जॉर्डन आव्यूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Block diagonal matrix of Jordan blocks}}
{{Short description|Block diagonal matrix of Jordan blocks}}
[[मैट्रिक्स (गणित)|आव्यूह (गणित)]] के गणित अनुशासन में, जॉर्डन आव्यूह, जिसका नाम [[केमिली जॉर्डन]] के नाम पर रखा गया है, रिंग (गणित) के ऊपर [[ब्लॉक मैट्रिक्स|ब्लॉक आव्यूह]] है {{mvar|R}} (जिसका [[पहचान तत्व]] [[0 (संख्या)]] 0 और [[1 (संख्या)]] 1 है), जहां विकर्ण के साथ प्रत्येक ब्लॉक, जिसे जॉर्डन ब्लॉक कहा जाता है, निम्न रूप है:
[[मैट्रिक्स (गणित)|आव्यूह (गणित)]] के गणित अनुशासन में, '''जॉर्डन आव्यूह''', जिसका नाम [[केमिली जॉर्डन]] के नाम पर रखा गया है, इस प्रकार वलय (गणित) के ऊपर [[ब्लॉक मैट्रिक्स|ब्लॉक आव्यूह]] है {{mvar|R}} (जिसका [[पहचान तत्व]] [[0 (संख्या)]] 0 और [[1 (संख्या)]] 1 है), जहां विकर्ण के साथ प्रत्येक ब्लॉक, जिसे जॉर्डन ब्लॉक कहा जाता है, निम्न रूप है:
<math display="block">\begin{bmatrix}
<math display="block">\begin{bmatrix}
\lambda & 1      & 0      & \cdots  & 0 \\
\lambda & 1      & 0      & \cdots  & 0 \\
Line 8: Line 8:
0      & 0      & 0      & 0      & \lambda
0      & 0      & 0      & 0      & \lambda
\end{bmatrix} . </math>
\end{bmatrix} . </math>
==परिभाषा                                                                                              ==
==परिभाषा                                                                                              ==
प्रत्येक जॉर्डन ब्लॉक को उसके आयाम ''n'' और उसके [[eigenvalue|इगेनवैल्यू]] द्वारा निर्दिष्ट किया जाता है <math>\lambda\in R</math>, और के रूप में दर्शाया गया है {{math|''J''<sub>λ,''n''</sub>}}. यह है <math>n\times n</math> विकर्ण को छोड़कर हर जगह शून्य का आव्यूह, जो भरा हुआ है <math>\lambda</math> और [[ अतिविकर्ण |अतिविकर्ण]] के लिए, जो से बना है।
प्रत्येक जॉर्डन ब्लॉक को उसके आयाम ''n'' और उसके [[eigenvalue|इगेनवैल्यू]] द्वारा निर्दिष्ट किया जाता है , और <math>\lambda\in R</math> के रूप में दर्शाया गया है यह {{math|''J''<sub>λ,''n''</sub>}} है <math>n\times n</math> विकर्ण को छोड़कर प्रत्येक समिष्ट शून्य का आव्यूह, जो <math>\lambda</math> भरा हुआ है जो [[ अतिविकर्ण |अतिविकर्ण]] से बना है।


कोई भी ब्लॉक विकर्ण आव्यूह जिसके ब्लॉक जॉर्डन ब्लॉक हैं उसे जॉर्डन आव्यूह कहा जाता है। यह {{math|(''n''<sub>1</sub> + ⋯ + ''n<sub>r</sub>'') × (''n''<sub>1</sub> + ⋯ + ''n<sub>r</sub>'')}} वर्ग आव्यूह, से मिलकर {{mvar|r}} विकर्ण ब्लॉकों को सघन रूप से दर्शाया जा सकता है <math>J_{\lambda_1,n_1}\oplus \cdots \oplus J_{\lambda_r,n_r}</math> या <math>\mathrm{diag}\left(J_{\lambda_1,n_1}, \ldots, J_{\lambda_r,n_r}\right)</math>, जहां i-th जॉर्डन ब्लॉक है {{math|''J''<sub>λ<sub>i</sub>,''n''<sub>i</sub></sub>}}.
कोई भी ब्लॉक विकर्ण आव्यूह जिसके ब्लॉक जॉर्डन ब्लॉक हैं उसे जॉर्डन आव्यूह कहा जाता है। इस प्रकार यह {{math|(''n''<sub>1</sub> + ⋯ + ''n<sub>r</sub>'') × (''n''<sub>1</sub> + ⋯ + ''n<sub>r</sub>'')}} वर्ग आव्यूह, से मिलकर {{mvar|r}} विकर्ण ब्लॉकों को सघन रूप <math>J_{\lambda_1,n_1}\oplus \cdots \oplus J_{\lambda_r,n_r}</math> या <math>\mathrm{diag}\left(J_{\lambda_1,n_1}, \ldots, J_{\lambda_r,n_r}\right)</math> से दर्शाया जा सकता है , जहां i-th {{math|''J''<sub>λ<sub>i</sub>,''n''<sub>i</sub></sub>}} जॉर्डन ब्लॉक है .


उदाहरण के लिए, आव्यूह
उदाहरण के लिए, आव्यूह
Line 28: Line 26:
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 \end{array}\right]</math>
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 \end{array}\right]</math>
है {{math|10 × 10}} जॉर्डन आव्यूह के साथ {{math|3 × 3}} इगेनवैल्यू के साथ ब्लॉक करें {{math|0}}, दो {{math|2 × 2}} [[काल्पनिक इकाई]] को इगेनवैल्यू के साथ ब्लॉक करता है {{mvar|i}}, और {{math|3 × 3}} इगेनवैल्यू 7 के साथ ब्लॉक। इसकी जॉर्डन-ब्लॉक संरचना या तो लिखी गई है <math>J_{0,3}\oplus J_{i,2}\oplus J_{i,2}\oplus J_{7,3}</math> या {{math|diag(''J''<sub>0,3</sub>, ''J''<sub>''i'',2</sub>, ''J''<sub>''i'',2</sub>, ''J''<sub>7,3</sub>)}}.
{{math|10 × 10}} जॉर्डन आव्यूह A के साथ {{math|3 × 3}} इगेनवैल्यू के साथ ब्लॉक करें {{math|0}}, दो {{math|2 × 2}} [[काल्पनिक इकाई]] को इगेनवैल्यू {{mvar|i}} के साथ ब्लॉक करता है , और A {{math|3 × 3}} इगेनवैल्यू 7 के साथ ब्लॉक इसकी जॉर्डन-ब्लॉक संरचना या तो <math>J_{0,3}\oplus J_{i,2}\oplus J_{i,2}\oplus J_{7,3}</math> या {{math|diag(''J''<sub>0,3</sub>, ''J''<sub>''i'',2</sub>, ''J''<sub>''i'',2</sub>, ''J''<sub>7,3</sub>)}}.लिखी गई है


