संचयी: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Set of quantities in probability theory}} संभाव्यता सिद्धांत और सांख्यिकी में, संचय...")
 
No edit summary
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Set of quantities in probability theory}}
{{Short description|Set of quantities in probability theory}}
संभाव्यता सिद्धांत और सांख्यिकी में, संचयी {{mvar|κ<sub>n</sub>}संभाव्यता वितरण का } मात्राओं का एक समूह है जो वितरण के [[क्षण (गणित)]] का विकल्प प्रदान करता है। कोई भी दो संभाव्यता वितरण जिनके क्षण समान हैं, उनके संचयी भी समान होंगे, और इसके विपरीत।
प्रायिकता सिद्धांत और आंकड़ों में, प्रायिकता वितरण के '''संचयी''' κ<sub>n</sub> मात्राओं का एक समूह हैं जो वितरण के [[क्षण (गणित)]] के लिए एक विकल्प प्रदान करते हैं। कोई भी दो प्रायिकता वितरण जिनके क्षण समान हैं, उनके संचयी भी समान होंगे, और पूर्ण रूप से इसके विपरीत।
   
   
पहला क्यूम्युलेंट माध्य है, दूसरा क्यूम्युलेंट विचरण है, और तीसरा क्यूम्युलेंट तीसरे [[केंद्रीय क्षण]] के समान है। लेकिन चौथे और उच्च क्रम के संचयक केंद्रीय क्षणों के बराबर नहीं हैं। कुछ मामलों में क्यूमुलेंट के संदर्भ में समस्याओं का सैद्धांतिक उपचार क्षणों का उपयोग करने की तुलना में सरल होता है। विशेष रूप से, जब दो या दो से अधिक यादृच्छिक चर [[सांख्यिकीय रूप से स्वतंत्र]] होते हैं, तो {{math|''n''}}-उनके योग का वें-क्रम संचयी उनके योग के बराबर है {{math|''n''}}-वें क्रम के संचयी। साथ ही, [[सामान्य वितरण]] के तीसरे और उच्च-क्रम संचयक शून्य हैं, और यह इस संपत्ति वाला एकमात्र वितरण है।
इस प्रकार से प्रथम संचयी माध्य है, दूसरा संचयी विचरण है, और तीसरा संचयी तीसरे [[केंद्रीय क्षण]] के समान है। परन्तु चौथे और उच्च क्रम के संचयी केंद्रीय क्षणों के बराबर नहीं हैं। अतः कुछ स्थितियों में संचयी के संदर्भ में समस्याओं का सैद्धांतिक उपचार क्षणों का उपयोग करने की तुलना में पूर्ण रूप से सरल होता है। विशेष रूप से, जब दो या दो से अधिक यादृच्छिक चर [[सांख्यिकीय रूप से स्वतंत्र]] होते हैं, तो उनके योग का '''n-'''वें-क्रम संचयी उनके '''n-'''वें-क्रम संचयी के योग के बराबर होता है। साथ ही, [[सामान्य वितरण]] के तीसरे और उच्च-क्रम संचयी शून्य हैं, और यह इस गुण के एकमात्र वितरण है।


क्षणों की तरह, जहां संयुक्त क्षणों का उपयोग यादृच्छिक चर के संग्रह के लिए किया जाता है, संयुक्त संचयकों को परिभाषित करना संभव है।
इस प्रकार से क्षणों के जैसे, जहां संयुक्त क्षणों का उपयोग यादृच्छिक चर के संग्रह के लिए किया जाता है, संयुक्त संचयकों को परिभाषित करना पूर्ण रूप से संभव है।


==परिभाषा==
==परिभाषा==
एक यादृच्छिक चर के संचयी {{mvar|X}} को क्यूमुलेंट-जनरेटिंग फ़ंक्शन का उपयोग करके परिभाषित किया गया है {{math|''K''(''t'')}}, जो क्षण-उत्पन्न करने वाले फ़ंक्शन का [[प्राकृतिक]] लघुगणक है:
अतः एक यादृच्छिक चर {{mvar|X}} के संचयकों को '''संचयी-जनक फलन''' {{math|''K''(''t'')}}का उपयोग करके परिभाषित किया जाता है, जो क्षण-जनक फलन का [[प्राकृतिक]] लघुगणक है:
:<math>K(t)=\log\operatorname{E}\left[e^{tX}\right].</math>
:<math>K(t)=\log\operatorname{E}\left[e^{tX}\right].</math>
संचयी {{mvar|κ<sub>n</sub>}} क्यूम्युलेंट जनरेटिंग फ़ंक्शन के पावर श्रृंखला विस्तार से प्राप्त किए जाते हैं:
संचयी {{mvar|κ<sub>n</sub>}} संचयी जनक फलन की घात श्रृंखला विस्तार से प्राप्त किए जाते हैं:
:<math>K(t)=\sum_{n=1}^\infty \kappa_{n} \frac{t^{n}}{n!} =\kappa_1 \frac{t}{1!} + \kappa_2 \frac{t^2}{2!}+ \kappa_3 \frac{t^3}{3!}+ \cdots = \mu t + \sigma^2 \frac{t^2}{2} + \cdots.</math>
:<math>K(t)=\sum_{n=1}^\infty \kappa_{n} \frac{t^{n}}{n!} =\kappa_1 \frac{t}{1!} + \kappa_2 \frac{t^2}{2!}+ \kappa_3 \frac{t^3}{3!}+ \cdots = \mu t + \sigma^2 \frac{t^2}{2} + \cdots.</math>
यह विस्तार [[मैकलॉरिन श्रृंखला]] है, इसलिए {{mvar|n}}-वां संचयी उपरोक्त विस्तार को विभेदित करके प्राप्त किया जा सकता है {{mvar|n}} बार और शून्य पर परिणाम का मूल्यांकन:<ref>Weisstein, Eric W. "Cumulant". From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com/Cumulant.html</ref>
यह विस्तार [[मैकलॉरिन श्रृंखला]] है, इसलिए उपरोक्त विस्तार को '''n''' बार विभेदित करके और शून्य पर परिणाम का मूल्यांकन करके '''n-वें''' संचयी पूर्ण रूप से प्राप्त किया जा सकता है:<ref>Weisstein, Eric W. "Cumulant". From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com/Cumulant.html</ref>
:<math> \kappa_{n} = K^{(n)}(0).</math>
:<math> \kappa_{n} = K^{(n)}(0).</math>
यदि क्षण-उत्पन्न करने वाला फ़ंक्शन मौजूद नहीं है, तो क्यूमुलेंट्स को बाद में चर्चा किए गए क्यूम्युलेंट और क्षणों के बीच संबंध के संदर्भ में परिभाषित किया जा सकता है।
इस प्रकार से यदि क्षण-जनक फलन स्थित नहीं है, तो संचयी को बाद में चर्चा किए गए संचयी और क्षणों के बीच संबंध के संदर्भ में पूर्ण रूप से परिभाषित किया जा सकता है।


===क्यूम्युलेंट जनरेटिंग फ़ंक्शन की वैकल्पिक परिभाषा ===
===संचयी जनक फलन की वैकल्पिक परिभाषा ===
कुछ लेखक<ref>Kendall, M. G., Stuart, A. (1969) ''The Advanced Theory of Statistics'', Volume 1 (3rd Edition). Griffin, London. (Section 3.12)</ref><ref>Lukacs, E. (1970) ''Characteristic Functions'' (2nd Edition). Griffin, London. (Page 27)</ref> क्यूम्यलेंट-जनरेटिंग फ़ंक्शन को विशेषता फ़ंक्शन (संभावना सिद्धांत) के प्राकृतिक लघुगणक के रूप में परिभाषित करना पसंद करते हैं, जिसे कभी-कभी ''दूसरा'' विशेषता फ़ंक्शन भी कहा जाता है,<ref>Lukacs, E. (1970) ''Characteristic Functions'' (2nd Edition). Griffin, London. (Section 2.4)</ref><ref>Aapo Hyvarinen, Juha Karhunen, and Erkki Oja (2001) ''Independent Component Analysis'', [[John Wiley & Sons]]. (Section 2.7.2)</ref>
कुछ लेखक<ref>Kendall, M. G., Stuart, A. (1969) ''The Advanced Theory of Statistics'', Volume 1 (3rd Edition). Griffin, London. (Section 3.12)</ref><ref>Lukacs, E. (1970) ''Characteristic Functions'' (2nd Edition). Griffin, London. (Page 27)</ref> संचयी-जनक फलन को विशेषता फलन (प्रायिकता सिद्धांत) के प्राकृतिक लघुगणक के रूप में परिभाषित करना चयनित करते हैं, जिसे कभी-कभी '''''दूसरा'' विशेषता फलन''',<ref>Lukacs, E. (1970) ''Characteristic Functions'' (2nd Edition). Griffin, London. (Section 2.4)</ref><ref>Aapo Hyvarinen, Juha Karhunen, and Erkki Oja (2001) ''Independent Component Analysis'', [[John Wiley & Sons]]. (Section 2.7.2)</ref>
:<math>H(t)=\log\operatorname{E} \left[e^{i t X}\right]=\sum_{n=1}^\infty \kappa_n \frac{(it)^n}{n!}=\mu it - \sigma^2 \frac{ t^2}{2} + \cdots</math>
:<math>H(t)=\log\operatorname{E} \left[e^{i t X}\right]=\sum_{n=1}^\infty \kappa_n \frac{(it)^n}{n!}=\mu it - \sigma^2 \frac{ t^2}{2} + \cdots</math> भी कहा जाता है।
का एक फायदा {{math|''H''(''t'')}}—कुछ अर्थों में कार्य {{math|''K''(''t'')}} विशुद्ध रूप से काल्पनिक तर्कों के लिए मूल्यांकन किया गया - यही है {{math|E[''e''<sup>''itX''</sup>]}} सभी वास्तविक मूल्यों के लिए अच्छी तरह से परिभाषित है {{math|''t''}} यहां तक ​​कि जब {{math|E[''e''<sup>''tX''</sup>]}} सभी वास्तविक मूल्यों के लिए अच्छी तरह से परिभाषित नहीं है {{math|''t''}}, जैसे कि तब घटित हो सकता है जब इसकी संभावना बहुत अधिक हो {{math|''X''}} का परिमाण बड़ा है. यद्यपि समारोह {{math|''H''(''t'')}} अच्छी तरह से परिभाषित किया जाएगा, फिर भी यह नकल करेगा {{math|''K''(''t'')}} इसकी मैकलॉरिन श्रृंखला की लंबाई के संदर्भ में, जो तर्क में रैखिक क्रम से आगे (या, शायद ही कभी, यहां तक ​​​​कि) तक विस्तारित नहीं हो सकती है{{math|''t''}}, और विशेष रूप से अच्छी तरह से परिभाषित संचयकों की संख्या नहीं बदलेगी। फिर भी, जब भी {{math|''H''(''t'')}} के पास लंबी मैकलॉरिन श्रृंखला नहीं है, इसका उपयोग सीधे विश्लेषण करने और, विशेष रूप से, यादृच्छिक चर जोड़ने में किया जा सकता है। [[कॉची वितरण]] (जिसे लोरेंत्ज़ियन भी कहा जाता है) और अधिक सामान्यतः, [[स्थिर वितरण]] (लेवी वितरण से संबंधित) दोनों वितरण के उदाहरण हैं, जिनके लिए उत्पादन कार्यों की शक्ति-श्रृंखला विस्तार में केवल सीमित रूप से कई अच्छी तरह से परिभाषित शब्द हैं।
इस प्रकार से '''H(t)''' का एक लाभ - कुछ अर्थों में फलन '''K(t)''' का मूल्यांकन पूर्ण रूप से काल्पनिक तर्कों के लिए किया जाता है - यह है कि '''{{math|E[''e''<sup>''itX''</sup>]}}''' '''''t''''' के सभी वास्तविक मानों के लिए ठीक रूप से परिभाषित है, यद्यपि '''{{math|E[''e''<sup>''tX''</sup>]}}''' सभी के लिए ठीक रूप से परिभाषित न हो टी के वास्तविक मान, जैसे कि तब हो सकते हैं जब "बहुत अधिक" प्रायिकता हो कि X का परिमाण बड़ा है। यद्यपि फलन '''H(t)''' को ठीक रूप से परिभाषित किया जाएगा, फिर भी यह अपनी मैकलॉरिन श्रृंखला की लंबाई के संदर्भ में '''K(t)''' का अनुकरण करेगा, जो तर्क '''''t''''' में रैखिक क्रम से आगे (या, संभवतः कभी, यहां तक ​​​​कि) तक विस्तारित नहीं हो सकता है। और विशेष रूप से ठीक रूप से परिभाषित संचयकों की संख्या पूर्ण रूप से नहीं बदलेगी। फिर भी, जब '''H(t''') में लंबी मैकलॉरिन श्रृंखला नहीं होती है, तब भी इसका उपयोग प्रत्यक्षतः विश्लेषण करने और, विशेष रूप से, यादृच्छिक चर जोड़ने में किया जा सकता है। अतः [[कॉची वितरण]] (जिसे लोरेंत्ज़ियन भी कहा जाता है) और अधिक सामान्यतः, [[स्थिर वितरण]] (लेवी वितरण से संबंधित) दोनों वितरण के उदाहरण हैं, जिनके लिए उत्पादन फलनों की शक्ति-श्रृंखला विस्तार में मात्र सीमित रूप से कई ठीक रूप से परिभाषित शब्द हैं।


==कुछ बुनियादी गुण== <math display=inline>n</math>वें>-वें संचयी <math display=inline>\kappa_n(X)</math> एक यादृच्छिक चर का (वितरण)। <math display=inline>X</math> निम्नलिखित गुणों का आनंद लेता है:
== कुछ मूलभूत गुण ==
इस प्रकार से एक यादृच्छिक चर <math display="inline">X</math> का <math display="inline">n</math>वें संचयी <math display="inline">\kappa_n(X)</math> निम्नलिखित गुणों का आनंद लेता है:


* अगर <math display=inline>n>1</math> और <math display=inline>c</math> तब स्थिर है (अर्थात यादृच्छिक नहीं)<math display=inline> \kappa_n(X+c) = \kappa_n(X),</math> यानी संचयी [[अनुवाद अपरिवर्तनीय]] है। (अगर <math display=inline> n=1</math> तो हमारे पास हैं <math display=inline> \kappa_1(X+c) = \kappa_1(X)+c.) </math>
* यदि <math display="inline">n>1</math> और <math display="inline">c</math> स्थिर है (अर्थात यादृच्छिक नहीं) तो <math display="inline"> \kappa_n(X+c) = \kappa_n(X),</math> अर्थात संचयी [[अनुवाद अपरिवर्तनीय]] है। (यदि <math display="inline"> n=1</math> है तो हमारे निकट <math display="inline"> \kappa_1(X+c) = \kappa_1(X)+c) </math>
* अगर <math display=inline>c</math> तब स्थिर है (अर्थात यादृच्छिक नहीं)<math display=inline> \kappa_n(cX) = c^n\kappa_n(X),</math> यानी <math display=inline>n</math>-वें क्यूमुलेंट डिग्री का [[सजातीय बहुपद]] है<math display=inline>n</math>.
* यदि <math display="inline">c</math> स्थिर है (अर्थात यादृच्छिक नहीं) तो <math display="inline"> \kappa_n(cX) = c^n\kappa_n(X),</math> अर्थात <math display="inline">n</math>-वें संचयी परिमाण <math display="inline">n</math> का [[सजातीय बहुपद]] है।
* यदि यादृच्छिक चर <math display=inline>X_1,\ldots,X_m</math> फिर स्वतंत्र हैं <math display="block"> \kappa_n(X_1+\cdots+X_m) = \kappa_n(X_1) + \cdots + \kappa_n(X_m)\,. </math> अर्थात्, संचयी संचयी है - इसलिए नाम।
* यदि यादृच्छिक चर <math display="inline">X_1,\ldots,X_m</math> स्वतंत्र हैं तो<math display="block"> \kappa_n(X_1+\cdots+X_m) = \kappa_n(X_1) + \cdots + \kappa_n(X_m)\,. </math> अर्थात्, संचयी संचयी है - इसलिए नाम।


संचयी-उत्पादक फ़ंक्शन पर विचार करने से संचयी गुण शीघ्रता से अनुसरण करता है:
इस प्रकार से संचयी -उत्पादक फलन पर विचार करने से संचयी गुण शीघ्रता से अनुसरण करता है:


:<math>\begin{align}
:<math>\begin{align}
Line 34: Line 35:
&= K_{X_1}(t) + \cdots + K_{X_m}(t),
&= K_{X_1}(t) + \cdots + K_{X_m}(t),
\end{align}</math>
\end{align}</math>
ताकि स्वतंत्र यादृच्छिक चरों के योग का प्रत्येक संचयी जोड़ के संगत संचयकों का योग हो। अर्थात्, जब जोड़ सांख्यिकीय रूप से स्वतंत्र होते हैं, तो योग का माध्य, साधनों का योग होता है, योग का प्रसरण प्रसरण का योग होता है, योग का तीसरा संचयी (जो तीसरा केंद्रीय क्षण होता है) तीसरे संचयकों का योग है, और इसी प्रकार संचयी के प्रत्येक क्रम के लिए।
ताकि स्वतंत्र यादृच्छिक चरों के योग का प्रत्येक संचयी योग के संगत संचयकों का योग हो। अर्थात्, जब योग सांख्यिकीय रूप से स्वतंत्र होते हैं, तो योग का माध्य, साधनों का योग होता है, योग का प्रसरण प्रसरण का योग होता है, योग का तीसरा संचयी (जो तीसरा केंद्रीय क्षण होता है) तीसरे संचयकों का योग है, और इसी प्रकार संचयी के प्रत्येक क्रम के लिए।


दिए गए संचयकों के साथ एक वितरण {{mvar|κ<sub>n</sub>}} को एडगेवर्थ श्रृंखला के माध्यम से अनुमानित किया जा सकता है।
इस प्रकार से दिए गए संचयकों {{mvar|κ<sub>n</sub>}} के साथ वितरण का अनुमान एजवर्थ श्रृंखला के माध्यम से लगाया जा सकता है।


=== क्षणों के कार्यों के रूप में पहले कई क्यूमुलेंट ===
=== क्षणों के फलनों के रूप में पहले कई संचयी ===


