनी ही उपयोगी है जितनी सीडब्ल्यू कॉम्प्लेक्स की श्रेणी अस्थिर स्थिति में है। (यह अनिवार्य रूप से ऊपर वर्णित श्रेणी है, और इसका उपयोग अभी भी कई उद्देश्यों के लिए किया जाता है: अन्य खातों के लिए, एडम्स (1974) या रेनर वोग्ट (1970) देखें।) चूँकि 1990 के बाद से महत्वपूर्ण सैद्धांतिक प्रगति हुई है, जिससे औपचारिक रूप से अधिक सुधार हुआ है परिणाम स्वरुप वर्तमान के साहित्य में इन नए दृष्टिकोणों के एकीकृत उपचार के लिए स्पेक्ट्रम की संशोधित परिभाषाओं का उपयोग किया गया है, माइकल मैंडेल एट अल (2001) देखें।
यह भी देखें
- वलय स्पेक्ट्रम
- सममित स्पेक्ट्रम
- जी-स्पेक्ट्रम
- मानचित्रण स्पेक्ट्रम
- निलंबन (टोपोलॉजी)
- एडम्स वर्णक्रमीय अनुक्रम
संदर्भ
- ↑ 1.0 1.1 1.2 Lewis, L. Gaunce (1991-08-30). "Is there a convenient category of spectra?". Journal of Pure and Applied Algebra (in English). 73 (3): 233–246. doi:10.1016/0022-4049(91)90030-6. ISSN 0022-4049.
परिचयात्मक
- Adams, J. Frank (1974). स्थिर समरूपता और सामान्यीकृत समरूपता. University of Chicago Press. ISBN 9780226005249.
- Elmendorf, Anthony D.; Kříž, Igor; Mandell, Michael A.; May, J. Peter (1995), "Modern foundations for stable homotopy theory" (PDF), in James., Ioan M. (ed.), Handbook of algebraic topology, Amsterdam: North-Holland, pp. 213–253, CiteSeerX 10.1.1.55.8006, doi:10.1016/B978-044481779-2/50007-9, ISBN 978-0-444-81779-2, MR 1361891
सिद्धांत विकसित करने वाले आधुनिक लेख
- Mandell, Michael A.; May, J. Peter; Schwede, Stefan; Shipley, Brooke (2001), "Model categories of diagram spectra", Proceedings of the London Mathematical Society, Series 3, 82 (2): 441–512, CiteSeerX 10.1.1.22.3815, doi:10.1112/S0024611501012692, MR 1806878, S2CID 551246
ऐतिहासिक रूप से प्रासंगिक लेख
- Atiyah, Michael F. (1961). "बोर्डिज्म और कोबॉर्डिज्म". Proceedings of the Cambridge Philosophical Society. 57 (2): 200–8. doi:10.1017/s0305004100035064. S2CID 122937421.
- Lima, Elon Lages (1959), "The Spanier–Whitehead duality in new homotopy categories", Summa Brasil. Math., 4: 91–148, MR 0116332
- Lima, Elon Lages (1960), "Stable Postnikov invariants and their duals", Summa Brasil. Math., 4: 193–251
- Vogt, Rainer (1970), Boardman's stable homotopy category, Lecture Notes Series, No. 21, Matematisk Institut, Aarhus Universitet, Aarhus, MR 0275431
- Whitehead, George W. (1962), "Generalized homology theories", Transactions of the American Mathematical Society, 102 (2): 227–283, doi:10.1090/S0002-9947-1962-0137117-6
बाहरी संबंध
- Spectral Sequences - Allen Hatcher - contains excellent introduction to spectra and applications for constructing Adams spectral sequence
- An untitled book project about symmetric spectra
- "Are spectra really the same as cohomology theories?".