==रेखीय बीजगणित ==
==रेखीय बीजगणित ==
कोई {{math|''n'' × ''n''}} वर्ग आव्यूह {{mvar|A}} जिनके तत्व बीजगणितीय रूप से बंद क्षेत्र में हैं {{mvar|K}} जॉर्डन आव्यूह के समान आव्यूह है {{mvar|J}}, मे भी <math>\mathbb{M}_n (K)</math>, जो अपने विकर्ण ब्लॉकों के क्रमपरिवर्तन तक अद्वितीय है। {{mvar|J}} को जॉर्डन का सामान्य रूप कहा जाता है {{mvar|A}} और विकर्णीकरण प्रक्रिया के सामान्यीकरण से मेल खाता है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=310–316}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=317}}</ref><ref>{{harvtxt|Nering|1970|pp=118–127}}</ref> [[विकर्णीय मैट्रिक्स|विकर्णीय आव्यूह]], वास्तव में, जॉर्डन आव्यूह के विशेष मामले के समान है: वह आव्यूह जिसके सभी ब्लॉक हैं {{mvar|1 × 1}}.<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=270–274}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=316}}</ref><ref>{{harvtxt|Nering|1970|pp=113–118}}</ref>
कोई {{math|''n'' × ''n''}} वर्ग आव्यूह {{mvar|A}} जिनके तत्व बीजगणितीय रूप से संवर्त क्षेत्र में हैं {{mvar|K}} जॉर्डन आव्यूह {{mvar|J}}, मे भी <math>\mathbb{M}_n (K)</math> के समान आव्यूह है, इस प्रकार जो अपने विकर्ण ब्लॉकों के क्रम परिवर्तन तक अद्वितीय है। इस प्रकार {{mvar|J}} को जॉर्डन {{mvar|A}} का सामान्य रूप कहा जाता है और विकर्णीकरण प्रक्रिया के सामान्यीकरण से मेल खाता है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=310–316}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=317}}</ref><ref>{{harvtxt|Nering|1970|pp=118–127}}</ref> [[विकर्णीय मैट्रिक्स|विकर्णीय आव्यूह]], वास्तव में, जॉर्डन आव्यूह के विशेष स्थिति के समान है: वह आव्यूह {{mvar|1 × 1}} जिसके सभी ब्लॉक हैं .<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=270–274}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=316}}</ref><ref>{{harvtxt|Nering|1970|pp=113–118}}</ref>
अधिक सामान्यतः, जॉर्डन आव्यूह दिया गया है <math>J=J_{\lambda_1,m_1}\oplus J_{\lambda_2,m_2} \oplus\cdots\oplus J_{\lambda_N,m_N}</math>, अर्थात्, किसका {{mvar|k}}वां विकर्ण ब्लॉक, <math>1 \leq k \leq N</math>, जॉर्डन ब्लॉक है {{math|''J''<sub>λ<sub>''k''</sub>,''m<sub>k</sub>''</sub>}} और जिनके विकर्ण तत्व <math>\lambda_k</math> सभी अलग-अलग नहीं हो सकते, [[ज्यामितीय बहुलता]] <math>\lambda\in K</math> आव्यूह के लिए {{mvar|J}}, के रूप में दर्शाया गया है <math>\operatorname{gmul}_J \lambda</math>, जॉर्डन ब्लॉक की संख्या से मेल खाता है जिसका इगेनवैल्यू है {{math|λ}}. जबकि इगेनवैल्यू का सूचकांक <math>\lambda</math> के लिए {{mvar|J}}, के रूप में दर्शाया गया है <math>\operatorname{idx}_J \lambda</math>, को उस इगेनवैल्यू से जुड़े सबसे बड़े जॉर्डन ब्लॉक के आयाम के रूप में परिभाषित किया गया है।
 
अधिक सामान्यतः, जॉर्डन आव्यूह <math>J=J_{\lambda_1,m_1}\oplus J_{\lambda_2,m_2} \oplus\cdots\oplus J_{\lambda_N,m_N}</math> दिया गया है , अर्थात्, किसका {{mvar|k}}वां विकर्ण ब्लॉक, <math>1 \leq k \leq N</math>, जॉर्डन ब्लॉक {{math|''J''<sub>λ<sub>''k''</sub>,''m<sub>k</sub>''</sub>}} है और जिनके विकर्ण तत्व <math>\lambda_k</math> सभी अलग-अलग नहीं हो सकते है, [[ज्यामितीय बहुलता]] <math>\lambda\in K</math> आव्यूह के लिए {{mvar|J}}, के रूप में दर्शाया गया है , जॉर्डन ब्लॉक की संख्या {{math|λ}} से मेल खाता है जिसका इगेनवैल्यू है . जबकि इगेनवैल्यू का सूचकांक <math>\lambda</math> के लिए {{mvar|J}}, के रूप में दर्शाया गया है इस प्रकार <math>\operatorname{idx}_J \lambda</math>, को उस इगेनवैल्यू से जुड़े सबसे बड़े जॉर्डन ब्लॉक के आयाम के रूप में परिभाषित किया गया है।


यही बात सभी आव्यूह के लिए भी लागू होती है {{mvar|A}} के समान {{mvar|J}}, इसलिए <math>\operatorname{idx}_A \lambda</math> जॉर्डन के सामान्य रूप के संबंध में तदनुसार परिभाषित किया जा सकता है {{mvar|A}} इसके किसी भी eigenvalues ​​​​के लिए <math>\lambda \in \operatorname{spec}A</math>. इस मामले में कोई यह जांच सकता है कि का सूचकांक <math>\lambda</math> के लिए {{mvar|A}} [[न्यूनतम बहुपद (रैखिक बीजगणित)]] के मूल के रूप में इसकी बहुलता के बराबर है {{mvar|A}} (जबकि, परिभाषा के अनुसार, इसकी [[बीजगणितीय बहुलता]] {{mvar|A}}, <math>\operatorname{mul}_A \lambda</math>, के अभिलक्षणिक बहुपद के मूल के रूप में इसकी बहुलता है {{mvar|A}}; वह है, <math>\det(A-xI)\in K[x]</math>). के लिए समान आवश्यक एवं पर्याप्त शर्त {{mvar|A}} में विकर्णीय होना {{mvar|K}} यह है कि इसके सभी eigenvalues ​​​​का सूचकांक बराबर है {{math|1}}; अर्थात्, इसके न्यूनतम बहुपद में केवल सरल मूल होते हैं।
यही बात सभी आव्यूह के लिए भी प्रयुक्त होती है {{mvar|A}} के समान {{mvar|J}}, इसलिए <math>\operatorname{idx}_A \lambda</math> जॉर्डन के सामान्य रूप के संबंध {{mvar|A}} में तदनुसार परिभाषित किया जा सकता है इसके किसी भी इगेनवैल्यू ​​​​के लिए <math>\lambda \in \operatorname{spec}A</math>. इस स्थिति में कोई यह जांच सकता है कि का सूचकांक <math>\lambda</math> के लिए {{mvar|A}} [[न्यूनतम बहुपद (रैखिक बीजगणित)]] के मूल {{mvar|A}} के रूप में इसकी बहुलता के समान है (जबकि, परिभाषा के अनुसार, इसकी [[बीजगणितीय बहुलता]] {{mvar|A}}, <math>\operatorname{mul}_A \lambda</math>, के अभिलक्षणिक बहुपद के मूल के रूप में इसकी {{mvar|A}} बहुलता है ; वह है, <math>\det(A-xI)\in K[x]</math>). के लिए समान आवश्यक एवं पर्याप्त नियम {{mvar|A}} में विकर्णीय {{mvar|K}} होता है यह है कि इसके सभी इगेनवैल्यू {{math|1}} ​​​​का सूचकांक समान है ; अर्थात्, इसके न्यूनतम बहुपद में केवल सरल मूल होते हैं।