सभी उच्च क्यूमुलेंट पूर्णांक गुणांक के साथ केंद्रीय क्षणों के बहुपद कार्य हैं, लेकिन केवल डिग्री 2 और 3 में क्यूम्यलेंट वास्तव में केंद्रीय क्षण हैं।
अतः सभी उच्च संचयी पूर्णांक गुणांक के साथ केंद्रीय क्षणों के बहुपद फलन हैं, परन्तु मात्र परिमाण 2 और 3 में संचयी वस्तुतः केंद्रीय क्षण हैं।


* <math display="inline"> \kappa_1(X) = \operatorname E(X)={} </math>अर्थ
* <math display="inline"> \kappa_1(X) = \operatorname E(X)={} </math>अर्थ
* <math display=inline> \kappa_2(X) = \operatorname{var}(X) = \operatorname E\big((X-\operatorname E(X))^2\big) ={}</math>विचरण, या दूसरा केंद्रीय क्षण।
* <math display="inline"> \kappa_2(X) = \operatorname{var}(X) = \operatorname E\big((X-\operatorname E(X))^2\big) ={}</math>विचरण, या दूसरा केंद्रीय क्षण।
* <math display=inline> \kappa_3(X) = \operatorname E\big((X-\operatorname E(X))^3\big)={} </math>तीसरा केंद्रीय क्षण.
* <math display="inline"> \kappa_3(X) = \operatorname E\big((X-\operatorname E(X))^3\big)={} </math>तीसरा केंद्रीय क्षण।
* <math display=inline> \kappa_4(X) = \operatorname E\big((X-\operatorname E(X))^4\big) - 3\left( \operatorname E\big((X-\operatorname E(X))^2\big) \right)^2={} </math>चौथा केंद्रीय क्षण दूसरे केंद्रीय क्षण के वर्ग का तीन गुना घटा। इस प्रकार यह पहला मामला है जिसमें संचयी केवल क्षण या केंद्रीय क्षण नहीं हैं। 3 से अधिक डिग्री के केंद्रीय क्षणों में संचयी संपत्ति का अभाव होता है।
* <math display="inline"> \kappa_4(X) = \operatorname E\big((X-\operatorname E(X))^4\big) - 3\left( \operatorname E\big((X-\operatorname E(X))^2\big) \right)^2={} </math>चौथा केंद्रीय क्षण दूसरे केंद्रीय क्षण के वर्ग का तीन गुना घटा है। इस प्रकार यह प्रथम स्थिति है जिसमें संचयी मात्र क्षण या केंद्रीय क्षण नहीं हैं। अतः 3 से अधिक परिमाण के केंद्रीय क्षणों में संचयी गुण का पूर्ण रूप से अभाव होता है।
* <math display=inline> \kappa_5(X) = \operatorname E\big((X-\operatorname E(X))^5\big) - 10\operatorname E\big((X-\operatorname E(X))^3\big) \operatorname E\big((X-\operatorname E(X))^2\big).</math>
* <math display="inline"> \kappa_5(X) = \operatorname E\big((X-\operatorname E(X))^5\big) - 10\operatorname E\big((X-\operatorname E(X))^3\big) \operatorname E\big((X-\operatorname E(X))^2\big).</math>
==कुछ असतत प्रायिकता वितरण के संचयक==
* निरंतर यादृच्छिक चर {{math|''X'' {{=}} ''μ''}}। संचयी जनक फलन {{math|''K''(''t'') {{=}} ''μt''}} है। इस प्रकार से प्रथम संचयी {{math|''κ''<sub>1</sub> {{=}} ''K'' '(0) {{=}} ''μ''}} है और दूसरा संचयी शून्य, {{math|''κ''<sub>2</sub> {{=}} ''κ''<sub>3</sub> {{=}} ''κ''<sub>4</sub> {{=}} ... {{=}} 0}} हैं।
* [[बर्नौली वितरण]], (सफलता की प्रायिकता {{math|''p''}} के साथ एक परीक्षण में सफलताओं की संख्या)। अतः संचयी जनक फलन {{math|''K''(''t'') {{=}} log(1 − ''p'' + ''p''e<sup>''t''</sup>)}} है। प्रथम संचयी {{math|''κ''<sub>1</sub> {{=}} ''K'' '(0) {{=}} ''p''}} और {{math|''κ''<sub>2</sub> {{=}} ''K′′''(0) {{=}} ''p''·(1 − ''p'')}} हैं। संचयक एक पुनरावर्तन सूत्र
*<math display="block">\kappa_{n+1}=p (1-p) \frac{d\kappa_n}{dp}</math> को संतुष्ट करते हैं।
* [[ज्यामितीय वितरण]], (प्रत्येक परीक्षण में सफलता की प्रायिकता {{math|''p''}} के साथ एक सफलता से पहले विफलताओं की संख्या)। इस प्रकार से संचयी जनक फलन {{math|''K''(''t'') {{=}} log(''p'' / (1 + (''p'' − 1)e<sup>''t''</sup>))}} है। प्रथम संचयी {{math|''κ''<sub>1</sub> {{=}} ''K′''(0) {{=}} ''p''<sup>−1</sup> − 1}} और {{math|''κ''<sub>2</sub> {{=}} ''K′′''(0) {{=}} ''κ''<sub>1</sub>''p''<sup>−1</sup>}} हैं। {{math|''p'' {{=}} (''μ'' + 1)<sup>−1</sup>}} को प्रतिस्थापित करने पर {{math|''K''(''t'') {{=}} −log(1 + ''μ''(1−e<sup>''t''</sup>))}} और {{math|''κ''<sub>1</sub> {{=}} ''μ''}} प्राप्त होता है।
* पॉइसन वितरण। संचयी जनक फलन {{math|''K''(''t'') {{=}} ''μ''(e<sup>''t''</sup> − 1)}} है। अतः सभी संचयी पैरामीटर {{math|''κ''<sub>1</sub> {{=}} ''κ''<sub>2</sub> {{=}} ''κ''<sub>3</sub> {{=}} ... {{=}} ''μ''}} के बराबर हैं।
* [[द्विपद वितरण]], (प्रत्येक परीक्षण में सफलता की प्रायिकता '''p''' के साथ '''n''' [[सांख्यिकीय स्वतंत्रता]] परीक्षणों में सफलताओं की संख्या)। विशेष स्थिति {{math|''n'' {{=}} 1}} बर्नौली वितरण है। प्रत्येक संचयी संबंधित बर्नौली वितरण के संगत संचयक का मात्र '''''n''''' गुना है। संचयी जनक फलन {{math|''K''(''t'') {{=}} ''n'' log(1 − ''p'' + ''p''e<sup>''t''</sup>)}} है। प्रथम संचयी {{math|''κ''<sub>1</sub> {{=}} ''K′''(0) {{=}} ''np''}} और {{math|''κ''<sub>2</sub> {{=}} ''K′′''(0) {{=}} ''κ''<sub>1</sub>(1 − ''p'')}} हैं। इस प्रकार से {{math|''p'' {{=}} μ·''n''<sup>−1</sup>}} को प्रतिस्थापित करने पर {{math|''K'' '(''t'') {{=}} ((μ<sup>−1</sup> − ''n''<sup>−1</sup>)·e<sup>−''t''</sup> + ''n''<sup>−1</sup>)<sup>−1</sup>}} और {{math|''κ''<sub>1</sub> {{=}} μ}} प्राप्त होता है। अतः सीमित स्थिति {{math|''n''<sup>−1</sup> {{=}} 0}} पॉइसन वितरण है।
* [[नकारात्मक द्विपद वितरण|ऋणात्मक द्विपद वितरण]], (प्रत्येक परीक्षण में सफलता की संभावना '''''p''''' के साथ '''''r''''' सफलताओं से पहले विफलताओं की संख्या)। विशेष स्थिति {{math|''r'' {{=}} 1}} ज्यामितीय वितरण है। प्रत्येक संचयी संगत ज्यामितीय वितरण के संगत संचयक का मात्र '''''r''''' गुना है। संचयी जनक फलन {{math|1=''K'' '(''t'') = ''r''·((1 − ''p'')<sup>−1</sup>·e<sup>−''t''</sup>−1)<sup>−1</sup>}} का व्युत्पन्न है। इस प्रकार से प्रथम संचयी {{math|1=''κ''<sub>1</sub> = ''K'' '(0) = ''r''·(''p''<sup>−1</sup>−1)}} और {{math|1=''κ''<sub>2</sub> = ''K'' ' '(0) = ''κ''<sub>1</sub>·''p''<sup>−1</sup>}} हैं। {{math|1=''p'' = (μ·''r''<sup>−1</sup>+1)<sup>−1</sup>}} को प्रतिस्थापित करने पर {{math|''K′''(''t'') {{=}} ((''μ''<sup>−1</sup> + ''r''<sup>−1</sup>)''e''<sup>−''t''</sup> − ''r''<sup>−1</sup>)<sup>−1</sup>}} और {{math|''κ''<sub>1</sub> {{=}} ''μ''}} प्राप्त होता है। अतः इन सूत्रों की तुलना द्विपद वितरणों से करने पर 'ऋणात्मक द्विपद वितरण' नाम पूर्ण रूप से स्पष्ट होता है। [[सीमित मामला (गणित)|सीमित स्थिति (गणित)]] {{math|''r''<sup>−1</sup> {{=}} 0}} पॉइसन वितरण है।


इस प्रकार से विचरण-से-माध्य अनुपात का परिचय


==कुछ असतत संभाव्यता वितरण के संचयक==
: <math>\varepsilon=\mu^{-1}\sigma^2=\kappa_1^{-1}\kappa_2</math> का परिचय,
* निरंतर यादृच्छिक चर {{math|''X'' {{=}} ''μ''}}. संचयी जनरेटिंग फ़ंक्शन है {{math|''K''(''t'') {{=}} ''μt''}}. पहला संचयक है {{math|''κ''<sub>1</sub> {{=}} ''K'' '(0) {{=}} ''μ''}} और अन्य संचयी शून्य हैं, {{math|''κ''<sub>2</sub> {{=}} ''κ''<sub>3</sub> {{=}} ''κ''<sub>4</sub> {{=}} ... {{=}} 0}}.
उपरोक्त प्रायिकता वितरण से संचयी जनक फलन के व्युत्पन्न के लिए एकीकृत सूत्र प्राप्त होता है:
* [[बर्नौली वितरण]], (संभावना के साथ एक परीक्षण में सफलताओं की संख्या {{math|''p''}} सफलता की)। संचयी जनरेटिंग फ़ंक्शन है {{math|''K''(''t'') {{=}} log(1 − ''p'' + ''p''e<sup>''t''</sup>)}}. प्रथम संचयी हैं {{math|''κ''<sub>1</sub> {{=}} ''K'' '(0) {{=}} ''p''}} और {{math|''κ''<sub>2</sub> {{=}} ''K′′''(0) {{=}} ''p''·(1 − ''p'')}}. संचयी एक पुनरावर्तन सूत्र को संतुष्ट करते हैं <math display="block">\kappa_{n+1}=p (1-p) \frac{d\kappa_n}{dp}.</math>
* [[ज्यामितीय वितरण]], (संभावना के साथ एक सफलता से पहले विफलताओं की संख्या {{math|''p''}}प्रत्येक परीक्षण पर सफलता की). संचयी जनरेटिंग फ़ंक्शन है {{math|''K''(''t'') {{=}} log(''p'' / (1 + (''p'' − 1)e<sup>''t''</sup>))}}. प्रथम संचयी हैं {{math|''κ''<sub>1</sub> {{=}} ''K′''(0) {{=}} ''p''<sup>−1</sup> − 1}}, और {{math|''κ''<sub>2</sub> {{=}} ''K′′''(0) {{=}} ''κ''<sub>1</sub>''p''<sup>−1</sup>}}. स्थानापन्न {{math|''p'' {{=}} (''μ'' + 1)<sup>−1</sup>}} देता है {{math|''K''(''t'') {{=}} −log(1 + ''μ''(1−e<sup>''t''</sup>))}} और {{math|''κ''<sub>1</sub> {{=}} ''μ''}}.
* पॉइसन वितरण। संचयी जनरेटिंग फ़ंक्शन है {{math|''K''(''t'') {{=}} ''μ''(e<sup>''t''</sup> − 1)}}. सभी क्यूमुलेंट पैरामीटर के बराबर हैं: {{math|''κ''<sub>1</sub> {{=}} ''κ''<sub>2</sub> {{=}} ''κ''<sub>3</sub> {{=}} ... {{=}} ''μ''}}.
* [[द्विपद वितरण]], (सफलताओं की संख्या {{math|''n''}} संभाव्यता के साथ [[सांख्यिकीय स्वतंत्रता]] परीक्षण {{math|''p''}}प्रत्येक परीक्षण पर सफलता की). विशेष मामला {{math|''n'' {{=}} 1}} एक बर्नौली वितरण है। प्रत्येक संचयकर्ता न्यायकारी है {{math|''n''}} संगत बर्नौली वितरण के संगत संचयक का गुना। संचयी जनरेटिंग फ़ंक्शन है {{math|''K''(''t'') {{=}} ''n'' log(1 − ''p'' + ''p''e<sup>''t''</sup>)}}. प्रथम संचयी हैं {{math|''κ''<sub>1</sub> {{=}} ''K′''(0) {{=}} ''np''}} और {{math|''κ''<sub>2</sub> {{=}} ''K′′''(0) {{=}} ''κ''<sub>1</sub>(1 − ''p'')}}. स्थानापन्न {{math|''p'' {{=}} μ·''n''<sup>−1</sup>}} देता है {{math|''K'' '(''t'') {{=}} ((μ<sup>−1</sup> − ''n''<sup>−1</sup>)·e<sup>−''t''</sup> + ''n''<sup>−1</sup>)<sup>−1</sup>}} और {{math|''κ''<sub>1</sub> {{=}} μ}}. सीमित मामला {{math|''n''<sup>−1</sup> {{=}} 0}} एक पॉइसन वितरण है।
* [[नकारात्मक द्विपद वितरण]], (पहले विफलताओं की संख्या {{math|''r''}} संभाव्यता के साथ सफलताएँ {{math|''p''}}प्रत्येक परीक्षण पर सफलता की). विशेष मामला {{math|''r'' {{=}} 1}} एक ज्यामितीय वितरण है. प्रत्येक संचयकर्ता न्यायकारी है {{math|''r''}} संगत ज्यामितीय वितरण के संगत संचयक का गुना। संचयी जनरेटिंग फ़ंक्शन का व्युत्पन्न है {{math|1=''K'' '(''t'') = ''r''·((1 − ''p'')<sup>−1</sup>·e<sup>−''t''</sup>−1)<sup>−1</sup>}}. प्रथम संचयी हैं {{math|1=''κ''<sub>1</sub> = ''K'' '(0) = ''r''·(''p''<sup>−1</sup>−1)}}, और {{math|1=''κ''<sub>2</sub> = ''K'' ' '(0) = ''κ''<sub>1</sub>·''p''<sup>−1</sup>}}. स्थानापन्न {{math|1=''p'' = (μ·''r''<sup>−1</sup>+1)<sup>−1</sup>}} देता है {{math|''K′''(''t'') {{=}} ((''μ''<sup>−1</sup> + ''r''<sup>−1</sup>)''e''<sup>−''t''</sup> − ''r''<sup>−1</sup>)<sup>−1</sup>}} और {{math|''κ''<sub>1</sub> {{=}} ''μ''}}. इन सूत्रों की तुलना द्विपद वितरणों से करने पर 'ऋणात्मक द्विपद वितरण' नाम स्पष्ट होता है। [[सीमित मामला (गणित)]] {{math|''r''<sup>−1</sup> {{=}} 0}} एक पॉइसन वितरण है।
 
विचरण-से-माध्य अनुपात का परिचय
 
: <math>\varepsilon=\mu^{-1}\sigma^2=\kappa_1^{-1}\kappa_2,</math>
उपरोक्त संभाव्यता वितरण से संचयी जनरेटिंग फ़ंक्शन के व्युत्पन्न के लिए एक एकीकृत सूत्र प्राप्त होता है:{{Citation needed|date=September 2010}}


: <math>K'(t)=(1+(e^{-t}-1)\varepsilon)^{-1}\mu</math>
: <math>K'(t)=(1+(e^{-t}-1)\varepsilon)^{-1}\mu</math>
दूसरा व्युत्पन्न है
दूसरा व्युत्पन्न


: <math>K''(t)=(\varepsilon-(\varepsilon-1)e^t)^{-2}\mu\varepsilon e^t</math>
: <math>K''(t)=(\varepsilon-(\varepsilon-1)e^t)^{-2}\mu\varepsilon e^t</math>
यह पुष्टि करते हुए कि पहला संचयक है {{math|''κ''<sub>1</sub> {{=}} ''K′''(0) {{=}} ''μ''}} और दूसरा संचयक है {{math|''κ''<sub>2</sub> {{=}} ''K′′''(0) {{=}} ''με''}}.
पुष्टि करता है कि प्रथम संचयी {{math|''κ''<sub>1</sub> {{=}} ''K′''(0) {{=}} ''μ''}} है और दूसरा संचयी {{math|''κ''<sub>2</sub> {{=}} ''K′′''(0) {{=}} ''με''}} है।


निरंतर यादृच्छिक चर {{math|''X'' {{=}} ''μ''}} पास {{math|''ε'' {{=}} 0}}.
स्थिर यादृच्छिक चर {{math|''X'' {{=}} ''μ''}} निकट {{math|''ε'' {{=}} 0}} है।


द्विपद बंटन है {{math|''ε'' {{=}} 1 − ''p''}} ताकि {{math|0 < ''ε'' < 1}}.
द्विपद बंटन {{math|''ε'' {{=}} 1 − ''p''}} होता है ताकि {{math|0 < ''ε'' < 1}} हो।


पॉइसन वितरण है {{math|''ε'' {{=}} 1}}.
पॉइसन वितरण {{math|''ε'' {{=}} 1}} है।


ऋणात्मक द्विपद बंटन है {{math|''ε'' {{=}} ''p''<sup>−1</sup>}} ताकि {{math|''ε'' > 1}}.
ऋणात्मक द्विपद बंटन में {{math|''ε'' {{=}} ''p''<sup>−1</sup>}} होता है ताकि {{math|''ε'' > 1}}


