जनसंख्या अनुपात: Difference between revisions
(→प्रमाण) |
(→प्रमाण) |
||
Line 37: | Line 37: | ||
के रूप में दर्शाया जाता है।<ref name=":0" /> '' | के रूप में दर्शाया जाता है।<ref name=":0" /> '' | ||
:<math>\sigma_\hat{p} = \sqrt{\frac{P(1-P)}{n}}</math> | :<math>\sigma_\hat{p} = \sqrt{\frac{P(1-P)}{n}}</math> | ||
क्योंकि <math>P</math> का मान अज्ञात होता है, इसलिए <math>P</math> के लिए एक निष्पक्ष सांख्यिकीय आंकड़ा <math>\hat{p}</math> का उपयोग किया जाएगा। औसत और मानक विचलन इस प्रकार से पुनः लिखे जाते हैं: | |||
:<math>\mu_\hat{p} | :<math>\mu_\hat{p} | ||
= \hat{p}</math> और <math>\sigma_\hat{p} | = \hat{p}</math> और <math>\sigma_\hat{p} | ||
= \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}</math> [[केंद्रीय सीमा | = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}</math>[[केंद्रीय सीमा सिद्धांत]] को आह्वान करते हुए, नमूना अनुपातों का नमूना संग्रह लगभग [[सामान्य वितरण]] का होता है—प्रदान कि नमूना पर्याप्त बड़ा हो और विकृतिहीन हो। | ||
मान लीजिए कि निम्नलिखित संभाव्यता की गणना की जाती है: | मान लीजिए कि निम्नलिखित संभाव्यता की गणना की जाती है: | ||
:<math>P(-z^*<\frac{\hat{p}-P}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}<z^*) = C | :<math>P(-z^*<\frac{\hat{p}-P}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}<z^*) = C | ||
</math>, | </math>, | ||
यहां, <math>0<C<1</math> है और <math>\pm | |||
z^*</math> मानक | z^*</math> मानक क्रिटिकल मान हैं।. | ||
[[ | [[चित्र:नमूना अनुपातों का नमूना संग्रह सामान्यता थेट नमूना संग्रह.png|thumb|नमूना अनुपातों का नमूना संग्रह के बारे में ज्ञात है कि इसके लिए केंद्रीय सीमा सिद्धांत की आवश्यकताएं पूरी होने पर यह लगभग सामान्य है।]] | ||
:<math>-z^*<\frac{\hat{p}-P}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}<z^* | :<math>-z^*<\frac{\hat{p}-P}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}<z^* | ||
</math> | </math> | ||
Line 60: | Line 60: | ||
\hat{p}-z^*{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}<P<\hat{p}+z^*{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} | \hat{p}-z^*{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}}<P<\hat{p}+z^*{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} | ||
</math> | </math> | ||
ऊपर किए गए | ऊपर किए गए बीजगणित के माध्यम से, एक प्रमाणिका <math>P</math> के मान के बीच में एक निश्चितता स्तर <math>C</math> से स्पष्ट रूप से ज्ञात होता है। | ||
:<math>\hat{p} | :<math>\hat{p} | ||
\pm | \pm |
Revision as of 10:12, 14 July 2023
सांख्यिकी में, जनसंख्या अनुपात सामान्यतः या यूनानी वर्णमाला Pi (π) से दर्शाया जाता है, जो जनसंख्या से संबंधित प्रतिशत मान का विवरण करता है। उदाहरण के रूप में, 2010 के संयुक्त राज्य जनगणना ने दिखाया कि अमेरिकी जनसंख्या के 83.7% को हिस्पैनिक या लैटिनो होने के रूप में की गई थी; 837 की मान्यता एक जनसंख्या अनुपात है। सामान्य रूप से, जनसंख्या अनुपात और अन्य जनसंख्या प्रामाणिकाएं अज्ञात होती हैं। जनसंख्या मापदंडों का वास्तविक मूल्य निर्धारित करने के लिए जनगणना आयोजित की जा सकती है जिससे जनसंख्या प्रामाणिका का वास्तविक मान निर्धारित किया जा सके, परंतु प्रायः जनगणना आर्थिक और समय के अधिकार कारणों से संभव नहीं होती है।