ध्यान दें कि किसी आव्यूह के स्पेक्ट्रम को उसके सभी बीजगणितीय/ज्यामितीय बहुलताओं और सूचकांकों के साथ जानने से हमेशा इसके जॉर्डन सामान्य रूप की गणना की अनुमति नहीं मिलती है (यह केवल वर्णक्रमीय रूप से सरल, आमतौर पर कम-आयामी आव्यूह के लिए पर्याप्त शर्त हो सकती है): जॉर्डन- सामान्य तौर पर, शेवेल्ली अपघटन कम्प्यूटेशनल रूप से चुनौतीपूर्ण कार्य है। [[ सदिश स्थल |सदिश स्थल]] के दृष्टिकोण से, जॉर्डन-चेवेल्ली अपघटन डोमेन के ऑर्थोगोनल अपघटन (जो कि जॉर्डन ब्लॉक द्वारा दर्शाए गए ईजेनस्पेस के वेक्टर रिक्त स्थान के प्रत्यक्ष योग के माध्यम से) को खोजने के बराबर है, जिसके लिए संबंधित सामान्यीकृत ईजेनवेक्टर आधार बनाते हैं।
ध्यान दें कि किसी आव्यूह के स्पेक्ट्रम को उसके सभी बीजगणितीय/ज्यामितीय बहुलताओं और सूचकांकों के साथ जानने से सदैव इसके जॉर्डन सामान्य रूप की गणना की अनुमति नहीं मिलती है (यह केवल वर्णक्रमीय रूप से सरल, सामान्यतः कम-आयामी आव्यूह के लिए पर्याप्त नियम हो सकती है): जॉर्डन- सामान्यतः, शेवेल्ली अपघटन कम्प्यूटेशनल रूप से चुनौतीपूर्ण कार्य है। इस प्रकार [[ सदिश स्थल |सदिश स्थल]] के दृष्टिकोण से, जॉर्डन-चेवेल्ली अपघटन डोमेन के ऑर्थोगोनल अपघटन (जो कि जॉर्डन ब्लॉक द्वारा दर्शाए गए ईजेनस्पेस के सदिश रिक्त समिष्ट के प्रत्यक्ष योग के माध्यम से) को खोजने के समान है, जिसके लिए संबंधित सामान्यीकृत ईजेनवेक्टर आधार बनाते हैं।


== आव्यूहों के फलन ==
== आव्यूहों के फलन ==
होने देना <math>A\in\mathbb{M}_n (\Complex)</math> (वह {{math|''n'' × ''n''}} जटिल आव्यूह) और <math>C\in\mathrm{GL}_n (\Complex)</math> जॉर्डन के सामान्य रूप में आधार आव्यूह का परिवर्तन हो {{mvar|A}}; वह है, {{math|1=''A'' = ''C''<sup>−1</sup>''JC''}}. अब चलो {{math|''f''{{hair space}}(''z'')}} खुले सेट पर [[होलोमोर्फिक फ़ंक्शन]] बनें <math>\Omega</math> ऐसा है कि <math>\mathrm{spec}A \subset \Omega \subseteq \Complex</math>; अर्थात्, आव्यूह का स्पेक्ट्रम होलोमॉर्फी के डोमेन के अंदर समाहित है {{mvar|f}}. होने देना
माना <math>A\in\mathbb{M}_n (\Complex)</math> (वह {{math|''n'' × ''n''}} जटिल आव्यूह) और <math>C\in\mathrm{GL}_n (\Complex)</math> जॉर्डन के सामान्य रूप में आधार आव्यूह {{mvar|A}} का परिवर्तन होता है ; वह , {{math|1=''A'' = ''C''<sup>−1</sup>''JC''}}. अब माना {{math|''f''{{hair space}}(''z'')}} संवृत समुच्चय पर [[होलोमोर्फिक फ़ंक्शन|होलोमोर्फिक फलन]] बनें <math>\Omega</math> ऐसा है कि <math>\mathrm{spec}A \subset \Omega \subseteq \Complex</math>; अर्थात्, आव्यूह का स्पेक्ट्रम होलोमॉर्फी {{mvar|f}} के डोमेन के अंदर समाहित है . माना लीजिए
<math display="block">f(z)=\sum_{h=0}^{\infty}a_h (z-z_0)^h</math>
<math display="block">f(z)=\sum_{h=0}^{\infty}a_h (z-z_0)^h</math>
की शक्ति श्रृंखला का विस्तार हो {{mvar|f}} आस-पास <math>z_0\in\Omega \setminus \operatorname{spec}A</math>, जो आगे चलकर सरलता के लिए 0 (संख्या) माना जाएगा। गणित का सवाल {{math|''f''{{hair space}}(''A'')}} को फिर निम्नलिखित [[औपचारिक शक्ति श्रृंखला]] के माध्यम से परिभाषित किया गया है
{{mvar|f}} की शक्ति  श्रृंखला का विस्तार <math>z_0\in\Omega \setminus \operatorname{spec}A</math>,होता है जो आगे चलकर सरलता के लिए 0 (संख्या) माना जाता है। इस प्रकार गणित का प्रश्न {{math|''f''{{hair space}}(''A'')}} को फिर निम्नलिखित [[औपचारिक शक्ति श्रृंखला]] के माध्यम से परिभाषित किया गया है
<math display="block">f(A)=\sum_{h=0}^{\infty}a_h A^h</math>
<math display="block">f(A)=\sum_{h=0}^{\infty}a_h A^h</math>
और [[यूक्लिडियन मानदंड]] के संबंध में [[बिल्कुल अभिसरण]] है <math>\mathbb{M}_n (\Complex)</math>. दूसरे तरीके से रखने के लिए, {{math|''f''{{hair space}}(''A'')}} प्रत्येक वर्ग आव्यूह के लिए बिल्कुल अभिसरण करता है जिसका [[वर्णक्रमीय त्रिज्या]] [[अभिसरण की त्रिज्या]] से कम है {{mvar|f}} आस-पास {{math|0}} और किसी भी कॉम्पैक्ट उपसमुच्चय पर [[समान रूप से अभिसरण]] करता है <math>\mathbb{M}_n (\Complex)</math> आव्यूह लाई समूह टोपोलॉजी में इस संपत्ति को संतुष्ट करना।
और [[यूक्लिडियन मानदंड]] के संबंध में [[बिल्कुल अभिसरण|अभिसरण]] <math>\mathbb{M}_n (\Complex)</math> है . दूसरे विधि से रखने के लिए, {{math|''f''{{hair space}}(''A'')}} प्रत्येक वर्ग आव्यूह के लिए बिल्कुल अभिसरण करता है इस प्रकार जिसका [[वर्णक्रमीय त्रिज्या]] [[अभिसरण की त्रिज्या]] से कम है {{mvar|f}} आस-पास {{math|0}} और किसी भी कॉम्पैक्ट उपसमुच्चय पर [[समान रूप से अभिसरण]] <math>\mathbb{M}_n (\Complex)</math> करता है आव्यूह लाई समूह टोपोलॉजी में इस संपत्ति को संतुष्ट करता है।