[[विलक्षणता (गणित)]] द्वारा शंकु वर्गों के वर्गीकरण की सादृश्यता पर ध्यान दें: वृत्त {{math|''ε'' {{=}} 0}}, दीर्घवृत्त {{math|0 < ''ε'' < 1}}, दृष्टांत {{math|''ε'' {{=}} 1}}, अतिपरवलय {{math|''ε'' > 1}}.
[[विलक्षणता (गणित)]] द्वारा शंकु वर्गों के वर्गीकरण की सादृश्यता पर ध्यान दें: वृत्त {{math|''ε'' {{=}} 0}}, दीर्घवृत्त {{math|0 < ''ε'' < 1}}, परवलय {{math|''ε'' {{=}} 1}}, अतिपरवलय {{math|''ε'' > 1}}


==कुछ सतत संभाव्यता वितरणों के संचयी==
==कुछ सतत प्रायिकता वितरणों के संचयी ==
* [[अपेक्षित मूल्य]] के साथ सामान्य वितरण के लिए {{math|''μ''}} और विचरण {{math|''σ''<sup>2</sup>}}, संचयी जनरेटिंग फ़ंक्शन है {{math|''K''(''t'') {{=}} ''μt'' + ''σ''<sup>2</sup>''t''<sup>2</sup>/2}}. संचयी जनरेटिंग फ़ंक्शन के पहले और दूसरे डेरिवेटिव हैं {{math|''K'' '(''t'') {{=}} ''μ'' + ''σ''<sup>2</sup>·''t''}} और {{math|''K''"(''t'') {{=}} ''σ''<sup>2</sup>}}. संचयकर्ता हैं {{math|''κ''<sub>1</sub> {{=}} ''μ''}}, {{math|''κ''<sub>2</sub> {{=}} ''σ''<sup>2</sup>}}, और {{math|''κ''<sub>3</sub> {{=}} ''κ''<sub>4</sub> {{=}} ... {{=}} 0}}. विशेष मामला {{math|''σ''<sup>2</sup> {{=}} 0}} एक स्थिर यादृच्छिक चर है {{math|''X'' {{=}} ''μ''}}.
* [[अपेक्षित मूल्य|अपेक्षित]] मान '''μ''' और विचरण {{math|''σ''<sup>2</sup>}} के साथ सामान्य वितरण के लिए, संचयी जनक फलन {{math|''K''(''t'') {{=}} ''μt'' + ''σ''<sup>2</sup>''t''<sup>2</sup>/2}} है। अतः संचयी जनक फलन का पहला और दूसरा व्युत्पन्न {{math|''K'' '(''t'') {{=}} ''μ'' + ''σ''<sup>2</sup>·''t''}} और {{math|''K''"(''t'') {{=}} ''σ''<sup>2</sup>}} है। संचयक {{math|''κ''<sub>1</sub> {{=}} ''μ''}}, {{math|''κ''<sub>2</sub> {{=}} ''σ''<sup>2</sup>}}, और {{math|''κ''<sub>3</sub> {{=}} ''κ''<sub>4</sub> {{=}} ... {{=}} 0}} हैं। विशेष स्थिति {{math|''σ''<sup>2</sup> {{=}} 0}} स्थिर यादृच्छिक चर {{math|''X'' {{=}} ''μ''}} है।
* अंतराल पर [[समान वितरण (निरंतर)]] के संचयक {{math|[−1, 0]}} हैं {{math|''κ''<sub>''n''</sub> {{=}} ''B''<sub>''n''</sub>/''n''}}, कहाँ {{math|''B''<sub>''n''</sub>}} है {{math|''n''}}<sup>वें</sup>[[बर्नौली संख्या]].
* अंतराल {{math|[−1, 0]}} पर [[समान वितरण (निरंतर)]] के संचयी {{math|''κ''<sub>''n''</sub> {{=}} ''B''<sub>''n''</sub>/''n''}} हैं, जहां {{math|''B''<sub>''n''</sub>}} {{math|''n''}}<sup>वीं</sup> [[बर्नौली संख्या]] है।
* दर पैरामीटर के साथ घातीय वितरण के संचयी {{math|''λ''}} हैं {{math|''κ''<sub>''n''</sub> {{=}} ''λ''<sup>−''n''</sup> (''n'' − 1)!}}.
* दर पैरामीटर {{math|''λ''}} के साथ घातीय वितरण के संचयी {{math|''κ''<sub>''n''</sub> {{=}} ''λ''<sup>−''n''</sup> (''n'' − 1)!}} हैं।


==क्यूमुलेंट जनरेटिंग फ़ंक्शन के कुछ गुण==
==संचयी जनक फलन के कुछ गुण==
संचयी जनरेटिंग फ़ंक्शन {{math|''K''(''t'')}}, यदि यह अस्तित्व में है, तो [[असीम रूप से भिन्न]] और [[उत्तल कार्य]] है, और मूल से होकर गुजरता है। इसका पहला व्युत्पन्न संभाव्यता वितरण के समर्थन के अनंत से सर्वोच्च तक खुले अंतराल में नीरस रूप से होता है, और इसका दूसरा व्युत्पन्न एकल बिंदु द्रव्यमान के [[पतित वितरण]] को छोड़कर, हर जगह सख्ती से सकारात्मक होता है। क्यूम्यलेंट-जनरेटिंग फ़ंक्शन मौजूद होता है यदि और केवल यदि वितरण की पूंछ एक [[घातीय क्षय]] द्वारा प्रमुख होती है, यानी, ([[ बिग ओ अंकन ]] देखें)
अतः संचयी जनक फलन {{math|''K''(''t'')}}, यदि यह अस्तित्व में है, तो [[असीम रूप से भिन्न|अनंत रूप से भिन्न]] और [[उत्तल कार्य|उत्तल फलन]] है, और मूल से होकर गुजरता है। इस प्रकार से इसका प्रथम व्युत्पन्न प्रायिकता वितरण के समर्थन के अनंत से सर्वोच्च तक विवृत अंतराल में सबसे कम होता है, और इसका दूसरा व्युत्पन्न एकल बिंदु द्रव्यमान के [[पतित वितरण]] को छोड़कर, प्रत्येक स्थान दृढ़ता से धनात्मक होता है। अतः संचयी-जनक फलन स्थित होता है यदि और मात्र यदि वितरण का पश्च [[घातीय क्षय]] द्वारा प्रमुख होती है, अर्थात, ([[ बिग ओ अंकन |बिग ओ अंकन]] देखें)


:<math>
:<math>
Line 92: Line 92:
\end{align}
\end{align}
</math>
</math>
कहाँ <math>F</math> संचयी वितरण फलन है. क्यूम्यलेंट-जनरेटिंग फ़ंक्शन में इस तरह के नकारात्मक सर्वोच्च पर लंबवत अनंतस्पर्शी होंगे {{math|''c''}}, यदि ऐसा कोई सर्वोच्च अस्तित्व है, और ऐसे सर्वोच्च पर {{math|''d''}}, यदि ऐसा कोई सर्वोच्च अस्तित्व है, अन्यथा इसे सभी वास्तविक संख्याओं के लिए परिभाषित किया जाएगा।
जहाँ <math>F</math> संचयी वितरण फलन है। संचयी-जनक फलन में ऐसे '''''c''''' के ऋणात्मक सर्वोच्च पर लंबवत अनंतस्पर्शी होंगे, यदि ऐसा सर्वोच्च स्थित है, और ऐसे '''''d''''' के सर्वोच्च पर, यदि ऐसा सर्वोच्च स्थित है, अन्यथा इसे सभी वास्तविक संख्याओं के लिए पूर्ण रूप से परिभाषित किया जाएगा।


यदि एक यादृच्छिक चर का [[समर्थन (गणित)]]। {{math|''X''}} की परिमित ऊपरी या निचली सीमा होती है, फिर इसका संचयी-उत्पादक कार्य होता है {{math|1=''y'' = ''K''(''t'')}}, यदि यह मौजूद है, तो [[अनंतस्पर्शी]](ओं) के पास पहुंचता है जिसका ढलान समर्थन के सर्वोच्च और/या न्यूनतम के बराबर है,
यदि यादृच्छिक चर {{math|''X''}} के [[समर्थन (गणित)]] की ऊपरी या निचली सीमाएं परिमित हैं, तो इसका संचयी-उत्पादक फलन {{math|1=''y'' = ''K''(''t'')}}, यदि यह स्थित है, तो [[अनंतस्पर्शी]](ओं) तक पहुंचता है जिसकी प्रवणता समर्थन के सर्वोच्च और/या न्यूनतम के बराबर है,
: <math>
: <math>
\begin{align}
\begin{align}
Line 104: Line 104:


:<math>\int_{-\infty}^0 \left[t\inf \operatorname{supp}X-K'(t)\right]\,dt, \qquad \int_{\infty}^0 \left[t\inf \operatorname{supp}X-K'(t) \right]\,dt</math>
:<math>\int_{-\infty}^0 \left[t\inf \operatorname{supp}X-K'(t)\right]\,dt, \qquad \int_{\infty}^0 \left[t\inf \operatorname{supp}X-K'(t) \right]\,dt</math>
y-अवरोधन उत्पन्न करें|{{math|''y''}}-इन स्पर्शोन्मुखों की अंतःक्रियाएँ, चूँकि{{math|1=''K''(0) = 0}}.)
इन अनंतस्पर्शियों के {{math|''y''}}-अवरोधन उत्पन्न करता है, क्योंकि {{math|1=''K''(0) = 0}})


वितरण में बदलाव के लिए {{math|''c''}}, <math>K_{X+c}(t)=K_X(t)+ct.</math> एक पतित बिंदु द्रव्यमान के लिए {{math|''c''}}, सीजीएफ सीधी रेखा है <math>K_c(t)=ct</math>, और अधिक सामान्यतः, <math>K_{X+Y}=K_X+K_Y</math> अगर और केवल अगर {{math|''X''}} और {{math|''Y''}} स्वतंत्र हैं और उनके सीजीएफएस मौजूद हैं; ([[उपस्वतंत्रता]] और स्वतंत्रता का संकेत देने के लिए पर्याप्त दूसरे क्षणों का अस्तित्व।<ref>{{cite journal | journal = Studia Scientiarum Mathematicarum Hungarica
{{math|''c''}}, <math>K_{X+c}(t)=K_X(t)+ct</math> द्वारा वितरण में बदलाव के लिए है। अतः {{math|''c''}} पर पतित बिंदु द्रव्यमान के लिए, सीजीएफ सीधी रेखा <math>K_c(t)=ct</math> है, और अधिक सामान्यतः, <math>K_{X+Y}=K_X+K_Y</math> यदि और मात्र यदि {{math|''X''}} और {{math|''Y''}} पूर्ण रूप से स्वतंत्र हैं और उनके सीजीएफएस स्थित हैं; ([[उपस्वतंत्रता]] और स्वतंत्रता का संकेत देने के लिए पर्याप्त दूसरे क्षणों का अस्तित्व।<ref>{{cite journal | journal = Studia Scientiarum Mathematicarum Hungarica
| title = A note on sub-independent random variables and a class of bivariate mixtures
| title = A note on sub-independent random variables and a class of bivariate mixtures
| volume = 49
| volume = 49
Line 117: Line 117:
}}</ref>)
}}</ref>)


वितरण के [[प्राकृतिक घातीय परिवार]] को स्थानांतरण या अनुवाद द्वारा महसूस किया जा सकता है {{math|''K''(''t'')}}, और इसे लंबवत रूप से समायोजित करना ताकि यह हमेशा मूल से होकर गुजरे: यदि {{math|''f''}} सीजीएफ के साथ पीडीएफ है <math>K(t)=\log M(t),</math> और <math>f|\theta</math> तो, यह इसका प्राकृतिक घातीय परिवार है <math>f(x\mid\theta)=\frac1{M(\theta)}e^{\theta x} f(x),</math> और <math>K(t\mid\theta)=K(t+\theta)-K(\theta).</math>
इस प्रकार से वितरण के [[प्राकृतिक घातीय परिवार|प्राकृतिक घातीय वर्ग]] को {{math|''K''(''t'')}} को स्थानांतरण या अनुवाद करके, और इसे लंबवत रूप से समायोजित करके समझा जा सकता है ताकि यह सदैव मूल से होकर गुजरे: यदि {{math|''f''}} सीजीएफ <math>K(t)=\log M(t)</math> के साथ पीडीएफ है और <math>f|\theta</math> इसका प्राकृतिक घातीय वर्ग है, तो <math>f(x\mid\theta)=\frac1{M(\theta)}e^{\theta x} f(x),</math> और <math>K(t\mid\theta)=K(t+\theta)-K(\theta)</math>
अगर {{math|''K''(''t'')}} एक सीमा के लिए सीमित है {{math|''t''<sub>1</sub> < Re(''t'') < ''t''<sub>2</sub>}} तो अगर {{math|''t''<sub>1</sub> < 0 < ''t''<sub>2</sub>}} तब {{math|''K''(''t'')}} विश्लेषणात्मक है और इसके लिए असीम रूप से भिन्न है {{math|''t''<sub>1</sub> < Re(''t'') < ''t''<sub>2</sub>}}. इसके अलावा के लिए {{math|''t''}} वास्तविक और {{math|''t''<sub>1</sub> < ''t'' < ''t''<sub>2</sub> ''K''(''t'')}} सख्ती से उत्तल है, और {{math|''K''&prime;(''t'')}} सख्ती से बढ़ रहा है. {{Citation needed|date=March 2011}}
 
यदि {{math|''K''(''t'')}} किसी श्रेणी {{math|''t''<sub>1</sub> < Re(''t'') < ''t''<sub>2</sub>}} के लिए परिमित है तो यदि {{math|''t''<sub>1</sub> < 0 < ''t''<sub>2</sub>}} है तो {{math|''K''(''t'')}} विश्लेषणात्मक है और {{math|''t''<sub>1</sub> < Re(''t'') < ''t''<sub>2</sub>}} के लिए अनंत रूप से भिन्न है। इस प्रकार से इसके अतिरिक्त '''''t''''' वास्तविक और {{math|''t''<sub>1</sub> < ''t'' < ''t''<sub>2</sub> ''K''(''t'')}} के लिए दृढ़ता से उत्तल है, और {{math|''K''&prime;(''t'')}} दृढ़ता से बढ़ रहा है।


==क्यूमुलेंट्स के अतिरिक्त गुण==
==संचयी के अतिरिक्त गुण==


===एक नकारात्मक परिणाम===
===एक ऋणात्मक परिणाम===
सामान्य वितरण के संचयकों के परिणामों को देखते हुए, यह आशा की जा सकती है कि वितरण के परिवारों को ढूंढ लिया जाए
अतः सामान्य वितरण के संचयकों के परिणामों को देखते हुए, यह अपेक्षा की जा सकती है कि वितरण के ऐसे वर्ग मिलें जिनके लिए {{math|1=''κ''<sub>''m''</sub> = ''κ''<sub>''m''+1</sub> = ⋯ = 0}} कुछ {{math|1=''m'' > 3}} के लिए, निचले क्रम के संचयकों के साथ (क्रम 3 से {{math|1=''m'' − 1}}) गैर-शून्य होना। इस प्रकार से ऐसे कोई वितरण नहीं हैं।<ref>Lukacs, E. (1970) Characteristic Functions (2nd Edition), Griffin, London. (Theorem 7.3.5)</ref> यहां अंतर्निहित परिणाम यह है कि संचयी जनक फलन 2 से अधिक परिमाण का परिमित-क्रम बहुपद पूर्ण रूप से नहीं हो सकता है।
{{math|1=''κ''<sub>''m''</sub> = ''κ''<sub>''m''+1</sub> = ⋯ = 0}} कुछ के लिए {{math|1=''m'' > 3}}, निचले क्रम के संचयकों के साथ (आदेश 3 से {{math|1=''m'' − 1}}) गैर-शून्य होना। ऐसे कोई वितरण नहीं हैं.<ref>Lukacs, E. (1970) Characteristic Functions (2nd Edition), Griffin, London. (Theorem 7.3.5)</ref> यहां अंतर्निहित परिणाम यह है कि क्यूम्यलेंट जनरेटिंग फ़ंक्शन 2 से अधिक डिग्री का एक परिमित-क्रम बहुपद नहीं हो सकता है।


===संचयी और क्षण===
===संचयी और क्षण===
[[क्षण उत्पन्न करने वाला कार्य]] इस प्रकार दिया गया है:
इस प्रकार से [[क्षण उत्पन्न करने वाला कार्य|क्षण जनक फलन]] इस प्रकार दिया गया है:
: <math>M(t) = 1+\sum_{n=1}^\infty \frac{\mu'_n t^n}{n!} = \exp \left(\sum_{n=1}^\infty \frac{\kappa_n t^n}{n!}\right) = \exp(K(t)).</math>
: <math>M(t) = 1+\sum_{n=1}^\infty \frac{\mu'_n t^n}{n!} = \exp \left(\sum_{n=1}^\infty \frac{\kappa_n t^n}{n!}\right) = \exp(K(t)).</math>
तो संचयी जनरेटिंग फ़ंक्शन, क्षण जनरेटिंग फ़ंक्शन का लघुगणक है
तो संचयी जनक फलन, क्षण जनक फलन
:<math>K(t) = \log M(t).</math>
:<math>K(t) = \log M(t)</math> का लघुगणक है।
पहला संचयक अपेक्षित मूल्य है; दूसरा और तीसरा संचयी क्रमशः दूसरा और तीसरा केंद्रीय क्षण हैं (दूसरा केंद्रीय क्षण विचरण है); लेकिन उच्चतर क्यूमुलेंट न तो क्षण हैं और न ही केंद्रीय क्षण, बल्कि क्षणों के अधिक जटिल बहुपद कार्य हैं।
अतः प्रथम संचयी अपेक्षित मान है; दूसरा और तीसरा संचयी क्रमशः दूसरा और तीसरा केंद्रीय क्षण हैं (दूसरा केंद्रीय क्षण विचरण है); परन्तु उच्चतर संचयी न तो क्षण हैं और न ही केंद्रीय क्षण, बल्कि क्षणों के अधिक जटिल बहुपद फलन हैं।