जनसंख्या अनुपात का अनुमान सामान्यतः एक अवलोकन अध्ययन या प्रयोग से प्राप्त प्रतिदर्श पूर्वाग्रह सांख्यिकी के माध्यम से लगाया जाता है। उदाहरण के लिए, राष्ट्रीय प्रौद्योगिकी साक्षरता सम्मेलन ने 2,000 वयस्कों का एक राष्ट्रीय सर्वेक्षण आयोजित किया था जिससे ऐसे वयस्कों का प्रतिशत निर्धारित किया जा सके जो आर्थिक रूप से अशिक्षित हैं। इस अध्ययन से पता चला कि 2,000 वयस्कों में से 72% को यह समझ में नहीं आया कि सकल घरेलू उत्पाद क्या है।[1] 72% का मान एक प्रतिदर्श अनुपात है। प्रतिदर्श अनुपात को सामान्यतः से दर्शाया जाता है और कुछ पाठ्यपुस्तकों में से भी दर्शाया जाता है। [2][3]
गणितीय परिभाषा
एक अनुपात गणितीय रूप से परिभाषित है कि यह एक उपसमुच्चय में तत्वों की योग्यता के अनुपात को एक समुच्चय के आकार के साथ व्यक्त करता है।
यहां जनसंख्या में सफलताओं की गिनती है, और जनसंख्या का आकार है।
यह गणितीय परिभाषा सामान्यता प्राप्त करके प्रतिदर्श अनुपात की परिभाषा प्रदान करती है:
यहां प्रतिदर्श में सफलताओं की गिनती है, और प्रतिदर्श का आकार है जो जनसंख्या से प्राप्त होता है।[4][2]
अनुमान
अनुमानित सांख्यिकी में अध्ययन का एक मुख्य ध्येय प्रामाणिका के "सच्चे" मान का निर्धारण करना है। सामान्यतः, एक निश्चित प्रामाणिका के वास्तविक मान को नहीं पाया जा सकता है, जब तक अध्ययन की जनसंख्या पर एक जनगणना नहीं होती है। यद्यपि, यहां तक कि प्रामाणिका के लिए एक सार्वजनिक गणना की जाए, सांख्यिकीय विधियां हैं जो इसका उचित आंकलन प्राप्त करने के लिए प्रयोग की जा सकती हैं। इन विधियों में समायोजन अंतराल और अनुमानित मान की निश्चितता की परीक्षा सम्मिलित होती है।
जनसंख्या अनुपात के मूल्य का अनुमान लगाना कृषि, व्यवसाय, अर्थशास्त्र, शिक्षा, अभियांत्रिकी, पर्यावरण अध्ययन, चिकित्सा, कानून, राजनीति विज्ञान, मनोविज्ञान और समाजशास्त्र के क्षेत्रों में बहुत महत्वपूर्ण हो सकता है।
जनसंख्या अनुपात का अनुमान z -अंतराल में एक-प्रतिदर्श अनुपात के रूप में ज्ञात आत्मविश्वास अंतराल के उपयोग के माध्यम से लगाया जा सकता है जिसका सूत्र नीचे दिया गया है:
- यहाँ प्रतिदर्श अनुपात है, प्रतिदर्श का आकार है, और संकेतांक है जो अनुमान स्तर के लिए मानक साधारित वितरण के ऊपरी छिद्रान्वेषी मान है। .[5]
प्रमाण
एक-नमूना अनुपात Z-अंतराल के लिए सूत्र निर्धारित करने के लिए, नमूना अनुपातों के एक नमूना संग्रह का ध्यान देना आवश्यक होता है। नमूना अनुपातों के नमूना संग्रह की साधारित औसत आमतौर पर के रूप में दर्शाया जाता है।[2]
क्योंकि का मान अज्ञात होता है, इसलिए के लिए एक निष्पक्ष सांख्यिकीय आंकड़ा का उपयोग किया जाएगा। औसत और मानक विचलन इस प्रकार से पुनः लिखे जाते हैं:
- और केंद्रीय सीमा सिद्धांत को आह्वान करते हुए, नमूना अनुपातों का नमूना संग्रह लगभग सामान्य वितरण का होता है—प्रदान कि नमूना पर्याप्त बड़ा हो और विकृतिहीन हो।
मान लीजिए कि निम्नलिखित संभाव्यता की गणना की जाती है:
- ,
यहां, है और मानक क्रिटिकल मान हैं।.
thumb|नमूना अनुपातों का नमूना संग्रह के बारे में ज्ञात है कि इसके लिए केंद्रीय सीमा सिद्धांत की आवश्यकताएं पूरी होने पर यह लगभग सामान्य है।
बीजगणितीय रूप से इस प्रकार पुनः लिखा जा सकता है:
ऊपर किए गए बीजगणित के माध्यम से, एक प्रमाणिका के मान के बीच में एक निश्चितता स्तर से स्पष्ट रूप से ज्ञात होता है।
- .