जॉर्डन सामान्य रूप स्पष्ट रूप से अनंत श्रृंखला की गणना किए बिना आव्यूह के कार्यों की गणना की अनुमति देता है, जो जॉर्डन आव्यूह की मुख्य उपलब्धियों में से है। तथ्यों का उपयोग करते हुए कि {{mvar|k}}वीं शक्ति (<math>k\in\N_0</math>) विकर्ण ब्लॉक आव्यूह का विकर्ण ब्लॉक आव्यूह है जिसके ब्लॉक हैं {{mvar|k}}संबंधित ब्लॉकों की शक्तियां; वह है, {{nowrap|<math>\left(A_1 \oplus A_2 \oplus A_3 \oplus\cdots\right)^k=A^k_1 \oplus A_2^k \oplus A_3^k \oplus\cdots</math>,}} ओर वो {{math|1=''A<sup>k</sup>'' = ''C''<sup>−1</sup>''J<sup>k</sup>C''}}, उपरोक्त आव्यूह पावर श्रृंखला बन जाती है
जॉर्डन सामान्य रूप स्पष्ट रूप से अनंत श्रृंखला की गणना किए बिना आव्यूह के कार्यों की गणना की अनुमति देता है, जो जॉर्डन आव्यूह की मुख्य उपलब्धियों में से है। तथ्यों का उपयोग करते हुए कि {{mvar|k}}वीं शक्ति (<math>k\in\N_0</math>) विकर्ण ब्लॉक आव्यूह का विकर्ण ब्लॉक आव्यूह है जिसके ब्लॉक हैं {{mvar|k}}संबंधित ब्लॉकों की शक्तियां; वह है, {{nowrap|<math>\left(A_1 \oplus A_2 \oplus A_3 \oplus\cdots\right)^k=A^k_1 \oplus A_2^k \oplus A_3^k \oplus\cdots</math>,}} ओर वो {{math|1=''A<sup>k</sup>'' = ''C''<sup>−1</sup>''J<sup>k</sup>C''}}, उपरोक्त आव्यूह शक्ति  श्रृंखला बन जाती है


<math display="block">f(A) = C^{-1}f(J)C = C^{-1}\left(\bigoplus_{k=1}^N f\left(J_{\lambda_k ,m_k}\right)\right)C</math>
<math display="block">f(A) = C^{-1}f(J)C = C^{-1}\left(\bigoplus_{k=1}^N f\left(J_{\lambda_k ,m_k}\right)\right)C</math>
जहां अंतिम श्रृंखला की गणना प्रत्येक जॉर्डन ब्लॉक की पावर श्रृंखला के माध्यम से स्पष्ट रूप से करने की आवश्यकता नहीं है। वास्तव में, यदि <math>\lambda\in\Omega</math>, जॉर्डन ब्लॉक का कोई भी होलोमोर्फिक फ़ंक्शन <math>f(J_{\lambda,n}) = f(\lambda I+Z)</math> चारों ओर सीमित शक्ति श्रृंखला है <math>\lambda I</math> क्योंकि <math>Z^n=0</math>. यहाँ, <math>Z</math> का शून्यशक्तिशाली भाग है <math>J</math> और <math>Z^k</math> के साथ 1 को छोड़कर सभी 0 हैं <math>k^{\text{th}}</math> अतिविकर्ण. इस प्रकार यह निम्नलिखित ऊपरी [[त्रिकोणीय मैट्रिक्स|त्रिकोणीय आव्यूह]] है:
जहां अंतिम श्रृंखला की गणना प्रत्येक जॉर्डन ब्लॉक की शक्ति  श्रृंखला के माध्यम से स्पष्ट रूप से करने की आवश्यकता नहीं है। इस प्रकार वास्तव में, यदि <math>\lambda\in\Omega</math>, जॉर्डन ब्लॉक का कोई भी होलोमोर्फिक फलन <math>f(J_{\lambda,n}) = f(\lambda I+Z)</math> चारों ओर सीमित शक्ति श्रृंखला <math>\lambda I</math> है क्योंकि <math>Z^n=0</math>. यहाँ, <math>Z</math> का शून्य शक्तिशाली भाग है इस प्रकार <math>J</math> और <math>Z^k</math> के साथ 1 को छोड़कर सभी 0 <math>k^{\text{th}}</math> हैं अतिविकर्ण. इस प्रकार यह निम्नलिखित ऊपरी [[त्रिकोणीय मैट्रिक्स|त्रिकोणीय आव्यूह]] है:
<math display="block">f(J_{\lambda,n})= \sum_{k=0}^{n-1} \frac{f^{(k)}(\lambda) Z^k}{k!} =
<math display="block">f(J_{\lambda,n})= \sum_{k=0}^{n-1} \frac{f^{(k)}(\lambda) Z^k}{k!} =
\begin{bmatrix}
\begin{bmatrix}
Line 58: Line 57:
0      & 0      & 0      & \cdots & 0          & f(\lambda) \\
0      & 0      & 0      & \cdots & 0          & f(\lambda) \\
\end{bmatrix}.</math>
\end{bmatrix}.</math>
इसके परिणामस्वरूप, जब भी इसके जॉर्डन सामान्य रूप और इसके परिवर्तन-आधार आव्यूह को जाना जाता है, तो आव्यूह के किसी भी फ़ंक्शन की गणना सीधी होती है। उदाहरण के लिए, का उपयोग करना <math>f(z)=1/z</math>, का उलटा <math>J_{\lambda,n}</math> है:
इसके परिणामस्वरूप, जब भी इसके जॉर्डन सामान्य रूप और इसके परिवर्तन-आधार आव्यूह को जाना जाता है, जिससे आव्यूह के किसी भी फलन की गणना सीधी होती है। उदाहरण के लिए,जिसका उपयोग करना <math>f(z)=1/z</math>, का व्युत्क्रम <math>J_{\lambda,n}</math> है:
<math display="block">J_{\lambda,n}^{-1} = \sum_{k=0}^{n-1}\frac{(-Z)^k}{\lambda^{k+1}} =
<math display="block">J_{\lambda,n}^{-1} = \sum_{k=0}^{n-1}\frac{(-Z)^k}{\lambda^{k+1}} =
\begin{bmatrix}
\begin{bmatrix}
Line 68: Line 67:
0      & 0      & 0      & \cdots & 0          & \lambda^{-1} \\
0      & 0      & 0      & \cdots & 0          & \lambda^{-1} \\
\end{bmatrix}.</math>
\end{bmatrix}.</math>
भी, {{math|1=spec{{hair space}}''f''(''A'') = ''f''{{hair space}}(spec{{hair space}}''A'')}}; अर्थात्, प्रत्येक इगेनवैल्यू <math>\lambda\in\mathrm{spec}A</math> इगेनवैल्यू से मेल खाता है <math>f(\lambda) \in \operatorname{spec}f(A)</math>, लेकिन सामान्य तौर पर, इसमें अलग-अलग बीजीय बहुलता, ज्यामितीय बहुलता और सूचकांक होते हैं। हालाँकि, बीजगणितीय बहुलता की गणना निम्नानुसार की जा सकती है:
{{math|1=spec{{hair space}}''f''(''A'') = ''f''{{hair space}}(spec{{hair space}}''A'')}} भी, ; अर्थात्, प्रत्येक इगेनवैल्यू <math>\lambda\in\mathrm{spec}A</math> इगेनवैल्यू <math>f(\lambda) \in \operatorname{spec}f(A)</math> से मेल खाता है , किन्तु सामान्यतः, इसमें अलग-अलग बीजीय बहुलता, ज्यामितीय बहुलता और सूचकांक होते हैं। चूँकि, बीजगणितीय बहुलता की गणना निम्नानुसार की जा सकती है:
<math display="block">\text{mul}_{f(A)}f(\lambda)=\sum_{\mu\in\text{spec}A\cap f^{-1}(f(\lambda))}~\text{mul}_A \mu.</math>
<math display="block">\text{mul}_{f(A)}f(\lambda)=\sum_{\mu\in\text{spec}A\cap f^{-1}(f(\lambda))}~\text{mul}_A \mu.</math>
कार्यक्रम {{math|''f''{{hair space}}(''T'')}} [[रैखिक परिवर्तन]] का {{mvar|T}} सदिश स्थानों के बीच को [[होलोमोर्फिक कार्यात्मक कैलकुलस]] के अनुसार समान तरीके से परिभाषित किया जा सकता है, जहां बानाच अंतरिक्ष और [[रीमैन सतह]] सिद्धांत मौलिक भूमिका निभाते हैं। परिमित-आयामी स्थानों के मामले में, दोनों सिद्धांत पूरी तरह मेल खाते हैं।
फलन {{math|''f''{{hair space}}(''T'')}} [[रैखिक परिवर्तन]] का {{mvar|T}} सदिश समिष्टो के बीच को [[होलोमोर्फिक कार्यात्मक कैलकुलस]] के अनुसार समान विधि से परिभाषित किया जा सकता है, इस प्रकार जहां बानाच समिष्ट और [[रीमैन सतह]] सिद्धांत मौलिक भूमिका निभाते हैं। परिमित-आयामी समिष्टो के स्थिति में, दोनों सिद्धांत पूरी तरह मेल खाते हैं।