का मूल्यांकन करके क्षणों को संचयकों के संदर्भ में पुनर्प्राप्त किया जा सकता है {{math|''n''}}-वें का व्युत्पन्न <math>\exp(K(t))</math> पर {{tmath|1=t=0}},
{{tmath|1=t=0}}, <math>\exp(K(t))</math> पर


: <math> \mu'_n = M^{(n)}(0) = \left. \frac{\mathrm{d}^n \exp (K(t))}{\mathrm{d}t^n}\right|_{t=0}. </math>
: <math> \mu'_n = M^{(n)}(0) = \left. \frac{\mathrm{d}^n \exp (K(t))}{\mathrm{d}t^n}\right|_{t=0} </math> के '''n-'''वें व्युत्पन्न का मूल्यांकन करके क्षणों को संचयकों के संदर्भ में पूर्ण रूप से पुनर्प्राप्त किया जा सकता है।
इसी प्रकार, मूल्यांकन करके संचयकों को क्षणों के संदर्भ में पुनर्प्राप्त किया जा सकता है {{math|''n''}}-वें का व्युत्पन्न <math>\log M(t)</math> पर {{tmath|1=t=0}},
इसी प्रकार, {{tmath|1=t=0}}, <math>\log M(t)</math> पर


:<math>\kappa_n = K^{(n)}(0) = \left. \frac{\mathrm{d}^n \log M(t)}{\mathrm{d}t^n} \right|_{t=0}.</math>
:<math>\kappa_n = K^{(n)}(0) = \left. \frac{\mathrm{d}^n \log M(t)}{\mathrm{d}t^n} \right|_{t=0}</math> के '''n'''-वें व्युत्पन्न का मूल्यांकन करके संचयी को क्षणों के संदर्भ में पुनर्प्राप्त किया जा सकता है।
के लिए स्पष्ट अभिव्यक्ति {{math|''n''}}-पहले के संदर्भ में वां क्षण {{math|''n''}} क्यूमुलेंट्स, और इसके विपरीत, समग्र कार्यों के उच्च डेरिवेटिव के लिए फा डी ब्रूनो के सूत्र का उपयोग करके प्राप्त किया जा सकता है। सामान्य तौर पर, हमारे पास है
पहले n संचयी के संदर्भ में n-वें पल के लिए स्पष्ट अभिव्यक्ति, और इसके विपरीत, समग्र फलनों के उच्च व्युत्पन्न के लिए फा डि ब्रूनो के सूत्र का उपयोग करके प्राप्त किया जा सकता है। इस प्रकार से सामान्यतः, हमारे निकट


: <math>\mu'_n = \sum_{k=1}^n B_{n,k}(\kappa_1,\ldots,\kappa_{n-k+1}) </math>
: <math>\mu'_n = \sum_{k=1}^n B_{n,k}(\kappa_1,\ldots,\kappa_{n-k+1}) </math>
: <math>\kappa_n = \sum_{k=1}^n (-1)^{k-1} (k-1)! B_{n,k}(\mu'_1, \ldots, \mu'_{n-k+1}),</math>
: <math>\kappa_n = \sum_{k=1}^n (-1)^{k-1} (k-1)! B_{n,k}(\mu'_1, \ldots, \mu'_{n-k+1})</math>
कहाँ <math>B_{n,k}</math> अपूर्ण (या आंशिक) [[बेल बहुपद]] हैं।
है, जहाँ <math>B_{n,k}</math> अपूर्ण (या आंशिक) [[बेल बहुपद]] हैं।


इसी प्रकार, यदि माध्य दिया गया है <math>\mu</math>, केंद्रीय क्षण उत्पन्न करने वाला फ़ंक्शन द्वारा दिया गया है
इसी प्रकार, यदि <math>\mu</math> माध्य दिया गया है, केंद्रीय क्षण जनक फलन


: <math> C(t) = \operatorname{E}[e^{t(x-\mu)}] = e^{-\mu t} M(t) = \exp(K(t) - \mu t), </math>
: <math> C(t) = \operatorname{E}[e^{t(x-\mu)}] = e^{-\mu t} M(t) = \exp(K(t) - \mu t), </math>
और यह {{math|''n''}}-वें केंद्रीय क्षण को संचयकों के संदर्भ में प्राप्त किया जाता है
द्वारा दिया जाता है, और n-वें केंद्रीय क्षण को संचयकों के संदर्भ में


: <math> \mu_n = C^{(n)}(0) = \left. \frac{\mathrm{d}^n}{\mathrm{d}t^n} \exp (K(t) - \mu t) \right|_{t=0} = \sum_{k=1}^n B_{n,k}(0,\kappa_2,\ldots,\kappa_{n-k+1}).</math>
: <math> \mu_n = C^{(n)}(0) = \left. \frac{\mathrm{d}^n}{\mathrm{d}t^n} \exp (K(t) - \mu t) \right|_{t=0} = \sum_{k=1}^n B_{n,k}(0,\kappa_2,\ldots,\kappa_{n-k+1})</math> के रूप में प्राप्त किया जाता है।
के लिए भी {{math|''n'' > 1}}, द {{math|''n''}}-केंद्रीय क्षणों के संदर्भ में वां संचयी है
साथ ही, '''''n > 1''''' के लिए, केंद्रीय क्षणों के संदर्भ में n-वीं संचयी


: <math>
: <math>
\begin{align}
\begin{align}
\kappa_n  & = K^{(n)}(0) = \left. \frac{\mathrm{d}^n}{\mathrm{d}t^n} (\log C(t) + \mu t) \right|_{t=0} \\[4pt]
\kappa_n  & = K^{(n)}(0) = \left. \frac{\mathrm{d}^n}{\mathrm{d}t^n} (\log C(t) + \mu t) \right|_{t=0} \\[4pt]
& = \sum_{k=1}^n (-1)^{k-1} (k-1)! B_{n,k}(0,\mu_2,\ldots,\mu_{n-k+1}).
& = \sum_{k=1}^n (-1)^{k-1} (k-1)! B_{n,k}(0,\mu_2,\ldots,\mu_{n-k+1})
\end{align}
\end{align}
</math>
</math> है।
इस प्रकार से '''n'''-वें क्षण '''μ′n''' पहले '''n''' संचयकों में एक '''n'''-वां-परिमाण बहुपद है। पहले कुछ अभिव्यक्तियाँ हैं:
{{math|''n''}}}-वाँ क्षण (गणित) {{math|''μ''′<sub>''n''</sub>}} एक {{math|''n''}}पहले में-वें-डिग्री बहुपद {{math|''n''}} संचयी। पहली कुछ अभिव्यक्तियाँ हैं:
 
<!-- NOTE: All coefficients below are POSITIVE.  Only when goes in the opposite direction – expressing cumulants in terms of moments--does one see some negative coefficients. -->
: <math>
: <math>
\begin{align}
\begin{align}
Line 174: Line 171:
\end{align}
\end{align}
</math>
</math>
प्रधान क्षणों को अलग करता है {{math|''μ''′<sub>''n''</sub>}} [[माध्य के बारे में क्षण]] से {{math|''μ''<sub>''n''</sub>}}. केंद्रीय क्षणों को संचयकों के कार्यों के रूप में व्यक्त करने के लिए, बस इन बहुपदों से सभी पदों को हटा दें {{math|''κ''<sub>1</sub>}} एक कारक के रूप में प्रकट होता है:
अभाज्य क्षणों {{math|''μ''′<sub>''n''</sub>}} [[माध्य के बारे में क्षण|माध्य के विषय में क्षण]] {{math|''μ''<sub>''n''</sub>}} से अलग करता है। इस प्रकार से केंद्रीय क्षणों को संचयकों के फलनों के रूप में व्यक्त करने के लिए, मात्र इन बहुपदों से उन सभी पदों को हटा दें जिनमें {{math|''κ''<sub>1</sub>}} एक कारक के रूप में पूर्ण रूप से प्रकट होता है:


: <math>
: <math>
Line 186: Line 183:
\end{align}
\end{align}
</math>
</math>
इसी प्रकार, {{math|''n''}}-वें संचयी {{math|''κ''<sub>''n''</sub>}} एक {{math|''n''}}पहले में-वें-डिग्री बहुपद {{math|''n''}} गैर-केंद्रीय क्षण. पहली कुछ अभिव्यक्तियाँ हैं:
इसी प्रकार, {{math|''n''}}-वें संचयी {{math|''κ''<sub>''n''</sub>}} पहले {{math|''n''}}वें- गैर-केंद्रीय क्षणों में एक {{math|''n''}} वें-डिग्री बहुपद है। पहली कुछ अभिव्यक्तियाँ निम्नवत हैं:


: <math>
: <math>
Line 199: Line 196:
\end{align}
\end{align}
</math>
</math>
संचयकों को व्यक्त करने के लिए {{math|''κ''<sub>''n''</sub>}} के लिए {{math|''n'' > 1}} केंद्रीय क्षणों के फलन के रूप में, इन बहुपदों से उन सभी पदों को हटा दें जिनमें μ'<sub>1</sub> एक कारक के रूप में प्रकट होता है:
इस प्रकार से केंद्रीय क्षणों के फलनों के रूप में n > 1 के लिए संचयी {{math|''κ''<sub>''n''</sub>}} को व्यक्त करने के लिए, इन बहुपदों से उन सभी पदों को हटा दें जिनमें μ'<sub>1</sub> एक कारक के रूप में निम्नवत प्रकट होता है:


:<math>\kappa_2=\mu_2\,</math>
:<math>\kappa_2=\mu_2\,</math>
Line 206: Line 203:
:<math>\kappa_5=\mu_5-10\mu_3\mu_2\,</math>
:<math>\kappa_5=\mu_5-10\mu_3\mu_2\,</math>
:<math>\kappa_6=\mu_6-15\mu_4\mu_2-10{\mu_3}^2+30{\mu_2}^3\,.</math>
:<math>\kappa_6=\mu_6-15\mu_4\mu_2-10{\mu_3}^2+30{\mu_2}^3\,.</math>
संचयकों को व्यक्त करने के लिए {{math|''κ''<sub>''n''</sub>}} के लिए {{math|''n'' > 2}}[[मानकीकृत क्षण]] के कार्यों के रूप में {{mvar|μ″<sub>n</sub>}}, भी सेट करें {{math|1={{mvar|μ'}}<sub>2</sub>=1}} बहुपदों में:
[[मानकीकृत क्षण]] {{mvar|μ″<sub>n</sub>}} के फलन के रूप में {{math|''n'' > 2}} के लिए संचयी {{math|''κ''<sub>''n''</sub>}} को व्यक्त करने के लिए, बहुपदों में {{math|1={{mvar|μ'}}<sub>2</sub>=1}} भी निम्नवत समूहित करें:


:<math>\kappa_3=\mu''_3\,</math>
:<math>\kappa_3=\mu''_3\,</math>
Line 212: Line 209:
:<math>\kappa_5=\mu''_5-10\mu''_3\,</math>
:<math>\kappa_5=\mu''_5-10\mu''_3\,</math>
:<math>\kappa_6=\mu''_6-15\mu''_4-10{\mu''_3}^2+30\,.</math>
:<math>\kappa_6=\mu''_6-15\mu''_4-10{\mu''_3}^2+30\,.</math>
संचयकों को विभेदीकरण (गणित) द्वारा क्षणों से संबंधित किया जा सकता है {{math|1=log ''M''(''t'') = ''K''(''t'')}} इसके संबंध में {{math|''t''}}, देना {{math|1=''M′''(''t'') = ''K′''(''t'') ''M''(''t'')}}, जिसमें आसानी से कोई घातांक या लघुगणक नहीं होता है। के गुणांक को बराबर करना {{math|''t''<sup> ''n''−1</sup> / (''n''−1)!}} बाएँ और दाएँ पक्षों पर और उपयोग कर रहे हैं {{math|1=''μ′''<sub>0</sub> = 1}}के लिए निम्नलिखित सूत्र देता है {{math|''n'' ≥ 1}}:<ref>{{cite journal |last1=Smith |first1=Peter J. |date=May 1995 |title=क्यूमुलेंट्स से क्षण प्राप्त करने की पुरानी समस्या का एक पुनरावर्ती सूत्रीकरण और इसके विपरीत|url=https://www.jstor.org/stable/2684642 |journal=The American Statistician |volume=49 |issue=2 |pages=217–218 |doi=10.2307/2684642|jstor=2684642 }}</ref>
अतः संचयी को t के संबंध में संबंध '''log ''M''(''t'') = ''K''(''t'')''' को अलग करके, '''''M′''(''t'') = ''K′''(''t'') ''M''(''t'')''' देकर क्षणों से संबंधित किया जा सकता है, जिसमें सुविधाजनक रूप से कोई घातांक या लघुगणक पूर्ण रूप से सम्मिलित नहीं है। इस प्रकार से {{math|''t''<sup> ''n''−1</sup> / (''n''−1)!}} के गुणांक को बराबर करना, बाएँ और दाएँ पक्षों पर और {{math|1=''μ′''<sub>0</sub> = 1}}का उपयोग करने से {{math|''n'' ≥ 1}} के लिए निम्नलिखित सूत्र मिलते हैं:<ref>{{cite journal |last1=Smith |first1=Peter J. |date=May 1995 |title=क्यूमुलेंट्स से क्षण प्राप्त करने की पुरानी समस्या का एक पुनरावर्ती सूत्रीकरण और इसके विपरीत|url=https://www.jstor.org/stable/2684642 |journal=The American Statistician |volume=49 |issue=2 |pages=217–218 |doi=10.2307/2684642|jstor=2684642 }}</ref>
: <math>
: <math>
\begin{align}
\begin{align}
Line 224: Line 221:
\end{align}
\end{align}
</math>
</math>
ये या तो अनुमति देते हैं <math>\kappa_n</math> या <math>\mu'_n</math> निचले क्रम के संचयकों और क्षणों के ज्ञान का उपयोग करके दूसरे से गणना की जाएगी। केंद्रीय क्षणों के लिए संगत सूत्र <math>\mu_n</math> के लिए <math>n \ge 2</math> सेटिंग द्वारा इन सूत्रों से बनाये जाते हैं <math>\mu'_1 = \kappa_1 = 0</math> और प्रत्येक को प्रतिस्थापित करना <math>\mu'_n</math> साथ <math>\mu_n</math> के लिए <math>n \ge 2</math>:
ये निचले क्रम के संचयकों और क्षणों के ज्ञान का उपयोग करके या तो <math>\kappa_n</math> या <math>\mu'_n</math> की गणना दूसरे से करने की अनुमति देते हैं। इस प्रकार से <math>n \ge 2</math> के लिए केंद्रीय क्षणों <math>\mu_n</math> के लिए संबंधित सूत्र इन सूत्रों से <math>\mu'_1 = \kappa_1 = 0</math> समूहित करके और <math>n \ge 2</math> के लिए प्रत्येक <math>\mu'_n</math> को <math>\mu_n</math> के साथ प्रतिस्थापित करके निम्नवत बनाए जाते हैं:


: <math>
: <math>
Line 235: Line 232:




===संचयी और सेट-विभाजन===
===संचयी और समूह-विभाजन===
इन बहुपदों की एक उल्लेखनीय संयोजक व्याख्या है: गुणांक एक सेट के कुछ विभाजन की गणना करते हैं। इन बहुपदों का एक सामान्य रूप है
इस प्रकार से इन बहुपदों की उल्लेखनीय संयोजक व्याख्या है: गुणांक समूह के कुछ विभाजन की गणना करते हैं। इन बहुपदों का सामान्य रूप


:<math>\mu'_n=\sum_{\pi \, \in \, \Pi} \prod_{B \, \in \, \pi} \kappa_{|B|}</math>
:<math>\mu'_n=\sum_{\pi \, \in \, \Pi} \prod_{B \, \in \, \pi} \kappa_{|B|}</math>
कहाँ
है, जहाँ
 
*{{pi}} आकार के एक सेट के सभी विभाजनों की सूची के माध्यम से चलता है {{math|''n''}};
*{{math|''B'' ∈ {{pi}}}}  साधन {{math|''B''}} उन ब्लॉकों में से एक है जिसमें सेट को विभाजित किया गया है; और
*{{math|{{abs|''B''}}}} सेट का आकार है {{math|''B''}}.
 