अनुमान के लिए शर्तें
सामान्य तौर पर, जनसंख्या अनुपात का अनुमान लगाने के लिए उपयोग किए जाने वाले सूत्र को ज्ञात संख्यात्मक मानों के प्रतिस्थापन की आवश्यकता होती है। हालाँकि, इन संख्यात्मक मानों को सूत्र में आँख बंद करके प्रतिस्थापित नहीं किया जा सकता क्योंकि सांख्यिकीय अनुमान के लिए आवश्यक है कि किसी अज्ञात पैरामीटर का अनुमान उचित हो। किसी पैरामीटर के अनुमान को उचित ठहराने के लिए, तीन शर्तें हैं जिन्हें सत्यापित करने की आवश्यकता है:
- डेटा का व्यक्तिगत अवलोकन रुचि की जनसंख्या के एक सरल यादृच्छिक नमूने से प्राप्त किया जाना है।
- डेटा के व्यक्तिगत अवलोकनों में सामान्यता (सांख्यिकी) प्रदर्शित होनी चाहिए। इसे निम्नलिखित परिभाषा से गणितीय रूप से सत्यापित किया जा सकता है:
- होने देना किसी दिए गए यादृच्छिक नमूने का प्रतिदर्श आकार हो और चलो इसका प्रतिदर्श अनुपात हो. अगर और , तो डेटा के व्यक्तिगत अवलोकन सामान्यता प्रदर्शित करते हैं।
- डेटा के व्यक्तिगत अवलोकन एक-दूसरे पर निर्भर और स्वतंत्र चर होने चाहिए। इसे निम्नलिखित परिभाषा से गणितीय रूप से सत्यापित किया जा सकता है:
- होने देना रुचि की जनसंख्या का आकार हो और चलो जनसंख्या के एक साधारण यादृच्छिक नमूने का प्रतिदर्श आकार हो। अगर , तो डेटा के व्यक्तिगत अवलोकन एक दूसरे से स्वतंत्र होते हैं।
अधिकांश सांख्यिकीय पाठ्यपुस्तकों में एसआरएस, सामान्यता और स्वतंत्रता की शर्तों को कभी-कभी अनुमान टूल बॉक्स की शर्तों के रूप में संदर्भित किया जाता है।
उदाहरण
मान लीजिए लोकतंत्र में राष्ट्रपति का चुनाव हो रहा है। लोकतंत्र की मतदाता आबादी में 400 पात्र मतदाताओं का एक यादृच्छिक प्रतिदर्श दर्शाता है कि 272 मतदाता उम्मीदवार बी का समर्थन करते हैं। एक राजनीतिक वैज्ञानिक यह निर्धारित करना चाहता है कि मतदाता आबादी का कितना प्रतिशत उम्मीदवार बी का समर्थन करता है।
राजनीतिक वैज्ञानिक के प्रश्न का उत्तर देने के लिए, इस लोकतंत्र में उम्मीदवार बी का समर्थन करने वाले योग्य मतदाताओं के जनसंख्या अनुपात को निर्धारित करने के लिए 95% के विश्वास स्तर के साथ जेड-अंतराल में एक-प्रतिदर्श अनुपात का निर्माण किया जा सकता है।
समाधान
रैंडम सैंपल से ये पता चलता है प्रतिदर्श आकार के साथ . विश्वास अंतराल के निर्माण से पहले, अनुमान की शर्तों को सत्यापित किया जाएगा।
- चूंकि मतदान करने वाली आबादी से 400 मतदाताओं का एक यादृच्छिक प्रतिदर्श प्राप्त किया गया था, इसलिए एक साधारण यादृच्छिक नमूने की शर्त पूरी हो गई है।
- होने देना और , इसकी जांच की जाएगी और
- और
- सामान्य स्थिति की शर्त पूरी कर ली गई है।
- होने देना इस लोकतंत्र में मतदाता जनसंख्या का आकार हो, और रहने दो . अगर , तो स्वतंत्रता है।
- जनसंख्या का आकार इस लोकतंत्र के मतदाताओं की संख्या कम से कम 4,000 मानी जा सकती है। अत: स्वतंत्रता की शर्त पूरी हो गई है।
अनुमान की शर्तों को सत्यापित करने के साथ, एक विश्वास अंतराल का निर्माण करने की अनुमति है।
होने देना और के लिए समाधान करना , अभिव्यक्ति (गणित) प्रयोग किया जाता है।
एक मानक सामान्य घंटी वक्र की जांच करके, के लिए मूल्य यह पहचान कर निर्धारित किया जा सकता है कि कौन सा मानक स्कोर मानक सामान्य वक्र को 0.0250 का ऊपरी पूंछ क्षेत्र या 1 - 0.0250 = 0.9750 का क्षेत्र देता है। के लिए मूल्य इसे मानक सामान्य संभावनाओं की तालिका के माध्यम से भी पाया जा सकता है।
मानक सामान्य संभावनाओं की तालिका से, का मान जो 0.9750 का क्षेत्रफल देता है वह 1.96 है। इसलिए, के लिए मूल्य 1.96 है.