== डायनामिकल सिस्टम ==
== डायनामिकल प्रणाली ==
अब मान लीजिए कि (जटिल) [[गतिशील प्रणाली]] को केवल समीकरण द्वारा परिभाषित किया गया है
अब मान लीजिए कि (जटिल) [[गतिशील प्रणाली]] को केवल समीकरण द्वारा परिभाषित किया गया है
<math display="block">\begin{align}
<math display="block">\begin{align}
Line 78: Line 77:
\mathbf{z}(0) &=\mathbf{z}_0 \in\Complex^n,
\mathbf{z}(0) &=\mathbf{z}_0 \in\Complex^n,
\end{align}</math>
\end{align}</math>
कहाँ <math>\mathbf{z}:\R_+ \to \mathcal{R}</math> है ({{mvar|n}}-आयामी) रीमैन सतह पर कक्षा का वक्र पैरामीट्रिजेशन <math>\mathcal{R}</math> गतिशील प्रणाली की, जबकि {{math|''A''('''c''')}} {{math|''n'' × ''n''}} जटिल आव्यूह जिसके तत्व a के जटिल कार्य हैं {{mvar|d}}-आयामी पैरामीटर <math>\mathbf{c} \in \Complex^d</math>.
जहाँ <math>\mathbf{z}:\R_+ \to \mathcal{R}</math> है ({{mvar|n}}-आयामी) रीमैन सतह पर कक्षा का वक्र पैरामीट्रिजेशन <math>\mathcal{R}</math> गतिशील प्रणाली थी, जबकि {{math|''A''('''c''')}} {{math|''n'' × ''n''}} जटिल आव्यूह जिसके तत्व a के जटिल कार्य हैं इस प्रकार {{mvar|d}}-आयामी मापदंड <math>\mathbf{c} \in \Complex^d</math>. है


भले ही <math>A\in\mathbb{M}_n \left(\mathrm{C}^0\left(\Complex^d\right)\right)</math> (वह है, {{mvar|A}} लगातार पैरामीटर पर निर्भर करता है {{math|'''c'''}}) जॉर्डन आव्यूह का सामान्य रूप [[लगभग हर जगह]] लगातार विकृत होता है <math>\Complex^d</math> लेकिन, सामान्य तौर पर, हर जगह नहीं: कुछ महत्वपूर्ण उपमान हैं <math>\Complex^d</math> जिस पर जॉर्डन फॉर्म अचानक अपनी संरचना बदल देता है जब भी पैरामीटर पार हो जाता है या बस इसके चारों ओर घूमता है ([[मोनोड्रोमी]])इस तरह के परिवर्तनों का मतलब है कि कई जॉर्डन ब्लॉक (या तो अलग-अलग eigenvalues ​​​​से संबंधित हैं या नहीं) अद्वितीय जॉर्डन ब्लॉक में शामिल हो जाते हैं, या इसके विपरीत (यानी, जॉर्डन ब्लॉक दो या दो से अधिक अलग-अलग हिस्सों में विभाजित हो जाता है)। सतत और असतत दोनों गतिशील प्रणालियों के लिए [[द्विभाजन सिद्धांत]] के कई पहलुओं की व्याख्या कार्यात्मक जॉर्डन आव्यूह के विश्लेषण से की जा सकती है।
तथापि <math>A\in\mathbb{M}_n \left(\mathrm{C}^0\left(\Complex^d\right)\right)</math> (वह है, {{mvar|A}} निरंतर मापदंड {{math|'''c'''}} पर निर्भर करता है ) जॉर्डन आव्यूह का सामान्य रूप [[लगभग हर जगह|लगभग प्रत्येक समिष्ट]] <math>\Complex^d</math> निरंतर विकृत होता है किन्तु, सामान्यतः, प्रत्येक समिष्ट नहीं: कुछ महत्वपूर्ण उपमान <math>\Complex^d</math> हैं इस प्रकार जिस पर जॉर्डन फॉर्म अचानक अपनी संरचना बदल देता है जब भी मापदंड पार हो जाता है या बस इसके चारों ओर घूमता है ([[मोनोड्रोमी]]) इस तरह के परिवर्तनों का कारण है कि कई जॉर्डन ब्लॉक (या तो अलग-अलग इगेनवैल्यू ​​​​से संबंधित हैं या नहीं) अद्वितीय जॉर्डन ब्लॉक में सम्मिलित हो जाते हैं, या इसके विपरीत (अर्थात, जॉर्डन ब्लॉक दो या दो से अधिक अलग-अलग भागो में विभाजित हो जाता है)। इस प्रकार सतत और असतत दोनों गतिशील प्रणालियों के लिए [[द्विभाजन सिद्धांत]] के कई तथ्यों की व्याख्या कार्यात्मक जॉर्डन आव्यूह के विश्लेषण से की जा सकती है।


स्पर्शरेखा अंतरिक्ष गतिशीलता से, इसका मतलब है कि गतिशील प्रणाली के [[चरण स्थान]] का ऑर्थोगोनल अपघटन बदलता है और, उदाहरण के लिए, विभिन्न कक्षाएँ आवधिकता प्राप्त करती हैं, या इसे खो देती हैं, या निश्चित प्रकार की आवधिकता से दूसरे में स्थानांतरित हो जाती हैं (जैसे कि अवधि-दोहरीकरण, सीएफआर. [[लॉजिस्टिक मानचित्र]]).
स्पर्शरेखा समिष्ट गतिशीलता से, इसका कारण है कि गतिशील प्रणाली के [[चरण स्थान|चरण समिष्ट]] का ऑर्थोगोनल अपघटन बदलता है और, उदाहरण के लिए, विभिन्न कक्षाएँ आवधिकता प्राप्त करती हैं, या इसे खो देती हैं, या निश्चित प्रकार की आवधिकता से दूसरे में स्थानांतरित हो जाती हैं (जैसे कि अवधि-दोहरीकरण, सीएफआर. [[लॉजिस्टिक मानचित्र|लॉजिस्टिक मैप]]).