इस प्रकार प्रत्येक [[एकपद]]ी एक स्थिर समय संचयी का उत्पाद है जिसमें सूचकांकों का योग होता है {{math|''n''}} (उदाहरण के लिए, शब्द में {{math|1=''κ''<sub>3</sub> ''κ''<sub>2</sub><sup>2</sup> ''κ''<sub>1</sub>}}, सूचकांकों का योग 3 + 2 + 2 + 1 = 8 है; यह बहुपद में प्रकट होता है जो 8वें क्षण को पहले आठ क्यूमुलेंट के एक फ़ंक्शन के रूप में व्यक्त करता है)। [[पूर्णांक]] का एक विभाजन {{math|''n''}} प्रत्येक पद से मेल खाता है। प्रत्येक पद में गुणांक किसी समुच्चय के विभाजनों की संख्या है {{math|''n''}} सदस्य जो पूर्णांक के उस विभाजन में सिमट जाते हैं {{math|''n''}} जब समुच्चय के सदस्य अप्रभेद्य हो जाते हैं।


===क्यूमुलेंट और कॉम्बिनेटरिक्स ===
*{{pi}} आकार {{math|''n''}} के समूह के सभी विभाजनों की सूची से चलता है;
क्यूमुलेंट और कॉम्बिनेटरिक्स के बीच आगे का संबंध [[जियान-कार्लो रोटा]] के काम में पाया जा सकता है, जहां [[अपरिवर्तनीय सिद्धांत]], [[सममित कार्य]]ों और द्विपद अनुक्रमों के लिंक का अध्ययन [[अम्ब्रल कैलकुलस]] के माध्यम से किया जाता है।<ref>{{cite journal |first1=G.-C. |last1=Rota |first2=J. |last2=Shen |title=क्यूमुलेंट्स के कॉम्बिनेटरिक्स पर|journal=Journal of Combinatorial Theory |series=Series A |volume=91 |issue=1–2 |pages=283–304 |year=2000 |doi=10.1006/jcta.1999.3017 |doi-access=free }}</ref>
*{{math|''B'' ∈ {{pi}}}} का अर्थ है कि {{math|''B''}} उन वर्गों में से एक है जिसमें समूह को विभाजित किया गया है; और
*{{math|{{abs|''B''}}}} समूह {{math|''B''}} का आकार है।


अतः इस प्रकार प्रत्येक [[एकपद|एकपदी]] एक स्थिर समय में संचयकों का गुणनफल है जिसमें सूचकांकों का योग {{math|''n''}} है (इस प्रकार से उदाहरण के लिए, पद {{math|1=''κ''<sub>3</sub> ''κ''<sub>2</sub><sup>2</sup> ''κ''<sub>1</sub>}} में, सूचकांकों का योग 3 + 2 + 2 + 1 = 8 है; यह इसमें दिखाई देता है बहुपद जो 8वें क्षण को पहले आठ संचयकों के फलन के रूप में व्यक्त करता है)। इस प्रकार से [[पूर्णांक]] {{math|''n''}} का एक विभाजन प्रत्येक पद से मेल खाता है। प्रत्येक पद में गुणांक '''''n''''' सदस्यों के एक समूह के विभाजन की संख्या है जो पूर्णांक '''''n''''' के उस विभाजन में निपात हो जाता है जब समूह के सदस्य अप्रभेद्य हो जाते हैं।


==संयुक्त संचयी==
===संचयी और साहचर्य ===
अनेक यादृच्छिक चरों का संयुक्त संचयी {{math|''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>}} को एक समान संचयी जनरेटिंग फ़ंक्शन द्वारा परिभाषित किया गया है
अतः संचयी और साहचर्य के बीच आगे का संबंध [[जियान-कार्लो रोटा]] के कार्य में पाया जा सकता है, जहां [[अपरिवर्तनीय सिद्धांत]], [[सममित कार्य|सममित फलनों]] और द्विपद अनुक्रमों के लिंक का अध्ययन [[अम्ब्रल कैलकुलस|अम्ब्रल गणना]] के माध्यम से किया जाता है।<ref>{{cite journal |first1=G.-C. |last1=Rota |first2=J. |last2=Shen |title=क्यूमुलेंट्स के कॉम्बिनेटरिक्स पर|journal=Journal of Combinatorial Theory |series=Series A |volume=91 |issue=1–2 |pages=283–304 |year=2000 |doi=10.1006/jcta.1999.3017 |doi-access=free }}</ref>
==संयुक्त संचयी ==
इस प्रकार से कई यादृच्छिक चर {{math|''X''<sub>1</sub>, ..., ''X''<sub>''n''</sub>}} के संयुक्त संचयी को एक समान संचयी जनक फलन


:<math>K(t_1,t_2,\dots,t_n)=\log E(\mathrm e^{\sum_{j=1}^n t_j X_j}).</math>
:<math>K(t_1,t_2,\dots,t_n)=\log E(\mathrm e^{\sum_{j=1}^n t_j X_j})</math> द्वारा परिभाषित किया गया है।
एक परिणाम यह है
एक परिणाम यह है कि


:<math>\kappa(X_1,\dots,X_n) =\sum_\pi (|\pi|-1)!(-1)^{|\pi|-1}\prod_{B\in\pi}E\left(\prod_{i\in B}X_i\right)</math>
:<math>\kappa(X_1,\dots,X_n) =\sum_\pi (|\pi|-1)!(-1)^{|\pi|-1}\prod_{B\in\pi}E\left(\prod_{i\in B}X_i\right)</math>
कहाँ {{pi}} के सभी विभाजनों की सूची के माध्यम से चलता है {{math|{ 1, ..., ''n'' } }}, {{math|''B''}} विभाजन के सभी ब्लॉकों की सूची के माध्यम से चलता है{{pi}}, और {{math|{{abs|{{pi}}}}}} विभाजन में भागों की संख्या है. उदाहरण के लिए,
जहाँ {{pi}}, {{math|{ 1, ..., ''n'' } }} के सभी विभाजनों की सूची के माध्यम से चलता है, {{math|''B''}} विभाजन {{pi}} के सभी वर्गों की सूची के माध्यम से चलता है, और {{math|{{abs|{{pi}}}}}} विभाजन में भागों की संख्या है। इस प्रकार से उदाहरण के लिए,


:<math>\kappa(X,Y)=\operatorname E(XY) - \operatorname E(X) \operatorname E(Y),</math>
:<math>\kappa(X,Y)=\operatorname E(XY) - \operatorname E(X) \operatorname E(Y),</math>
Line 264: Line 259:


:<math>\kappa(X,Y,Z)=\operatorname E(XYZ) - \operatorname E(XY) \operatorname E(Z) - \operatorname E(XZ) \operatorname E(Y) - \operatorname E(YZ) \operatorname E(X) + 2\operatorname E(X)\operatorname E(Y)\operatorname E(Z).\,</math>
:<math>\kappa(X,Y,Z)=\operatorname E(XYZ) - \operatorname E(XY) \operatorname E(Z) - \operatorname E(XZ) \operatorname E(Y) - \operatorname E(YZ) \operatorname E(X) + 2\operatorname E(X)\operatorname E(Y)\operatorname E(Z).\,</math>
यदि इनमें से कोई भी यादृच्छिक चर समान है, उदाहरण के लिए अगर {{math|1=''X'' = ''Y''}}, फिर वही सूत्र लागू होते हैं, उदा.
यदि इनमें से कोई भी यादृच्छिक चर समान है, इस प्रकार से उदाहरण के लिए यदि {{math|1=''X'' = ''Y''}} तो वही सूत्र लागू होते हैं, इस प्रकार से उदाहरण के लिए


:<math>\kappa(X,X,Z)=\operatorname E(X^2Z)  -2\operatorname E(XZ)\operatorname E(X) - \operatorname E(X^2)\operatorname E(Z) + 2\operatorname E(X)^2\operatorname E(Z),\,</math>
:<math>\kappa(X,X,Z)=\operatorname E(X^2Z)  -2\operatorname E(XZ)\operatorname E(X) - \operatorname E(X^2)\operatorname E(Z) + 2\operatorname E(X)^2\operatorname E(Z),\,</math>
हालाँकि ऐसे दोहराए गए चरों के लिए अधिक संक्षिप्त सूत्र हैं। शून्य-माध्य यादृच्छिक वैक्टर के लिए,
यद्यपि ऐसे दोहराए गए चरों के लिए अधिक संक्षिप्त सूत्र हैं। शून्य-माध्य यादृच्छिक सदिश के लिए,


:<math>\kappa(X,Y,Z) = \operatorname E(XYZ).\,</math>
:<math>\kappa(X,Y,Z) = \operatorname E(XYZ).\,</math>
:<math>\kappa(X,Y,Z,W) = \operatorname E(XYZW) - \operatorname E(XY) \operatorname E(ZW) - \operatorname E(XZ) \operatorname E(YW) - \operatorname E(XW) \operatorname E(YZ).\,</math>
:<math>\kappa(X,Y,Z,W) = \operatorname E(XYZW) - \operatorname E(XY) \operatorname E(ZW) - \operatorname E(XZ) \operatorname E(YW) - \operatorname E(XW) \operatorname E(YZ).\,</math>
केवल एक यादृच्छिक चर का संयुक्त संचयी इसका अपेक्षित मूल्य है, और दो यादृच्छिक चर का संयुक्त संचयी उनका सहप्रसरण है। यदि कुछ यादृच्छिक चर अन्य सभी से स्वतंत्र हैं, तो दो (या अधिक) स्वतंत्र यादृच्छिक चर वाला कोई भी संचयी शून्य है। मैं गिरा {{math|''n''}} यादृच्छिक चर समान हैं, तो संयुक्त संचयी है {{math|''n''}}-वाँ साधारण संचयक।
इस प्रकार से मात्र यादृच्छिक चर का संयुक्त संचयी इसका अपेक्षित मान है, और दो यादृच्छिक चर का संयुक्त संचयी उनका सहप्रसरण है। यदि कुछ यादृच्छिक चर अन्य सभी से स्वतंत्र हैं, तो दो (या अधिक) स्वतंत्र यादृच्छिक चर वाला कोई भी संचयी शून्य है। यदि सभी {{math|''n''}} यादृच्छिक चर समान हैं, तो संयुक्त संचयी {{math|''n''}}-वाँ साधारण संचयी है।


क्यूमुलेंट के संदर्भ में क्षणों की अभिव्यक्ति का संयुक्त अर्थ, क्षणों के संदर्भ में क्यूमुलेंट की तुलना में समझना आसान है:
अतः संचयी के संदर्भ में क्षणों की अभिव्यक्ति का संयुक्त अर्थ, क्षणों के संदर्भ में संचयी की तुलना में समझना सरल है:


: <math> \operatorname E(X_1\cdots X_n)=\sum_\pi\prod_{B\in\pi}\kappa(X_i : i \in B). </math>
: <math> \operatorname E(X_1\cdots X_n)=\sum_\pi\prod_{B\in\pi}\kappa(X_i : i \in B). </math>
उदाहरण के लिए:
इस प्रकार से उदाहरण के लिए:


: <math> \operatorname E(XYZ) = \kappa(X,Y,Z) + \kappa(X,Y)\kappa(Z) + \kappa(X,Z)\kappa(Y) + \kappa(Y,Z)\kappa(X) + \kappa(X)\kappa(Y)\kappa(Z).\,</math>
: <math> \operatorname E(XYZ) = \kappa(X,Y,Z) + \kappa(X,Y)\kappa(Z) + \kappa(X,Z)\kappa(Y) + \kappa(Y,Z)\kappa(X) + \kappa(X)\kappa(Y)\kappa(Z).\,</math>
संयुक्त संचयकों की एक अन्य महत्वपूर्ण संपत्ति बहुरेखीयता है:
संयुक्त संचयकों की अन्य महत्वपूर्ण गुण बहुरेखीयता है:


:<math> \kappa(X+Y,Z_1,Z_2,\dots) = \kappa(X,Z_1,Z_2,\ldots) + \kappa(Y,Z_1,Z_2,\ldots).\,</math>
:<math> \kappa(X+Y,Z_1,Z_2,\dots) = \kappa(X,Z_1,Z_2,\ldots) + \kappa(Y,Z_1,Z_2,\ldots).\,</math>
जिस प्रकार दूसरा संचयी प्रसरण है, उसी प्रकार केवल दो यादृच्छिक चरों का संयुक्त संचयी सहप्रसरण है। परिचित पहचान
जिस प्रकार दूसरा संचयी प्रसरण है, उसी प्रकार मात्र दो यादृच्छिक चरों का संयुक्त संचयी सहप्रसरण है। इस प्रकार से परिचित पहचान


: <math>\operatorname{var}(X+Y) = \operatorname{var}(X) + 2\operatorname{cov}(X,Y) + \operatorname{var}(Y)\,</math>
: <math>\operatorname{var}(X+Y) = \operatorname{var}(X) + 2\operatorname{cov}(X,Y) + \operatorname{var}(Y)\,</math>
सहकर्मियों के लिए सामान्यीकरण:
इस प्रकार से संचयकों के लिए सामान्यीकरण करती है:  


:<math>\kappa_n(X+Y)=\sum_{j=0}^n {n \choose j} \kappa( \, \underbrace{X,\dots,X}_j, \underbrace{Y,\dots,Y}_{n-j}\,).\,</math>
:<math>\kappa_n(X+Y)=\sum_{j=0}^n {n \choose j} \kappa( \, \underbrace{X,\dots,X}_j, \underbrace{Y,\dots,Y}_{n-j}\,).\,</math>
===सप्रतिबन्ध संचयन और कुल संचयन का नियम===
{{Main|कुल संचयन का नियम}}
अतः [[कुल अपेक्षा का नियम]] और [[कुल विचरण का नियम]] सप्रतिबन्ध संचयकों के लिए स्वाभाविक रूप से सामान्यीकृत होता है। इस प्रकार से स्थिति {{math|1=''n'' = 3}}, संचयी के अतिरिक्त (केंद्रीय) क्षणों की भाषा में व्यक्त किया गया है,


 
: <math>\mu_3(X) = \operatorname E(\mu_3(X\mid Y)) + \mu_3(\operatorname E(X\mid Y)) + 3 \operatorname{cov}(\operatorname E(X\mid Y), \operatorname{var} (X\mid Y))</math> कहता है।
===सशर्त संचयन और कुल संचयन का नियम===
{{Main|law of total cumulance}}
[[कुल अपेक्षा का नियम]] और [[कुल विचरण का नियम]] सशर्त संचयकों के लिए स्वाभाविक रूप से सामान्यीकृत होता है। मामला {{math|1=''n'' = 3}}, क्यूमुलेंट की बजाय (केंद्रीय) क्षण (गणित) की भाषा में व्यक्त किया गया है, कहते हैं
 
: <math>\mu_3(X) = \operatorname E(\mu_3(X\mid Y)) + \mu_3(\operatorname E(X\mid Y)) + 3 \operatorname{cov}(\operatorname E(X\mid Y), \operatorname{var} (X\mid Y)).</math>
सामान्य रूप में,<ref>{{cite journal | last1 = Brillinger | first1 = D.R. | year = 1969 | title = कंडीशनिंग के माध्यम से संचयकों की गणना| journal = Annals of the Institute of Statistical Mathematics | volume = 21 | pages = 215–218 | doi=10.1007/bf02532246| s2cid = 122673823 }}</ref>
सामान्य रूप में,<ref>{{cite journal | last1 = Brillinger | first1 = D.R. | year = 1969 | title = कंडीशनिंग के माध्यम से संचयकों की गणना| journal = Annals of the Institute of Statistical Mathematics | volume = 21 | pages = 215–218 | doi=10.1007/bf02532246| s2cid = 122673823 }}</ref>
:<math>\kappa(X_1,\dots,X_n)=\sum_\pi \kappa(\kappa(X_{\pi_1}\mid Y), \dots, \kappa(X_{\pi_b}\mid Y))</math>
:<math>\kappa(X_1,\dots,X_n)=\sum_\pi \kappa(\kappa(X_{\pi_1}\mid Y), \dots, \kappa(X_{\pi_b}\mid Y))</math>
कहाँ
जहाँ


* योग एक सेट के सभी विभाजन से अधिक है{{pi}} सेट का {{math|{ 1, ..., ''n'' } }} सूचकांकों की, और
* योग सूचकांकों के समूह {{math|{ 1, ..., ''n'' } }} के सभी विभाजन {{pi}} पर है, और
* {{pi}}<sub>1</sub>, ..., {{pi}}<sub>b</sub> विभाजन के सभी ब्लॉक हैं {{pi}}; इजहार {{math|''κ''(''X''<sub>{{pi}}<sub>''m''</sub></sub>)}} इंगित करता है कि यादृच्छिक चर का संयुक्त संचयी जिसके सूचकांक विभाजन के उस ब्लॉक में हैं।
* {{pi}}<sub>1</sub>, ..., {{pi}}<sub>b</sub> सभी विभाजन {{pi}} के "वर्ग" हैं; अभिव्यक्ति {{math|''κ''(''X''<sub>{{pi}}<sub>''m''</sub></sub>)}} इंगित करती है कि यादृच्छिक चर का संयुक्त संचयी जिसके सूचकांक विभाजन के उस वर्ग में हैं।


==[[सांख्यिकीय भौतिकी]] से संबंध==
==[[सांख्यिकीय भौतिकी]] से संबंध==
सांख्यिकीय भौतिकी में कई [[व्यापक मात्रा]]एँ - यानी वे मात्राएँ जो किसी दिए गए सिस्टम के आयतन या आकार के समानुपाती होती हैं - यादृच्छिक चर के संचयकों से संबंधित होती हैं। गहरा संबंध यह है कि एक बड़ी प्रणाली में ऊर्जा या कणों की संख्या जैसी व्यापक मात्रा को लगभग स्वतंत्र क्षेत्रों से जुड़ी ऊर्जा (कहें) के योग के रूप में माना जा सकता है। तथ्य यह है कि इन लगभग स्वतंत्र यादृच्छिक चर के क्यूमुलेंट्स (लगभग) जोड़ देंगे, जिससे यह उचित हो जाता है कि व्यापक मात्रा में क्यूम्युलेंट्स से संबंधित होने की उम्मीद की जानी चाहिए।
इस प्रकार से सांख्यिकीय भौतिकी में कई [[व्यापक मात्रा]]एँ - अर्थात वे मात्राएँ जो किसी दिए गए प्रणाली के आयतन या आकार के समानुपाती होती हैं - यादृच्छिक चर के संचयकों से संबंधित होती हैं। अतः गहन संबंध यह है कि बड़ी प्रणाली में ऊर्जा या कणों की संख्या जैसी व्यापक मात्रा को लगभग स्वतंत्र क्षेत्रों से जुड़ी ऊर्जा (कहें) के योग के रूप में माना जा सकता है। तथ्य यह है कि इन लगभग स्वतंत्र यादृच्छिक चर के संचयी (लगभग) योग देंगे, जिससे यह उचित हो जाता है कि व्यापक मात्रा में संचयी से संबंधित होने की अपेक्षा की जानी चाहिए।


तापमान पर थर्मल स्नान के साथ संतुलन में एक प्रणाली {{math|''T''}} उतार-चढ़ाव वाली आंतरिक ऊर्जा है {{math|''E''}}, जिसे वितरण से निकाला गया एक यादृच्छिक चर माना जा सकता है <math> E\sim p(E)</math>. सिस्टम का [[विभाजन फ़ंक्शन (सांख्यिकीय यांत्रिकी)]] है
इस प्रकार से तापमान '''''T''''' पर तापीय स्नान के साथ संतुलन में एक प्रणाली में उच्चावचन वाली आंतरिक ऊर्जा '''''E''''' होती है, जिसे वितरण '''<math> E\sim p(E)</math>''' से लिया गया एक यादृच्छिक चर माना जा सकता है। अतः प्रणाली का [[विभाजन फ़ंक्शन (सांख्यिकीय यांत्रिकी)|विभाजन फलन (सांख्यिकीय यांत्रिकी)]]