के लिए मान , , अब इसे Z-अंतराल में एक-प्रतिदर्श अनुपात के सूत्र में प्रतिस्थापित किया जा सकता है:
अनुमान की शर्तों और ज़ेड-अंतराल में एक-प्रतिदर्श अनुपात के सूत्र के आधार पर, 95% विश्वास स्तर के साथ यह निष्कर्ष निकाला जा सकता है कि इस लोकतंत्र में उम्मीदवार बी का समर्थन करने वाले मतदाता आबादी का प्रतिशत 63.429% और 72.571 के बीच है। %.
कॉन्फिडेंस इंटरवल रेंज में पैरामीटर का मान
अनुमानित आँकड़ों में आमतौर पर पूछा जाने वाला प्रश्न यह है कि क्या पैरामीटर को विश्वास अंतराल के भीतर शामिल किया गया है। इस प्रश्न का उत्तर देने का एकमात्र तरीका जनगणना आयोजित करना है। ऊपर दिए गए उदाहरण का संदर्भ लेते हुए, जनसंख्या अनुपात विश्वास अंतराल की सीमा में होने की संभावना या तो 1 या 0 है। यानी, पैरामीटर अंतराल सीमा में शामिल है या नहीं। कॉन्फिडेंस इंटरवल का मुख्य उद्देश्य यह बेहतर ढंग से बताना है कि किसी पैरामीटर के लिए आदर्श मान संभवतः क्या हो सकता है।
अनुमान से सामान्य त्रुटियाँ और गलत व्याख्याएँ
आत्मविश्वास अंतराल के निर्माण से उत्पन्न होने वाली एक बहुत ही सामान्य त्रुटि यह विश्वास है कि आत्मविश्वास का स्तर, जैसे , मतलब 95% संभावना. ये ग़लत है. आत्मविश्वास का स्तर निश्चितता के माप पर आधारित है, संभावना पर नहीं। इसलिए, के मूल्य विशेष रूप से 0 और 1 के बीच गिरना।
रैंक सेट सैंपलिंग का उपयोग करके पी का अनुमान
सरल यादृच्छिक नमूने के बजाय रैंक सेट प्रतिदर्श करण चुनकर पी का अधिक सटीक अनुमान प्राप्त किया जा सकता है[6][7]
यह भी देखें
- द्विपद अनुपात विश्वास अंतराल
- विश्वास अंतराल
- व्यापकता
- सांख्यिकीय परिकल्पना परीक्षण
- सांख्यिकीय निष्कर्ष
- सांख्यिकीय पैरामीटर
- सहिष्णुता अंतराल
संदर्भ
- ↑ Ott, R. Lyman (1993). सांख्यिकीय विधियों और डेटा विश्लेषण का परिचय. ISBN 0-534-93150-2.
- ↑ 2.0 2.1 2.2 Weisstein, Eric W. "नमूना अनुपात". mathworld.wolfram.com (in English). Retrieved 2020-08-22.
- ↑ "6.3: The Sample Proportion". Statistics LibreTexts (in English). 2014-04-16. Retrieved 2020-08-22.
- ↑ Weisstein, Eric (1998). सीआरसी गणित का संक्षिप्त विश्वकोश. Chapman & Hall/CRC. Bibcode:1998ccem.book.....W.
- ↑ Hinders, Duane (2008). एनोटेटेड शिक्षक संस्करण सांख्यिकी का अभ्यास. ISBN 978-0-7167-7703-8.
- ↑ Abbasi, Azhar Mehmood; Yousaf Shad, Muhammad (2021-05-15). "सहवर्ती आधारित रैंक सेट नमूने का उपयोग करके जनसंख्या अनुपात का अनुमान". Communications in Statistics - Theory and Methods. 51 (9): 2689–2709. doi:10.1080/03610926.2021.1916529. ISSN 0361-0926. S2CID 236554602.
- ↑ Abbasi, Azhar Mehmood; Shad, Muhammad Yousaf (2021-05-15). "सहवर्ती आधारित रैंक सेट नमूने का उपयोग करके जनसंख्या अनुपात का अनुमान". Communications in Statistics - Theory and Methods. 51 (9): 2689–2709. doi:10.1080/03610926.2021.1916529. ISSN 0361-0926. S2CID 236554602.