वाक्य में, जॉर्डन के सामान्य रूप के [[वर्सल विरूपण]] के रूप में ऐसी गतिशील प्रणाली का गुणात्मक व्यवहार काफी हद तक बदल सकता है {{math|''A''('''c''')}}.
वाक्य में, जॉर्डन के सामान्य रूप के [[वर्सल विरूपण]] के रूप में ऐसी गतिशील प्रणाली {{math|''A''('''c''')}} का गुणात्मक व्यवहार अधिक सीमा तक बदल सकता है .


==रैखिक साधारण अवकल समीकरण ==
==रैखिक साधारण अवकल समीकरण ==
गतिशील प्रणाली का सबसे सरल उदाहरण रैखिक, स्थिरांक-गुणांक, साधारण अंतर समीकरणों की प्रणाली है; यानी चलो <math>A\in\mathbb{M}_n (\Complex)</math> और <math>\mathbf{z}_0 \in \Complex^n</math>:
गतिशील प्रणाली का सबसे सरल उदाहरण रैखिक, स्थिरांक-गुणांक, साधारण अंतर समीकरणों की प्रणाली है; अर्थात माना <math>A\in\mathbb{M}_n (\Complex)</math> और <math>\mathbf{z}_0 \in \Complex^n</math>:जाता है
<math display="block">\begin{align}
<math display="block">\begin{align}
\dot{\mathbf{z}}(t) &= A\mathbf{z}(t), \\
\dot{\mathbf{z}}(t) &= A\mathbf{z}(t), \\
\mathbf{z}(0) &= \mathbf{z}_0,
\mathbf{z}(0) &= \mathbf{z}_0,
\end{align}</math>
\end{align}</math>
जिसके प्रत्यक्ष बंद-रूप समाधान में [[मैट्रिक्स घातांक|आव्यूह घातांक]] की गणना शामिल है:
जिसके प्रत्यक्ष बंद-रूप समाधान में [[मैट्रिक्स घातांक|आव्यूह घातांक]] की गणना सम्मिलित है:
<math display="block">\mathbf{z}(t)=e^{tA}\mathbf{z}_0.</math>
<math display="block">\mathbf{z}(t)=e^{tA}\mathbf{z}_0.</math>
दूसरा तरीका, बशर्ते समाधान स्थानीय एलपी स्थान तक ही सीमित हो {{mvar|n}}-आयामी वेक्टर फ़ील्ड <math>\mathbf{z}\in\mathrm{L}_{\mathrm{loc}}^1 (\R_+)^n</math>, इसके [[लाप्लास परिवर्तन]] का उपयोग करना है <math>\mathbf{Z}(s) = \mathcal{L}[\mathbf{z}](s)</math>. इस मामले में
दूसरी विशी, परंतु समाधान स्थानीय एलपी समिष्ट तक ही सीमित हो {{mvar|n}}-आयामी सदिश क्षेत्र <math>\mathbf{z}\in\mathrm{L}_{\mathrm{loc}}^1 (\R_+)^n</math>, इसके [[लाप्लास परिवर्तन]] <math>\mathbf{Z}(s) = \mathcal{L}[\mathbf{z}](s)</math> का उपयोग करना है . इस स्थिति में
<math display="block">\mathbf{Z}(s)=\left(sI-A\right)^{-1}\mathbf{z}_0.</math>
<math display="block">\mathbf{Z}(s)=\left(sI-A\right)^{-1}\mathbf{z}_0.</math>
आव्यूह फ़ंक्शन {{math|(''A'' − ''sI'')<sup>−1</sup>}} को [[ विभेदक ऑपरेटर |विभेदक ऑपरेटर]] का [[रिसॉल्वेंट मैट्रिक्स|रिसॉल्वेंट आव्यूह]] कहा जाता है <math display="inline">\frac{\mathrm{d}}{\mathrm{d}t}-A</math>. यह जटिल पैरामीटर के संबंध में [[मेरोमोर्फिक]] है <math>s \in \Complex</math> चूँकि इसके आव्यूह तत्व परिमेय फलन हैं जिनका हर सभी के लिए समान है {{math|det(''A'' − ''sI'')}}. इसकी ध्रुवीय विलक्षणताएँ eigenvalues ​​​​हैं {{mvar|A}}, जिसका क्रम इसके लिए उनके सूचकांक के बराबर है; वह है, <math>\mathrm{ord}_{(A-sI)^{-1}}\lambda=\mathrm{idx}_A \lambda</math>.
आव्यूह फलन {{math|(''A'' − ''sI'')<sup>−1</sup>}} को [[ विभेदक ऑपरेटर |विभेदक संचालक]] का [[रिसॉल्वेंट मैट्रिक्स|रिसॉल्वेंट आव्यूह]] <math display="inline">\frac{\mathrm{d}}{\mathrm{d}t}-A</math> कहा जाता है . यह जटिल मापदंड <math>s \in \Complex</math> के संबंध में [[मेरोमोर्फिक]] है चूँकि इसके आव्यूह तत्व परिमेय फलन हैं जिनका प्रत्येक सभी {{math|det(''A'' − ''sI'')}} के लिए समान है इसकी ध्रुवीय विलक्षणताएँ इगेनवैल्यू {{mvar|A}} ​​​​हैं , जिसका क्रम इसके लिए उनके सूचकांक के समान है; वह <math>\mathrm{ord}_{(A-sI)^{-1}}\lambda=\mathrm{idx}_A \lambda</math> है, .


== यह भी देखें ==
== यह भी देखें                   ==
*जॉर्डन-शेवेल्ली अपघटन
*जॉर्डन-शेवेल्ली अपघटन
*जॉर्डन सामान्य रूप
*जॉर्डन सामान्य रूप
Line 106: Line 105:
* गतिशील प्रणाली
* गतिशील प्रणाली
*द्विभाजन सिद्धांत
*द्विभाजन सिद्धांत
* [[राज्य स्थान (नियंत्रण)]]
* [[राज्य स्थान (नियंत्रण)|स्तर समिष्ट (नियंत्रण)]]


==टिप्पणियाँ==
==टिप्पणियाँ                                                                                                                                                                                                           ==
{{reflist}}
{{reflist}}
==संदर्भ==
==संदर्भ==
* {{citation | first1 = Raymond A. | last1 = Beauregard | first2 = John B. | last2 = Fraleigh | year = 1973 | isbn = 0-395-14017-X | title = A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields | publisher = [[Houghton Mifflin Co.]] | location = Boston | url-access = registration | url = https://archive.org/details/firstcourseinlin0000beau }}
* {{citation | first1 = Raymond A. | last1 = Beauregard | first2 = John B. | last2 = Fraleigh | year = 1973 | isbn = 0-395-14017-X | title = A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields | publisher = [[Houghton Mifflin Co.]] | location = Boston | url-access = registration | url = https://archive.org/details/firstcourseinlin0000beau }}
* {{ citation | first1 = Gene H. | last1 = Golub | first2 = Charles F. | last2 = Van Loan | year = 1996 | isbn = 0-8018-5414-8 | title = Matrix Computations | edition = 3rd | publisher = [[Johns Hopkins University Press]] | location = Baltimore }}
* {{ citation | first1 = Gene H. | last1 = Golub | first2 = Charles F. | last2 = Van Loan | year = 1996 | isbn = 0-8018-5414-8 | title = Matrix Computations | edition = 3rd | publisher = [[Johns Hopkins University Press]] | location = Baltimore }}
* {{ citation | first1 = Evar D. | last1 = Nering | year = 1970 | title = Linear Algebra and Matrix Theory | edition = 2nd | publisher = [[John Wiley & Sons|Wiley]] | location = New York | lccn = 76091646 }}
* {{ citation | first1 = Evar D. | last1 = Nering | year = 1970 | title = Linear Algebra and Matrix Theory | edition = 2nd | publisher = [[John Wiley & Sons|Wiley]] | location = New York | lccn = 76091646 }}
[[Category: मैट्रिक्स सिद्धांत]] [[Category: मैट्रिक्स सामान्य रूप]]