:<math>Z(\beta) = \langle\exp(-\beta E)\rangle,\,</math>
:<math>Z(\beta) = \langle\exp(-\beta E)\rangle,\,</math>
जहां थर्मोडायनामिक बीटा|{{math|''β''}} = {{math|1/(''kT'')}} और {{math|''k''}} बोल्ट्ज़मैन का स्थिरांक और अंकन है <math>\langle A \rangle</math> के स्थान पर प्रयोग किया गया है <math>\operatorname{E}[A]</math> ऊर्जा के साथ भ्रम से बचने के लिए अपेक्षित मूल्य के लिए, {{math|''E''}}. इसलिए ऊर्जा के लिए पहला और दूसरा संचयक {{math|''E''}} औसत ऊर्जा और ताप क्षमता दें।
है, जहां ''''= 1/(kT)''''' और '''''k''''' बोल्ट्ज़मैन का स्थिरांक है और ऊर्जा, E के साथ भ्रम से बचने के लिए अपेक्षित मान के लिए <math>\operatorname{E}[A]</math> के अतिरिक्त अंकन <math>\langle A \rangle</math> का उपयोग किया गया है। इसलिए ऊर्जा {{math|''E''}} के लिए प्रथम और दूसरा संचयी औसत ऊर्जा और ताप क्षमता देते हैं।


:<math> \langle E \rangle_c = \frac{\partial \log Z}{\partial (-\beta)} = \langle E \rangle  </math>
:<math> \langle E \rangle_c = \frac{\partial \log Z}{\partial (-\beta)} = \langle E \rangle  </math>
:<math> \langle E^2 \rangle_c = \frac{\partial\langle E\rangle_c}{\partial (-\beta)} = k T^2 \frac{\partial \langle E\rangle}{\partial T} = kT^2C</math>
:<math> \langle E^2 \rangle_c = \frac{\partial\langle E\rangle_c}{\partial (-\beta)} = k T^2 \frac{\partial \langle E\rangle}{\partial T} = kT^2C</math>
हेल्महोल्त्ज़ मुक्त ऊर्जा को के रूप में व्यक्त किया जाता है


:<math>F(\beta) = -\beta^{-1}\log Z(\beta) \, </math>
:<math>F(\beta) = -\beta^{-1}\log Z(\beta) \, </math>
ऊर्जा के लिए संचयी उत्पादन कार्य के साथ थर्मोडायनामिक मात्राओं को जोड़ता है। थर्मोडायनामिक्स गुण जो मुक्त ऊर्जा के व्युत्पन्न हैं, जैसे इसकी [[आंतरिक ऊर्जा]], एन्ट्रॉपी और विशिष्ट ताप क्षमता, सभी को इन संचयकों के संदर्भ में आसानी से व्यक्त किया जा सकता है। अन्य मुक्त ऊर्जा चुंबकीय क्षेत्र या रासायनिक क्षमता जैसे अन्य चर का कार्य हो सकती है <math>\mu</math>, उदा.
के संदर्भ में व्यक्त हेल्महोल्ट्ज़ मुक्त ऊर्जा ऊर्जा के लिए संचयी उत्पादन कार्य के साथ ऊष्मा गतिक मात्रा को जोड़ती है। इस प्रकार से ऊष्मा गतिकी गुण जो मुक्त ऊर्जा के व्युत्पन्न हैं, जैसे इसकी [[आंतरिक ऊर्जा]], एन्ट्रॉपी और विशिष्ट ताप क्षमता, सभी को इन संचयकों के संदर्भ में सरलता से व्यक्त किया जा सकता है। अतः अन्य मुक्त ऊर्जा अन्य चर का एक कार्य हो सकती है जैसे चुंबकीय क्षेत्र या रासायनिक क्षमता <math>\mu</math>, इस प्रकार से उदाहरण के लिए


: <math> \Omega=-\beta^{-1}\log(\langle \exp(-\beta E -\beta\mu N) \rangle),\,</math>
: <math> \Omega=-\beta^{-1}\log(\langle \exp(-\beta E -\beta\mu N) \rangle),\,</math>
कहाँ {{math|''N''}} कणों की संख्या है और <math>\Omega</math> भव्य क्षमता है. पुनः मुक्त ऊर्जा की परिभाषा और संचयी उत्पादन फलन के बीच घनिष्ठ संबंध का तात्पर्य यह है कि इस मुक्त ऊर्जा के विभिन्न व्युत्पन्नों को संयुक्त संचयी के रूप में लिखा जा सकता है। {{math|''E''}} और {{math|''N''}}.<!--The relation between the cumulant and statistical physics is not explicitly stated here, so this material seems out of place. [Other editor:] NB: Just added this relation. Deserves expanding-->
जहाँ {{math|''N''}} कणों की संख्या है और <math>\Omega</math> श्रेष्ठ क्षमता है। पुनः मुक्त ऊर्जा की परिभाषा और संचयी उत्पादन फलन के बीच घनिष्ठ संबंध का तात्पर्य है कि इस मुक्त ऊर्जा के विभिन्न व्युत्पन्नों को {{math|''E''}} और {{math|''N''}} के संयुक्त संचयी के रूप में लिखा जा सकता है।
 
 
==इतिहास==
==इतिहास==
क्यूमुलेंट्स के इतिहास पर [[एंडर्स हाल्ड]] द्वारा चर्चा की गई है।<ref>
इस प्रकार से संचयी के इतिहास पर [[एंडर्स हाल्ड]] द्वारा चर्चा की गई है।<ref>
[[Anders Hald|Hald, A.]] (2000) "The early history of the cumulants and the [[Gram–Charlier series]]" ''International Statistical Review'', 68 (2): 137–153. (Reprinted in {{Cite book|editor-link=Steffen Lauritzen|editor-first=Steffen L.|editor-last=Lauritzen|title=Thiele: Pioneer in Statistics|publisher= Oxford U. P.|year=2002|isbn=978-0-19-850972-1|title-link=Thorvald N. Thiele}})</ref><ref>
[[Anders Hald|Hald, A.]] (2000) "The early history of the cumulants and the [[Gram–Charlier series]]" ''International Statistical Review'', 68 (2): 137–153. (Reprinted in {{Cite book|editor-link=Steffen Lauritzen|editor-first=Steffen L.|editor-last=Lauritzen|title=Thiele: Pioneer in Statistics|publisher= Oxford U. P.|year=2002|isbn=978-0-19-850972-1|title-link=Thorvald N. Thiele}})</ref><ref>
{{Cite book|first1=Anders|last1=Hald|title=A History of Mathematical Statistics from 1750 to 1930 |author-link=Anders Hald|year=1998 |publisher=Wiley |location=New York |isbn=978-0-471-17912-2}}</ref>
{{Cite book|first1=Anders|last1=Hald|title=A History of Mathematical Statistics from 1750 to 1930 |author-link=Anders Hald|year=1998 |publisher=Wiley |location=New York |isbn=978-0-471-17912-2}}</ref>
क्यूमुलेंट्स को पहली बार 1889 में थोरवाल्ड एन. थीले द्वारा पेश किया गया था, जिन्होंने उन्हें अर्ध-अपरिवर्तनीय कहा था।<ref>H. Cramér (1946) Mathematical Methods of Statistics, Princeton University Press, Section 15.10, p. 186.</ref> उन्हें पहली बार 1932 के एक पेपर में क्यूमुलेंट कहा गया था<ref>[[Ronald Fisher|Fisher, R.A.]], [[John Wishart (statistician)|John Wishart, J.]] (1932) [http://plms.oxfordjournals.org/content/s2-33/1/195.full.pdf+html ''The derivation of the pattern formulae of two-way partitions from those of simpler patterns''], Proceedings of the [[London Mathematical Society]], Series 2, v. 33, pp.&nbsp;195–208 {{doi| 10.1112/plms/s2-33.1.195}}
</ref> [[रोनाल्ड फिशर]] और जॉन विशरट (सांख्यिकीविद्) द्वारा। फिशर को नेमैन द्वारा सार्वजनिक रूप से थिएल के काम की याद दिलाई गई, जो फिशर के ध्यान में लाए गए थिएल के पिछले प्रकाशित उद्धरणों को भी नोट करता है।<ref>Neyman, J. (1956): ‘Note on an Article by Sir Ronald Fisher,’ ''Journal of the Royal Statistical Society'', Series B (Methodological), 18, pp. 288–94.</ref> [[स्टीफन स्टिगलर]] ने कहा है{{Citation needed|date=January 2011}}कि क्यूमुलेंट नाम का सुझाव फिशर को [[हेरोल्ड होटलिंग]] के एक पत्र में दिया गया था। 1929 में प्रकाशित एक पेपर में,<ref>{{cite journal|last1=Fisher|first1=R. A.|title=नमूना वितरण के क्षण और उत्पाद क्षण|journal=Proceedings of the London Mathematical Society|date=1929|volume=30|pages=199–238|doi=10.1112/plms/s2-30.1.199|url=https://digital.library.adelaide.edu.au/dspace/bitstream/2440/15200/1/74pt2.pdf|hdl=2440/15200|hdl-access=free}}<!--|access-date=7 August 2015--></ref> फिशर ने इन्हें संचयी क्षण फलन कहा था। सांख्यिकीय भौतिकी में विभाजन फ़ंक्शन की शुरुआत 1901 में [[जोशिया विलार्ड गिब्स]] द्वारा की गई थी।{{Citation needed|date=January 2011}} मुक्त ऊर्जा को अक्सर गिब्स मुक्त ऊर्जा कहा जाता है। [[सांख्यिकीय यांत्रिकी]] में, क्यूमुलेंट्स को 1927 में एक प्रकाशन से संबंधित [[उर्सेल समारोह]] के रूप में भी जाना जाता है।{{Citation needed|date=January 2011}}


==सामान्यीकृत सेटिंग्स में संचयक==
अतः संचयी को पहली बार 1889 में थोरवाल्ड एन. थीले द्वारा प्रस्तुत किया गया था, जिन्होंने उन्हें अर्ध-अपरिवर्तनीय कहा था।<ref>H. Cramér (1946) Mathematical Methods of Statistics, Princeton University Press, Section 15.10, p. 186.</ref> उन्हें पहली बार [[रोनाल्ड फिशर]] और जॉन विशरट (सांख्यिकीविद्) द्वारा 1932 के लेख में संचयी कहा गया था।<ref>[[Ronald Fisher|Fisher, R.A.]], [[John Wishart (statistician)|John Wishart, J.]] (1932) [http://plms.oxfordjournals.org/content/s2-33/1/195.full.pdf+html ''The derivation of the pattern formulae of two-way partitions from those of simpler patterns''], Proceedings of the [[London Mathematical Society]], Series 2, v. 33, pp.&nbsp;195–208 {{doi| 10.1112/plms/s2-33.1.195}}
</ref> इस प्रकार से फिशर को नेमैन द्वारा सार्वजनिक रूप से थिएल के कार्य का स्मृति कराया गया, जो फिशर के ध्यान में लाए गए थिएल के पूर्व प्रकाशित उद्धरणों को भी नोट करता है।<ref>Neyman, J. (1956): ‘Note on an Article by Sir Ronald Fisher,’ ''Journal of the Royal Statistical Society'', Series B (Methodological), 18, pp. 288–94.</ref> अतः [[स्टीफन स्टिगलर]] ने कहा है कि [[हेरोल्ड होटलिंग]] के पत्र में फिशर को संचयी नाम का सुझाव दिया गया था। 1929 में प्रकाशित एक पेपर में फिशर ने इन्हें संचयी क्षण फलन कहा था।<ref>{{cite journal|last1=Fisher|first1=R. A.|title=नमूना वितरण के क्षण और उत्पाद क्षण|journal=Proceedings of the London Mathematical Society|date=1929|volume=30|pages=199–238|doi=10.1112/plms/s2-30.1.199|url=https://digital.library.adelaide.edu.au/dspace/bitstream/2440/15200/1/74pt2.pdf|hdl=2440/15200|hdl-access=free}}<!--|access-date=7 August 2015--></ref> इस प्रकार से सांख्यिकीय भौतिकी में विभाजन फलन के प्रारंभ 1901 में [[जोशिया विलार्ड गिब्स]] द्वारा की गई थी। मुक्त ऊर्जा को प्रायः गिब्स मुक्त ऊर्जा कहा जाता है। [[सांख्यिकीय यांत्रिकी]] में, संचयी को 1927 में प्रकाशन से संबंधित [[उर्सेल समारोह|उर्सेल फलन]] के रूप में भी जाना जाता है।
 
==सामान्यीकृत समायोजन में संचयक==


===औपचारिक संचयक===
===औपचारिक संचयक===
अधिक सामान्यतः, एक अनुक्रम के संचयक {{math|1={ ''m''<sub>''n''</sub> : ''n'' = 1, 2, 3, ... } }}, जरूरी नहीं कि किसी संभाव्यता वितरण के क्षण, परिभाषा के अनुसार हों,
इस प्रकार से अधिक सामान्यतः, किसी अनुक्रम के संचयी {{math|1={ ''m''<sub>''n''</sub> : ''n'' = 1, 2, 3, ... } }}, आवश्यक नहीं कि किसी प्रायिकता वितरण के क्षण, परिभाषा के अनुसार,


: <math>1+\sum_{n=1}^\infty \frac{m_n t^n}{n!} = \exp \left( \sum_{n=1}^\infty \frac{\kappa_n t^n}{n!} \right) ,</math>
: <math>1+\sum_{n=1}^\infty \frac{m_n t^n}{n!} = \exp \left( \sum_{n=1}^\infty \frac{\kappa_n t^n}{n!} \right) ,</math>
जहां के मूल्य {{math|''κ''<sub>''n''</sub>}} के लिए {{math|1=''n'' = 1, 2, 3, ...}} औपचारिक रूप से पाए जाते हैं, यानी, केवल बीजगणित द्वारा, इस सवाल की परवाह किए बिना कि क्या कोई श्रृंखला अभिसरण करती है। जब कोई औपचारिक रूप से काम करता है तो संचयकों की समस्या की सभी कठिनाइयां अनुपस्थित हो जाती हैं। सबसे सरल उदाहरण यह है कि संभाव्यता वितरण का दूसरा संचयी हमेशा गैर-नकारात्मक होना चाहिए, और केवल तभी शून्य होता है जब सभी उच्च संचयी शून्य हों। औपचारिक सहचालक ऐसी किसी बाध्यता के अधीन नहीं हैं।
हों, जहां {{math|1=''n'' = 1, 2, 3, ...}} के लिए {{math|''κ''<sub>''n''</sub>}} का मान हो, औपचारिक रूप से पाए जाते हैं, अर्थात, अकेले बीजगणित द्वारा, इस प्रश्न की उपेक्षा करते हुए कि क्या कोई श्रृंखला अभिसरण करती है। जब कोई औपचारिक रूप से कार्य करता है तो संचयकों की समस्या की सभी कठिनाइयां अनुपस्थित हो जाती हैं। अतः सबसे सरल उदाहरण यह है कि प्रायिकता वितरण का दूसरा संचयी सदैव गैर-ऋणात्मक होना चाहिए, और मात्र तभी शून्य होता है जब सभी उच्च संचयी शून्य हों। औपचारिक सहचालक ऐसी किसी बाध्यता के अधीन नहीं हैं।


===घंटी संख्या===
===बेल संख्या===
कॉम्बिनेटरिक्स में, {{math|''n''}}-वां [[बेल नंबर]] आकार के एक सेट के विभाजन की संख्या है {{math|''n''}}. सभी बेल नंबर#जनरेटिंग फ़ंक्शन। बेल नंबर मोमेंट-जनरेटिंग फ़ंक्शन#उदाहरण हैं।
इस प्रकार से साहचर्य में, {{math|''n''}}-वें [[बेल नंबर|बेल संख्या]] आकार {{math|''n''}} के समूह के विभाजन की संख्या है। बेल संख्याओं के अनुक्रम के सभी संचयक 1 के बराबर हैं। अतः बेल संख्याएँ अपेक्षित मान 1 के साथ पॉइसन वितरण के क्षण हैं।


===द्विपद प्रकार के बहुपद अनुक्रम के संचयी===
===द्विपद प्रकार के बहुपद अनुक्रम के संचयी ===
किसी भी क्रम के लिए {{math|1={ ''κ''<sub>''n''</sub> : ''n'' = 1, 2, 3, ... } }विशेषता शून्य के क्षेत्र (गणित) में [[अदिश (गणित)]] का, औपचारिक संचयी माना जाता है, एक संगत अनुक्रम होता है {{math|1={ μ ′ : ''n'' = 1, 2, 3, ...} }}औपचारिक क्षणों का, उपरोक्त बहुपदों द्वारा दिया गया है।{{clarify|reason=what polynomials|date=January 2011}}{{Citation needed|date=January 2011}} उन बहुपदों के लिए, निम्नलिखित तरीके से एक [[बहुपद अनुक्रम]] बनाएं। बहुपद से बाहर
विशेषता शून्य के क्षेत्र में [[अदिश (गणित)]] के किसी भी अनुक्रम { ''κ''<sub>''n''</sub> : ''n'' = 1, 2, 3, ... } के लिए, जिसे औपचारिक संचयी माना जाता है, एक संगत अनुक्रम होता है {{math|1={ μ ′ : ''n'' = 1, 2, 3, ...} }}औपचारिक क्षणों का, ऊपर बहुपद द्वारा दिया गया है। उन बहुपदों के लिए, निम्नलिखित विधि से [[बहुपद अनुक्रम]] बनाएं। इस प्रकार से बहुपद


: <math>
: <math>
Line 348: Line 339:
\end{align}
\end{align}
</math>
</math>
इनमें एक नया बहुपद और एक अतिरिक्त चर बनाएं {{math|''x''}}:
में से एक अतिरिक्त चर {{math|''x''}} के साथ एक नवीन बहुपद बनाएं:


: <math>
: <math>
Line 356: Line 347:
\end{align}
\end{align}
</math>
</math>
और फिर पैटर्न को सामान्यीकृत करें। पैटर्न यह है कि उपरोक्त विभाजनों में ब्लॉकों की संख्या पर घातांक हैं {{math|''x''}}. संचयकों में प्रत्येक गुणांक एक बहुपद है; ये बेल बहुपद हैं, जिनका नाम [[एरिक टेम्पल बेल]] के नाम पर रखा गया है।{{Citation needed|date=January 2011}}
और फिर प्रतिरूप को सामान्यीकृत करें। प्रतिरूप यह है कि उपरोक्त विभाजनों में वर्गों की संख्या {{math|''x''}} पर घातांक हैं। अतः संचयकों में प्रत्येक गुणांक बहुपद है; ये बेल बहुपद हैं, जिनका नाम [[एरिक टेम्पल बेल]] के नाम पर रखा गया है।