[[Category: Machine Translated Page]]
[[Category:Created On 08/07/2023]]
[[Category:Created On 08/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages that use a deprecated format of the math tags]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:मैट्रिक्स सामान्य रूप]]
[[Category:मैट्रिक्स सिद्धांत]]

Latest revision as of 21:41, 15 July 2023

आव्यूह (गणित) के गणित अनुशासन में, जॉर्डन आव्यूह, जिसका नाम केमिली जॉर्डन के नाम पर रखा गया है, इस प्रकार वलय (गणित) के ऊपर ब्लॉक आव्यूह है R (जिसका पहचान तत्व 0 (संख्या) 0 और 1 (संख्या) 1 है), जहां विकर्ण के साथ प्रत्येक ब्लॉक, जिसे जॉर्डन ब्लॉक कहा जाता है, निम्न रूप है:

परिभाषा

प्रत्येक जॉर्डन ब्लॉक को उसके आयाम n और उसके इगेनवैल्यू द्वारा निर्दिष्ट किया जाता है , और के रूप में दर्शाया गया है यह Jλ,n है विकर्ण को छोड़कर प्रत्येक समिष्ट शून्य का आव्यूह, जो भरा हुआ है जो अतिविकर्ण से बना है।

कोई भी ब्लॉक विकर्ण आव्यूह जिसके ब्लॉक जॉर्डन ब्लॉक हैं उसे जॉर्डन आव्यूह कहा जाता है। इस प्रकार यह (n1 + ⋯ + nr) × (n1 + ⋯ + nr) वर्ग आव्यूह, से मिलकर r विकर्ण ब्लॉकों को सघन रूप या से दर्शाया जा सकता है , जहां i-th Jλi,ni जॉर्डन ब्लॉक है .

उदाहरण के लिए, आव्यूह

10 × 10 जॉर्डन आव्यूह A के साथ 3 × 3 इगेनवैल्यू के साथ ब्लॉक करें 0, दो 2 × 2 काल्पनिक इकाई को इगेनवैल्यू i के साथ ब्लॉक करता है , और A 3 × 3 इगेनवैल्यू 7 के साथ ब्लॉक इसकी जॉर्डन-ब्लॉक संरचना या तो या diag(J0,3, Ji,2, Ji,2, J7,3).लिखी गई है

रेखीय बीजगणित

कोई n × n वर्ग आव्यूह A जिनके तत्व बीजगणितीय रूप से संवर्त क्षेत्र में हैं K जॉर्डन आव्यूह J, मे भी के समान आव्यूह है, इस प्रकार जो अपने विकर्ण ब्लॉकों के क्रम परिवर्तन तक अद्वितीय है। इस प्रकार J को जॉर्डन A का सामान्य रूप कहा जाता है और विकर्णीकरण प्रक्रिया के सामान्यीकरण से मेल खाता है।[1][2][3] विकर्णीय आव्यूह, वास्तव में, जॉर्डन आव्यूह के विशेष स्थिति के समान है: वह आव्यूह 1 × 1 जिसके सभी ब्लॉक हैं .[4][5][6]

अधिक सामान्यतः, जॉर्डन आव्यूह दिया गया है , अर्थात्, किसका kवां विकर्ण ब्लॉक, , जॉर्डन ब्लॉक Jλk,mk है और जिनके विकर्ण तत्व सभी अलग-अलग नहीं हो सकते है, ज्यामितीय बहुलता आव्यूह के लिए J, के रूप में दर्शाया गया है , जॉर्डन ब्लॉक की संख्या λ से मेल खाता है जिसका इगेनवैल्यू है . जबकि इगेनवैल्यू का सूचकांक के लिए J, के रूप में दर्शाया गया है इस प्रकार , को उस इगेनवैल्यू से जुड़े सबसे बड़े जॉर्डन ब्लॉक के आयाम के रूप में परिभाषित किया गया है।

यही बात सभी आव्यूह के लिए भी प्रयुक्त होती है A के समान J, इसलिए जॉर्डन के सामान्य रूप के संबंध A में तदनुसार परिभाषित किया जा सकता है इसके किसी भी इगेनवैल्यू ​​​​के लिए . इस स्थिति में कोई यह जांच सकता है कि का सूचकांक के लिए A न्यूनतम बहुपद (रैखिक बीजगणित) के मूल A के रूप में इसकी बहुलता के समान है (जबकि, परिभाषा के अनुसार, इसकी बीजगणितीय बहुलता A, , के अभिलक्षणिक बहुपद के मूल के रूप में इसकी A बहुलता है ; वह है, ). के लिए समान आवश्यक एवं पर्याप्त नियम A में विकर्णीय K होता है यह है कि इसके सभी इगेनवैल्यू 1 ​​​​का सूचकांक समान है ; अर्थात्, इसके न्यूनतम बहुपद में केवल सरल मूल होते हैं।

ध्यान दें कि किसी आव्यूह के स्पेक्ट्रम को उसके सभी बीजगणितीय/ज्यामितीय बहुलताओं और सूचकांकों के साथ जानने से सदैव इसके जॉर्डन सामान्य रूप की गणना की अनुमति नहीं मिलती है (यह केवल वर्णक्रमीय रूप से सरल, सामान्यतः कम-आयामी आव्यूह के लिए पर्याप्त नियम हो सकती है): जॉर्डन- सामान्यतः, शेवेल्ली अपघटन कम्प्यूटेशनल रूप से चुनौतीपूर्ण कार्य है। इस प्रकार सदिश स्थल के दृष्टिकोण से, जॉर्डन-चेवेल्ली अपघटन डोमेन के ऑर्थोगोनल अपघटन (जो कि जॉर्डन ब्लॉक द्वारा दर्शाए गए ईजेनस्पेस के सदिश रिक्त समिष्ट के प्रत्यक्ष योग के माध्यम से) को खोजने के समान है, जिसके लिए संबंधित सामान्यीकृत ईजेनवेक्टर आधार बनाते हैं।