बहुपदों का यह क्रम [[द्विपद प्रकार]] का होता है। वास्तव में, द्विपद प्रकार का कोई अन्य क्रम मौजूद नहीं है; द्विपद प्रकार का प्रत्येक बहुपद अनुक्रम पूरी तरह से उसके औपचारिक संचयकों के अनुक्रम से निर्धारित होता है।{{Citation needed|date=January 2011}}
बहुपदों का यह क्रम [[द्विपद प्रकार]] का होता है। वस्तुतः, द्विपद प्रकार का कोई अन्य क्रम स्थित नहीं है; द्विपद प्रकार का प्रत्येक बहुपद अनुक्रम पूर्ण रूप से उसके औपचारिक संचयकों के अनुक्रम से निर्धारित होता है।


===निःशुल्क संचयक===
===मुक्त संचयक===
उपरोक्त क्षण-संचयी सूत्र में
इस प्रकार से संयुक्त संचयी के लिए उपरोक्त क्षण-संचयी सूत्र


:<math>\operatorname E(X_1\cdots X_n)=\sum_\pi\prod_{B\,\in\,\pi}\kappa(X_i : i\in B)</math>
:<math>\operatorname E(X_1\cdots X_n)=\sum_\pi\prod_{B\,\in\,\pi}\kappa(X_i : i\in B)</math>
संयुक्त संचयकों के लिए,
में, समूह के सभी विभाजनों का एक योग {{math|1={ 1, ..., ''n'' } }}यदि इसके अतिरिक्त, कोई मात्र गैर-अनुप्रस्थ विभाजनों पर योग करता है, तो, क्षणों के संदर्भ में <math>\kappa</math> के लिए इन सूत्रों को हल करके, ऊपर बताए गए पारंपरिक संचयी के अतिरिक्त '''मुक्त संचयी''' प्राप्त होता है। अतः ये मुक्त संचयी रोलैंड स्पीचर द्वारा प्रस्तुत किए गए थे और [[मुक्त संभाव्यता|मुक्त प्रायिकता]] सिद्धांत में केंद्रीय भूमिका निभाते हैं।<ref>{{cite journal |last=Speicher |first=Roland |year=1994 |title=गैर-क्रॉसिंग विभाजन और मुक्त कनवल्शन की जाली पर गुणक कार्य|journal=[[Mathematische Annalen]] |volume=298 |issue=4 |pages=611–628 |doi=10.1007/BF01459754 |s2cid=123022311 }}</ref><ref name="Novak-Śniady">{{Cite journal|last1=Novak|first1=Jonathan|last2=Śniady|first2=Piotr|year=2011|title=एक निःशुल्क संचयक क्या है?|journal=[[Notices of the American Mathematical Society]]|volume=58|issue=2|pages=300–301|issn=0002-9920}}</ref> उस सिद्धांत में, यादृच्छिक चर के बीजगणित के टेन्सर उत्पाद के संदर्भ में परिभाषित यादृच्छिक चर की सांख्यिकीय स्वतंत्रता पर विचार करने के अतिरिक्त, बीजगणित के मुक्त उत्पादों के संदर्भ में परिभाषित यादृच्छिक चर की [[स्वतंत्र स्वतंत्रता]] पर विचार किया जाता है।<ref name="Novak-Śniady"/>
सेट के सभी विभाजनों का एक योग {{math|1={ 1, ..., ''n'' } }}. यदि इसके बजाय, कोई केवल गैर-क्रॉसिंग विभाजनों का योग करता है, तो, इन सूत्रों को हल करके <math>\kappa</math> क्षणों के संदर्भ में, किसी को ऊपर बताए गए पारंपरिक क्यूमुलंट के बजाय मुफ्त क्यूमुलंट मिलते हैं। ये मुक्त संचयी रोलैंड स्पीचर द्वारा पेश किए गए थे और [[मुक्त संभाव्यता]] सिद्धांत में केंद्रीय भूमिका निभाते हैं।<ref>{{cite journal |last=Speicher |first=Roland |year=1994 |title=गैर-क्रॉसिंग विभाजन और मुक्त कनवल्शन की जाली पर गुणक कार्य|journal=[[Mathematische Annalen]] |volume=298 |issue=4 |pages=611–628 |doi=10.1007/BF01459754 |s2cid=123022311 }}</ref><ref name="Novak-Śniady">{{Cite journal|last1=Novak|first1=Jonathan|last2=Śniady|first2=Piotr|year=2011|title=एक निःशुल्क संचयक क्या है?|journal=[[Notices of the American Mathematical Society]]|volume=58|issue=2|pages=300–301|issn=0002-9920}}</ref> उस सिद्धांत में, यादृच्छिक चर के बीजगणित के टेन्सर उत्पाद के संदर्भ में परिभाषित यादृच्छिक चर की सांख्यिकीय स्वतंत्रता पर विचार करने के बजाय, बीजगणित के मुक्त उत्पादों के संदर्भ में परिभाषित यादृच्छिक चर की [[स्वतंत्र स्वतंत्रता]] पर विचार किया जाता है।<ref name="Novak-Śniady"/>


सामान्य वितरण के 2 से अधिक डिग्री वाले सामान्य संचयक शून्य होते हैं। [[विग्नर अर्धवृत्त वितरण]] के 2 से अधिक डिग्री के मुक्त संचयी शून्य हैं।<ref name="Novak-Śniady"/>यह एक ऐसा संबंध है जिसमें मुक्त संभाव्यता सिद्धांत में विग्नर वितरण की भूमिका पारंपरिक संभाव्यता सिद्धांत में सामान्य वितरण के अनुरूप है।
इस प्रकार से सामान्य वितरण के 2 से अधिक परिमाण वाले सामान्य संचयी शून्य होते हैं। [[विग्नर अर्धवृत्त वितरण]] के 2 से अधिक परिमाण के मुक्त संचयी शून्य हैं।<ref name="Novak-Śniady"/> यह ऐसा संबंध है जिसमें मुक्त प्रायिकता सिद्धांत में विग्नर वितरण की भूमिका पारंपरिक प्रायिकता सिद्धांत में सामान्य वितरण के अनुरूप है।


==यह भी देखें==
==यह भी देखें==
* [[एन्ट्रोपिक मूल्य खतरे में है]]
* [[एन्ट्रोपिक मूल्य खतरे में है|एन्ट्रोपिक मान संकट में है]]
* मल्टीसेट#क्यूमुलेंट जनरेटिंग फ़ंक्शन
* बहुसमूह संचयी जनक फलन
* कोर्निश-फिशर विस्तार
* कोर्निश-फिशर विस्तार
* एडगेवर्थ विस्तार
* एडगेवर्थ विस्तार
* [[पॉलीके]]
* [[पॉलीके]]
* के-सांख्यिकी, एक संचयी का न्यूनतम-विचरण निष्पक्ष अनुमानक
* के-सांख्यिकी, संचयी का न्यूनतम-विचरण निष्पक्ष अनुमानक
* उर्सेल फ़ंक्शन
* उर्सेल फलन
* क्वांटम रसायन विज्ञान में इलेक्ट्रॉनिक तरंग फ़ंक्शन का विश्लेषण करने के लिए क्यूमुलेंट्स के अनुप्रयोग के रूप में कुल स्थिति स्प्रेड टेंसर।
* क्वांटम रसायन विज्ञान में इलेक्ट्रॉनिक तरंग फलन का विश्लेषण करने के लिए संचयी के अनुप्रयोग के रूप में कुल स्थिति फैला हुआ टेंसर।


==संदर्भ==
{{Reflist}}
{{Reflist}}


==बाहरी संबंध==
==बाहरी संबंध==
Line 388: Line 376:


{{Theory of probability distributions}}
{{Theory of probability distributions}}
[[Category: क्षण (गणित)]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Collapse templates]]
[[Category:Created On 06/07/2023]]
[[Category:Created On 06/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]

Latest revision as of 08:32, 16 July 2023

प्रायिकता सिद्धांत और आंकड़ों में, प्रायिकता वितरण के संचयी κn मात्राओं का एक समूह हैं जो वितरण के क्षण (गणित) के लिए एक विकल्प प्रदान करते हैं। कोई भी दो प्रायिकता वितरण जिनके क्षण समान हैं, उनके संचयी भी समान होंगे, और पूर्ण रूप से इसके विपरीत।

इस प्रकार से प्रथम संचयी माध्य है, दूसरा संचयी विचरण है, और तीसरा संचयी तीसरे केंद्रीय क्षण के समान है। परन्तु चौथे और उच्च क्रम के संचयी केंद्रीय क्षणों के बराबर नहीं हैं। अतः कुछ स्थितियों में संचयी के संदर्भ में समस्याओं का सैद्धांतिक उपचार क्षणों का उपयोग करने की तुलना में पूर्ण रूप से सरल होता है। विशेष रूप से, जब दो या दो से अधिक यादृच्छिक चर सांख्यिकीय रूप से स्वतंत्र होते हैं, तो उनके योग का n-वें-क्रम संचयी उनके n-वें-क्रम संचयी के योग के बराबर होता है। साथ ही, सामान्य वितरण के तीसरे और उच्च-क्रम संचयी शून्य हैं, और यह इस गुण के एकमात्र वितरण है।

इस प्रकार से क्षणों के जैसे, जहां संयुक्त क्षणों का उपयोग यादृच्छिक चर के संग्रह के लिए किया जाता है, संयुक्त संचयकों को परिभाषित करना पूर्ण रूप से संभव है।

परिभाषा

अतः एक यादृच्छिक चर X के संचयकों को संचयी-जनक फलन K(t)का उपयोग करके परिभाषित किया जाता है, जो क्षण-जनक फलन का प्राकृतिक लघुगणक है:

संचयी κn संचयी जनक फलन की घात श्रृंखला विस्तार से प्राप्त किए जाते हैं:

यह विस्तार मैकलॉरिन श्रृंखला है, इसलिए उपरोक्त विस्तार को n बार विभेदित करके और शून्य पर परिणाम का मूल्यांकन करके n-वें संचयी पूर्ण रूप से प्राप्त किया जा सकता है:[1]

इस प्रकार से यदि क्षण-जनक फलन स्थित नहीं है, तो संचयी को बाद में चर्चा किए गए संचयी और क्षणों के बीच संबंध के संदर्भ में पूर्ण रूप से परिभाषित किया जा सकता है।

संचयी जनक फलन की वैकल्पिक परिभाषा

कुछ लेखक[2][3] संचयी-जनक फलन को विशेषता फलन (प्रायिकता सिद्धांत) के प्राकृतिक लघुगणक के रूप में परिभाषित करना चयनित करते हैं, जिसे कभी-कभी दूसरा विशेषता फलन,[4][5]

भी कहा जाता है।

इस प्रकार से H(t) का एक लाभ - कुछ अर्थों में फलन K(t) का मूल्यांकन पूर्ण रूप से काल्पनिक तर्कों के लिए किया जाता है - यह है कि E[eitX] t के सभी वास्तविक मानों के लिए ठीक रूप से परिभाषित है, यद्यपि E[etX] सभी के लिए ठीक रूप से परिभाषित न हो टी के वास्तविक मान, जैसे कि तब हो सकते हैं जब "बहुत अधिक" प्रायिकता हो कि X का परिमाण बड़ा है। यद्यपि फलन H(t) को ठीक रूप से परिभाषित किया जाएगा, फिर भी यह अपनी मैकलॉरिन श्रृंखला की लंबाई के संदर्भ में K(t) का अनुकरण करेगा, जो तर्क t में रैखिक क्रम से आगे (या, संभवतः कभी, यहां तक ​​​​कि) तक विस्तारित नहीं हो सकता है। और विशेष रूप से ठीक रूप से परिभाषित संचयकों की संख्या पूर्ण रूप से नहीं बदलेगी। फिर भी, जब H(t) में लंबी मैकलॉरिन श्रृंखला नहीं होती है, तब भी इसका उपयोग प्रत्यक्षतः विश्लेषण करने और, विशेष रूप से, यादृच्छिक चर जोड़ने में किया जा सकता है। अतः कॉची वितरण (जिसे लोरेंत्ज़ियन भी कहा जाता है) और अधिक सामान्यतः, स्थिर वितरण (लेवी वितरण से संबंधित) दोनों वितरण के उदाहरण हैं, जिनके लिए उत्पादन फलनों की शक्ति-श्रृंखला विस्तार में मात्र सीमित रूप से कई ठीक रूप से परिभाषित शब्द हैं।

कुछ मूलभूत गुण

इस प्रकार से एक यादृच्छिक चर का वें संचयी निम्नलिखित गुणों का आनंद लेता है:

  • यदि और स्थिर है (अर्थात यादृच्छिक नहीं) तो अर्थात संचयी अनुवाद अपरिवर्तनीय है। (यदि है तो हमारे निकट
  • यदि स्थिर है (अर्थात यादृच्छिक नहीं) तो अर्थात -वें संचयी परिमाण का सजातीय बहुपद है।
  • यदि यादृच्छिक चर स्वतंत्र हैं तो
    अर्थात्, संचयी संचयी है - इसलिए नाम।

इस प्रकार से संचयी -उत्पादक फलन पर विचार करने से संचयी गुण शीघ्रता से अनुसरण करता है:

ताकि स्वतंत्र यादृच्छिक चरों के योग का प्रत्येक संचयी योग के संगत संचयकों का योग हो। अर्थात्, जब योग सांख्यिकीय रूप से स्वतंत्र होते हैं, तो योग का माध्य, साधनों का योग होता है, योग का प्रसरण प्रसरण का योग होता है, योग का तीसरा संचयी (जो तीसरा केंद्रीय क्षण होता है) तीसरे संचयकों का योग है, और इसी प्रकार संचयी के प्रत्येक क्रम के लिए।

इस प्रकार से दिए गए संचयकों κn के साथ वितरण का अनुमान एजवर्थ श्रृंखला के माध्यम से लगाया जा सकता है।

क्षणों के फलनों के रूप में पहले कई संचयी

अतः सभी उच्च संचयी पूर्णांक गुणांक के साथ केंद्रीय क्षणों के बहुपद फलन हैं, परन्तु मात्र परिमाण 2 और 3 में संचयी वस्तुतः केंद्रीय क्षण हैं।

  • अर्थ
  • विचरण, या दूसरा केंद्रीय क्षण।
  • तीसरा केंद्रीय क्षण।
  • चौथा केंद्रीय क्षण दूसरे केंद्रीय क्षण के वर्ग का तीन गुना घटा है। इस प्रकार यह प्रथम स्थिति है जिसमें संचयी मात्र क्षण या केंद्रीय क्षण नहीं हैं। अतः 3 से अधिक परिमाण के केंद्रीय क्षणों में संचयी गुण का पूर्ण रूप से अभाव होता है।

कुछ असतत प्रायिकता वितरण के संचयक

  • निरंतर यादृच्छिक चर X = μ। संचयी जनक फलन K(t) = μt है। इस प्रकार से प्रथम संचयी κ1 = K '(0) = μ है और दूसरा संचयी शून्य, κ2 = κ3 = κ4 = ... = 0 हैं।
  • बर्नौली वितरण, (सफलता की प्रायिकता p के साथ एक परीक्षण में सफलताओं की संख्या)। अतः संचयी जनक फलन K(t) = log(1 − p + pet) है। प्रथम संचयी κ1 = K '(0) = p और κ2 = K′′(0) = p·(1 − p) हैं। संचयक एक पुनरावर्तन सूत्र
  • को संतुष्ट करते हैं।
  • ज्यामितीय वितरण, (प्रत्येक परीक्षण में सफलता की प्रायिकता p के साथ एक सफलता से पहले विफलताओं की संख्या)। इस प्रकार से संचयी जनक फलन K(t) = log(p / (1 + (p − 1)et)) है। प्रथम संचयी κ1 = K′(0) = p−1 − 1 और κ2 = K′′(0) = κ1p−1 हैं। p = (μ + 1)−1 को प्रतिस्थापित करने पर K(t) = −log(1 + μ(1−et)) और κ1 = μ प्राप्त होता है।
  • पॉइसन वितरण। संचयी जनक फलन K(t) = μ(et − 1) है। अतः सभी संचयी पैरामीटर κ1 = κ2 = κ3 = ... = μ के बराबर हैं।
  • द्विपद वितरण, (प्रत्येक परीक्षण में सफलता की प्रायिकता p के साथ n सांख्यिकीय स्वतंत्रता परीक्षणों में सफलताओं की संख्या)। विशेष स्थिति n = 1 बर्नौली वितरण है। प्रत्येक संचयी संबंधित बर्नौली वितरण के संगत संचयक का मात्र n गुना है। संचयी जनक फलन K(t) = n log(1 − p + pet) है। प्रथम संचयी κ1 = K′(0) = np और κ2 = K′′(0) = κ1(1 − p) हैं। इस प्रकार से p = μ·n−1 को प्रतिस्थापित करने पर K '(t) = ((μ−1n−1)·et + n−1)−1 और κ1 = μ प्राप्त होता है। अतः सीमित स्थिति n−1 = 0 पॉइसन वितरण है।
  • ऋणात्मक द्विपद वितरण, (प्रत्येक परीक्षण में सफलता की संभावना p के साथ r सफलताओं से पहले विफलताओं की संख्या)। विशेष स्थिति r = 1 ज्यामितीय वितरण है। प्रत्येक संचयी संगत ज्यामितीय वितरण के संगत संचयक का मात्र r गुना है। संचयी जनक फलन K '(t) = r·((1 − p)−1·et−1)−1 का व्युत्पन्न है। इस प्रकार से प्रथम संचयी κ1 = K '(0) = r·(p−1−1) और κ2 = K ' '(0) = κ1·p−1 हैं। p = (μ·r−1+1)−1 को प्रतिस्थापित करने पर K′(t) = ((μ−1 + r−1)etr−1)−1 और κ1 = μ प्राप्त होता है। अतः इन सूत्रों की तुलना द्विपद वितरणों से करने पर 'ऋणात्मक द्विपद वितरण' नाम पूर्ण रूप से स्पष्ट होता है। सीमित स्थिति (गणित) r−1 = 0 पॉइसन वितरण है।