आव्यूहों के फलन

माना (वह n × n जटिल आव्यूह) और जॉर्डन के सामान्य रूप में आधार आव्यूह A का परिवर्तन होता है ; वह , A = C−1JC. अब माना f (z) संवृत समुच्चय पर होलोमोर्फिक फलन बनें ऐसा है कि ; अर्थात्, आव्यूह का स्पेक्ट्रम होलोमॉर्फी f के डोमेन के अंदर समाहित है . माना लीजिए

f की शक्ति श्रृंखला का विस्तार ,होता है जो आगे चलकर सरलता के लिए 0 (संख्या) माना जाता है। इस प्रकार गणित का प्रश्न f (A) को फिर निम्नलिखित औपचारिक शक्ति श्रृंखला के माध्यम से परिभाषित किया गया है
और यूक्लिडियन मानदंड के संबंध में अभिसरण है . दूसरे विधि से रखने के लिए, f (A) प्रत्येक वर्ग आव्यूह के लिए बिल्कुल अभिसरण करता है इस प्रकार जिसका वर्णक्रमीय त्रिज्या अभिसरण की त्रिज्या से कम है f आस-पास 0 और किसी भी कॉम्पैक्ट उपसमुच्चय पर समान रूप से अभिसरण करता है आव्यूह लाई समूह टोपोलॉजी में इस संपत्ति को संतुष्ट करता है।

जॉर्डन सामान्य रूप स्पष्ट रूप से अनंत श्रृंखला की गणना किए बिना आव्यूह के कार्यों की गणना की अनुमति देता है, जो जॉर्डन आव्यूह की मुख्य उपलब्धियों में से है। तथ्यों का उपयोग करते हुए कि kवीं शक्ति () विकर्ण ब्लॉक आव्यूह का विकर्ण ब्लॉक आव्यूह है जिसके ब्लॉक हैं kसंबंधित ब्लॉकों की शक्तियां; वह है, , ओर वो Ak = C−1JkC, उपरोक्त आव्यूह शक्ति श्रृंखला बन जाती है

जहां अंतिम श्रृंखला की गणना प्रत्येक जॉर्डन ब्लॉक की शक्ति श्रृंखला के माध्यम से स्पष्ट रूप से करने की आवश्यकता नहीं है। इस प्रकार वास्तव में, यदि , जॉर्डन ब्लॉक का कोई भी होलोमोर्फिक फलन चारों ओर सीमित शक्ति श्रृंखला है क्योंकि . यहाँ, का शून्य शक्तिशाली भाग है इस प्रकार और के साथ 1 को छोड़कर सभी 0 हैं अतिविकर्ण. इस प्रकार यह निम्नलिखित ऊपरी त्रिकोणीय आव्यूह है:
इसके परिणामस्वरूप, जब भी इसके जॉर्डन सामान्य रूप और इसके परिवर्तन-आधार आव्यूह को जाना जाता है, जिससे आव्यूह के किसी भी फलन की गणना सीधी होती है। उदाहरण के लिए,जिसका उपयोग करना , का व्युत्क्रम है:
spec f(A) = f (spec A) भी, ; अर्थात्, प्रत्येक इगेनवैल्यू इगेनवैल्यू से मेल खाता है , किन्तु सामान्यतः, इसमें अलग-अलग बीजीय बहुलता, ज्यामितीय बहुलता और सूचकांक होते हैं। चूँकि, बीजगणितीय बहुलता की गणना निम्नानुसार की जा सकती है:
फलन f (T) रैखिक परिवर्तन का T सदिश समिष्टो के बीच को होलोमोर्फिक कार्यात्मक कैलकुलस के अनुसार समान विधि से परिभाषित किया जा सकता है, इस प्रकार जहां बानाच समिष्ट और रीमैन सतह सिद्धांत मौलिक भूमिका निभाते हैं। परिमित-आयामी समिष्टो के स्थिति में, दोनों सिद्धांत पूरी तरह मेल खाते हैं।

डायनामिकल प्रणाली

अब मान लीजिए कि (जटिल) गतिशील प्रणाली को केवल समीकरण द्वारा परिभाषित किया गया है

जहाँ है (n-आयामी) रीमैन सतह पर कक्षा का वक्र पैरामीट्रिजेशन गतिशील प्रणाली थी, जबकि A(c) n × n जटिल आव्यूह जिसके तत्व a के जटिल कार्य हैं इस प्रकार d-आयामी मापदंड . है

तथापि (वह है, A निरंतर मापदंड c पर निर्भर करता है ) जॉर्डन आव्यूह का सामान्य रूप लगभग प्रत्येक समिष्ट निरंतर विकृत होता है किन्तु, सामान्यतः, प्रत्येक समिष्ट नहीं: कुछ महत्वपूर्ण उपमान हैं इस प्रकार जिस पर जॉर्डन फॉर्म अचानक अपनी संरचना बदल देता है जब भी मापदंड पार हो जाता है या बस इसके चारों ओर घूमता है (मोनोड्रोमी) इस तरह के परिवर्तनों का कारण है कि कई जॉर्डन ब्लॉक (या तो अलग-अलग इगेनवैल्यू ​​​​से संबंधित हैं या नहीं) अद्वितीय जॉर्डन ब्लॉक में सम्मिलित हो जाते हैं, या इसके विपरीत (अर्थात, जॉर्डन ब्लॉक दो या दो से अधिक अलग-अलग भागो में विभाजित हो जाता है)। इस प्रकार सतत और असतत दोनों गतिशील प्रणालियों के लिए द्विभाजन सिद्धांत के कई तथ्यों की व्याख्या कार्यात्मक जॉर्डन आव्यूह के विश्लेषण से की जा सकती है।

स्पर्शरेखा समिष्ट गतिशीलता से, इसका कारण है कि गतिशील प्रणाली के चरण समिष्ट का ऑर्थोगोनल अपघटन बदलता है और, उदाहरण के लिए, विभिन्न कक्षाएँ आवधिकता प्राप्त करती हैं, या इसे खो देती हैं, या निश्चित प्रकार की आवधिकता से दूसरे में स्थानांतरित हो जाती हैं (जैसे कि अवधि-दोहरीकरण, सीएफआर. लॉजिस्टिक मैप).

वाक्य में, जॉर्डन के सामान्य रूप के वर्सल विरूपण के रूप में ऐसी गतिशील प्रणाली A(c) का गुणात्मक व्यवहार अधिक सीमा तक बदल सकता है .

रैखिक साधारण अवकल समीकरण

गतिशील प्रणाली का सबसे सरल उदाहरण रैखिक, स्थिरांक-गुणांक, साधारण अंतर समीकरणों की प्रणाली है; अर्थात माना और :जाता है

जिसके प्रत्यक्ष बंद-रूप समाधान में आव्यूह घातांक की गणना सम्मिलित है:
दूसरी विशी, परंतु समाधान स्थानीय एलपी समिष्ट तक ही सीमित हो n-आयामी सदिश क्षेत्र , इसके लाप्लास परिवर्तन का उपयोग करना है . इस स्थिति में
आव्यूह फलन (AsI)−1 को विभेदक संचालक का रिसॉल्वेंट आव्यूह कहा जाता है . यह जटिल मापदंड के संबंध में मेरोमोर्फिक है चूँकि इसके आव्यूह तत्व परिमेय फलन हैं जिनका प्रत्येक सभी det(AsI) के लिए समान है इसकी ध्रुवीय विलक्षणताएँ इगेनवैल्यू A ​​​​हैं , जिसका क्रम इसके लिए उनके सूचकांक के समान है; वह है, .

यह भी देखें

टिप्पणियाँ

  1. Beauregard & Fraleigh (1973, pp. 310–316)
  2. Golub & Van Loan (1996, p. 317)
  3. Nering (1970, pp. 118–127)
  4. Beauregard & Fraleigh (1973, pp. 270–274)
  5. Golub & Van Loan (1996, p. 316)
  6. Nering (1970, pp. 113–118)

संदर्भ

  • Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
  • Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins University Press, ISBN 0-8018-5414-8
  • Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646