इस प्रकार से विचरण-से-माध्य अनुपात का परिचय

का परिचय,

उपरोक्त प्रायिकता वितरण से संचयी जनक फलन के व्युत्पन्न के लिए एकीकृत सूत्र प्राप्त होता है:

दूसरा व्युत्पन्न

पुष्टि करता है कि प्रथम संचयी κ1 = K′(0) = μ है और दूसरा संचयी κ2 = K′′(0) = με है।

स्थिर यादृच्छिक चर X = μ निकट ε = 0 है।

द्विपद बंटन हε = 1 − p होता है ताकि 0 < ε < 1 हो।

पॉइसन वितरण ε = 1 है।

ऋणात्मक द्विपद बंटन में ε = p−1 होता है ताकि ε > 1

विलक्षणता (गणित) द्वारा शंकु वर्गों के वर्गीकरण की सादृश्यता पर ध्यान दें: वृत्त ε = 0, दीर्घवृत्त 0 < ε < 1, परवलय ε = 1, अतिपरवलय ε > 1

कुछ सतत प्रायिकता वितरणों के संचयी

  • अपेक्षित मान μ और विचरण σ2 के साथ सामान्य वितरण के लिए, संचयी जनक फलन K(t) = μt + σ2t2/2 है। अतः संचयी जनक फलन का पहला और दूसरा व्युत्पन्न K '(t) = μ + σ2·t और K"(t) = σ2 है। संचयक κ1 = μ, κ2 = σ2, और κ3 = κ4 = ... = 0 हैं। विशेष स्थिति σ2 = 0 स्थिर यादृच्छिक चर X = μ है।
  • अंतराल [−1, 0] पर समान वितरण (निरंतर) के संचयी κn = Bn/n हैं, जहां Bn nवीं बर्नौली संख्या है।
  • दर पैरामीटर λ के साथ घातीय वितरण के संचयी κn = λn (n − 1)! हैं।

संचयी जनक फलन के कुछ गुण

अतः संचयी जनक फलन K(t), यदि यह अस्तित्व में है, तो अनंत रूप से भिन्न और उत्तल फलन है, और मूल से होकर गुजरता है। इस प्रकार से इसका प्रथम व्युत्पन्न प्रायिकता वितरण के समर्थन के अनंत से सर्वोच्च तक विवृत अंतराल में सबसे कम होता है, और इसका दूसरा व्युत्पन्न एकल बिंदु द्रव्यमान के पतित वितरण को छोड़कर, प्रत्येक स्थान दृढ़ता से धनात्मक होता है। अतः संचयी-जनक फलन स्थित होता है यदि और मात्र यदि वितरण का पश्च घातीय क्षय द्वारा प्रमुख होती है, अर्थात, (बिग ओ अंकन देखें)

जहाँ संचयी वितरण फलन है। संचयी-जनक फलन में ऐसे c के ऋणात्मक सर्वोच्च पर लंबवत अनंतस्पर्शी होंगे, यदि ऐसा सर्वोच्च स्थित है, और ऐसे d के सर्वोच्च पर, यदि ऐसा सर्वोच्च स्थित है, अन्यथा इसे सभी वास्तविक संख्याओं के लिए पूर्ण रूप से परिभाषित किया जाएगा।

यदि यादृच्छिक चर X के समर्थन (गणित) की ऊपरी या निचली सीमाएं परिमित हैं, तो इसका संचयी-उत्पादक फलन y = K(t), यदि यह स्थित है, तो अनंतस्पर्शी(ओं) तक पहुंचता है जिसकी प्रवणता समर्थन के सर्वोच्च और/या न्यूनतम के बराबर है,

क्रमश: सर्वत्र इन दोनों रेखाओं के ऊपर स्थित है। (अभिन्न

इन अनंतस्पर्शियों के y-अवरोधन उत्पन्न करता है, क्योंकि K(0) = 0।)

c, द्वारा वितरण में बदलाव के लिए है। अतः c पर पतित बिंदु द्रव्यमान के लिए, सीजीएफ सीधी रेखा है, और अधिक सामान्यतः, यदि और मात्र यदि X और Y पूर्ण रूप से स्वतंत्र हैं और उनके सीजीएफएस स्थित हैं; (उपस्वतंत्रता और स्वतंत्रता का संकेत देने के लिए पर्याप्त दूसरे क्षणों का अस्तित्व।[6])

इस प्रकार से वितरण के प्राकृतिक घातीय वर्ग को K(t) को स्थानांतरण या अनुवाद करके, और इसे लंबवत रूप से समायोजित करके समझा जा सकता है ताकि यह सदैव मूल से होकर गुजरे: यदि f सीजीएफ के साथ पीडीएफ है और इसका प्राकृतिक घातीय वर्ग है, तो और

यदि K(t) किसी श्रेणी t1 < Re(t) < t2 के लिए परिमित है तो यदि t1 < 0 < t2 है तो K(t) विश्लेषणात्मक है और t1 < Re(t) < t2 के लिए अनंत रूप से भिन्न है। इस प्रकार से इसके अतिरिक्त t वास्तविक और t1 < t < t2 K(t) के लिए दृढ़ता से उत्तल है, और K′(t) दृढ़ता से बढ़ रहा है।

संचयी के अतिरिक्त गुण

एक ऋणात्मक परिणाम

अतः सामान्य वितरण के संचयकों के परिणामों को देखते हुए, यह अपेक्षा की जा सकती है कि वितरण के ऐसे वर्ग मिलें जिनके लिए κm = κm+1 = ⋯ = 0 कुछ m > 3 के लिए, निचले क्रम के संचयकों के साथ (क्रम 3 से m − 1) गैर-शून्य होना। इस प्रकार से ऐसे कोई वितरण नहीं हैं।[7] यहां अंतर्निहित परिणाम यह है कि संचयी जनक फलन 2 से अधिक परिमाण का परिमित-क्रम बहुपद पूर्ण रूप से नहीं हो सकता है।

संचयी और क्षण

इस प्रकार से क्षण जनक फलन इस प्रकार दिया गया है:

तो संचयी जनक फलन, क्षण जनक फलन

का लघुगणक है।

अतः प्रथम संचयी अपेक्षित मान है; दूसरा और तीसरा संचयी क्रमशः दूसरा और तीसरा केंद्रीय क्षण हैं (दूसरा केंद्रीय क्षण विचरण है); परन्तु उच्चतर संचयी न तो क्षण हैं और न ही केंद्रीय क्षण, बल्कि क्षणों के अधिक जटिल बहुपद फलन हैं।

, पर

के n-वें व्युत्पन्न का मूल्यांकन करके क्षणों को संचयकों के संदर्भ में पूर्ण रूप से पुनर्प्राप्त किया जा सकता है।

इसी प्रकार, , पर

के n-वें व्युत्पन्न का मूल्यांकन करके संचयी को क्षणों के संदर्भ में पुनर्प्राप्त किया जा सकता है।

पहले n संचयी के संदर्भ में n-वें पल के लिए स्पष्ट अभिव्यक्ति, और इसके विपरीत, समग्र फलनों के उच्च व्युत्पन्न के लिए फा डि ब्रूनो के सूत्र का उपयोग करके प्राप्त किया जा सकता है। इस प्रकार से सामान्यतः, हमारे निकट

है, जहाँ अपूर्ण (या आंशिक) बेल बहुपद हैं।

इसी प्रकार, यदि माध्य दिया गया है, केंद्रीय क्षण जनक फलन

द्वारा दिया जाता है, और n-वें केंद्रीय क्षण को संचयकों के संदर्भ में

के रूप में प्राप्त किया जाता है।

साथ ही, n > 1 के लिए, केंद्रीय क्षणों के संदर्भ में n-वीं संचयी

है।

इस प्रकार से n-वें क्षण μ′n पहले n संचयकों में एक n-वां-परिमाण बहुपद है। पहले कुछ अभिव्यक्तियाँ हैं:

अभाज्य क्षणों μn माध्य के विषय में क्षण μn से अलग करता है। इस प्रकार से केंद्रीय क्षणों को संचयकों के फलनों के रूप में व्यक्त करने के लिए, मात्र इन बहुपदों से उन सभी पदों को हटा दें जिनमें κ1 एक कारक के रूप में पूर्ण रूप से प्रकट होता है:

इसी प्रकार, n-वें संचयी κn पहले nवें- गैर-केंद्रीय क्षणों में एक n वें-डिग्री बहुपद है। पहली कुछ अभिव्यक्तियाँ निम्नवत हैं:

इस प्रकार से केंद्रीय क्षणों के फलनों के रूप में n > 1 के लिए संचयी κn को व्यक्त करने के लिए, इन बहुपदों से उन सभी पदों को हटा दें जिनमें μ'1 एक कारक के रूप में निम्नवत प्रकट होता है:

मानकीकृत क्षण μ″n के फलन के रूप में n > 2 के लिए संचयी κn को व्यक्त करने के लिए, बहुपदों में μ'2=1 भी निम्नवत समूहित करें:

अतः संचयी को t के संबंध में संबंध log M(t) = K(t) को अलग करके, M′(t) = K′(t) M(t) देकर क्षणों से संबंधित किया जा सकता है, जिसमें सुविधाजनक रूप से कोई घातांक या लघुगणक पूर्ण रूप से सम्मिलित नहीं है। इस प्रकार से t n−1 / (n−1)! के गुणांक को बराबर करना, बाएँ और दाएँ पक्षों पर और μ′0 = 1का उपयोग करने से n ≥ 1 के लिए निम्नलिखित सूत्र मिलते हैं:[8]

ये निचले क्रम के संचयकों और क्षणों के ज्ञान का उपयोग करके या तो या की गणना दूसरे से करने की अनुमति देते हैं। इस प्रकार से के लिए केंद्रीय क्षणों के लिए संबंधित सूत्र इन सूत्रों से समूहित करके और के लिए प्रत्येक को के साथ प्रतिस्थापित करके निम्नवत बनाए जाते हैं:


संचयी और समूह-विभाजन

इस प्रकार से इन बहुपदों की उल्लेखनीय संयोजक व्याख्या है: गुणांक समूह के कुछ विभाजन की गणना करते हैं। इन बहुपदों का सामान्य रूप

है, जहाँ

  • π आकार n के समूह के सभी विभाजनों की सूची से चलता है;
  • Bπ का अर्थ है कि B उन वर्गों में से एक है जिसमें समूह को विभाजित किया गया है; और
  • |B| समूह B का आकार है।

अतः इस प्रकार प्रत्येक एकपदी एक स्थिर समय में संचयकों का गुणनफल है जिसमें सूचकांकों का योग n है (इस प्रकार से उदाहरण के लिए, पद κ3 κ22 κ1 में, सूचकांकों का योग 3 + 2 + 2 + 1 = 8 है; यह इसमें दिखाई देता है बहुपद जो 8वें क्षण को पहले आठ संचयकों के फलन के रूप में व्यक्त करता है)। इस प्रकार से पूर्णांक n का एक विभाजन प्रत्येक पद से मेल खाता है। प्रत्येक पद में गुणांक n सदस्यों के एक समूह के विभाजन की संख्या है जो पूर्णांक n के उस विभाजन में निपात हो जाता है जब समूह के सदस्य अप्रभेद्य हो जाते हैं।

संचयी और साहचर्य

अतः संचयी और साहचर्य के बीच आगे का संबंध जियान-कार्लो रोटा के कार्य में पाया जा सकता है, जहां अपरिवर्तनीय सिद्धांत, सममित फलनों और द्विपद अनुक्रमों के लिंक का अध्ययन अम्ब्रल गणना के माध्यम से किया जाता है।[9]

संयुक्त संचयी

इस प्रकार से कई यादृच्छिक चर X1, ..., Xn के संयुक्त संचयी को एक समान संचयी जनक फलन

द्वारा परिभाषित किया गया है।

एक परिणाम यह है कि

जहाँ π, { 1, ..., n } के सभी विभाजनों की सूची के माध्यम से चलता है, B विभाजन π के सभी वर्गों की सूची के माध्यम से चलता है, और |π| विभाजन में भागों की संख्या है। इस प्रकार से उदाहरण के लिए,

सहप्रसरण है, और

यदि इनमें से कोई भी यादृच्छिक चर समान है, इस प्रकार से उदाहरण के लिए यदि X = Y तो वही सूत्र लागू होते हैं, इस प्रकार से उदाहरण के लिए

यद्यपि ऐसे दोहराए गए चरों के लिए अधिक संक्षिप्त सूत्र हैं। शून्य-माध्य यादृच्छिक सदिश के लिए,

इस प्रकार से मात्र यादृच्छिक चर का संयुक्त संचयी इसका अपेक्षित मान है, और दो यादृच्छिक चर का संयुक्त संचयी उनका सहप्रसरण है। यदि कुछ यादृच्छिक चर अन्य सभी से स्वतंत्र हैं, तो दो (या अधिक) स्वतंत्र यादृच्छिक चर वाला कोई भी संचयी शून्य है। यदि सभी n यादृच्छिक चर समान हैं, तो संयुक्त संचयी n-वाँ साधारण संचयी है।

अतः संचयी के संदर्भ में क्षणों की अभिव्यक्ति का संयुक्त अर्थ, क्षणों के संदर्भ में संचयी की तुलना में समझना सरल है:

इस प्रकार से उदाहरण के लिए:

संयुक्त संचयकों की अन्य महत्वपूर्ण गुण बहुरेखीयता है:

जिस प्रकार दूसरा संचयी प्रसरण है, उसी प्रकार मात्र दो यादृच्छिक चरों का संयुक्त संचयी सहप्रसरण है। इस प्रकार से परिचित पहचान

इस प्रकार से संचयकों के लिए सामान्यीकरण करती है:

सप्रतिबन्ध संचयन और कुल संचयन का नियम

अतः कुल अपेक्षा का नियम और कुल विचरण का नियम सप्रतिबन्ध संचयकों के लिए स्वाभाविक रूप से सामान्यीकृत होता है। इस प्रकार से स्थिति n = 3, संचयी के अतिरिक्त (केंद्रीय) क्षणों की भाषा में व्यक्त किया गया है,

कहता है।

सामान्य रूप में,[10]

जहाँ

  • योग सूचकांकों के समूह { 1, ..., n } के सभी विभाजन π पर है, और
  • π1, ..., πb सभी विभाजन π के "वर्ग" हैं; अभिव्यक्ति κ(Xπm) इंगित करती है कि यादृच्छिक चर का संयुक्त संचयी जिसके सूचकांक विभाजन के उस वर्ग में हैं।

सांख्यिकीय भौतिकी से संबंध

इस प्रकार से सांख्यिकीय भौतिकी में कई व्यापक मात्राएँ - अर्थात वे मात्राएँ जो किसी दिए गए प्रणाली के आयतन या आकार के समानुपाती होती हैं - यादृच्छिक चर के संचयकों से संबंधित होती हैं। अतः गहन संबंध यह है कि बड़ी प्रणाली में ऊर्जा या कणों की संख्या जैसी व्यापक मात्रा को लगभग स्वतंत्र क्षेत्रों से जुड़ी ऊर्जा (कहें) के योग के रूप में माना जा सकता है। तथ्य यह है कि इन लगभग स्वतंत्र यादृच्छिक चर के संचयी (लगभग) योग देंगे, जिससे यह उचित हो जाता है कि व्यापक मात्रा में संचयी से संबंधित होने की अपेक्षा की जानी चाहिए।

इस प्रकार से तापमान T पर तापीय स्नान के साथ संतुलन में एक प्रणाली में उच्चावचन वाली आंतरिक ऊर्जा E होती है, जिसे वितरण से लिया गया एक यादृच्छिक चर माना जा सकता है। अतः प्रणाली का विभाजन फलन (सांख्यिकीय यांत्रिकी)

है, जहां β = 1/(kT) और k बोल्ट्ज़मैन का स्थिरांक है और ऊर्जा, E के साथ भ्रम से बचने के लिए अपेक्षित मान के लिए के अतिरिक्त अंकन का उपयोग किया गया है। इसलिए ऊर्जा E के लिए प्रथम और दूसरा संचयी औसत ऊर्जा और ताप क्षमता देते हैं।

के संदर्भ में व्यक्त हेल्महोल्ट्ज़ मुक्त ऊर्जा ऊर्जा के लिए संचयी उत्पादन कार्य के साथ ऊष्मा गतिक मात्रा को जोड़ती है। इस प्रकार से ऊष्मा गतिकी गुण जो मुक्त ऊर्जा के व्युत्पन्न हैं, जैसे इसकी आंतरिक ऊर्जा, एन्ट्रॉपी और विशिष्ट ताप क्षमता, सभी को इन संचयकों के संदर्भ में सरलता से व्यक्त किया जा सकता है। अतः अन्य मुक्त ऊर्जा अन्य चर का एक कार्य हो सकती है जैसे चुंबकीय क्षेत्र या रासायनिक क्षमता , इस प्रकार से उदाहरण के लिए

जहाँ N कणों की संख्या है और श्रेष्ठ क्षमता है। पुनः मुक्त ऊर्जा की परिभाषा और संचयी उत्पादन फलन के बीच घनिष्ठ संबंध का तात्पर्य है कि इस मुक्त ऊर्जा के विभिन्न व्युत्पन्नों को E और N के संयुक्त संचयी के रूप में लिखा जा सकता है।

इतिहास

इस प्रकार से संचयी के इतिहास पर एंडर्स हाल्ड द्वारा चर्चा की गई है।[11][12]

अतः संचयी को पहली बार 1889 में थोरवाल्ड एन. थीले द्वारा प्रस्तुत किया गया था, जिन्होंने उन्हें अर्ध-अपरिवर्तनीय कहा था।[13] उन्हें पहली बार रोनाल्ड फिशर और जॉन विशरट (सांख्यिकीविद्) द्वारा 1932 के लेख में संचयी कहा गया था।[14] इस प्रकार से फिशर को नेमैन द्वारा सार्वजनिक रूप से थिएल के कार्य का स्मृति कराया गया, जो फिशर के ध्यान में लाए गए थिएल के पूर्व प्रकाशित उद्धरणों को भी नोट करता है।[15] अतः स्टीफन स्टिगलर ने कहा है कि हेरोल्ड होटलिंग के पत्र में फिशर को संचयी नाम का सुझाव दिया गया था। 1929 में प्रकाशित एक पेपर में फिशर ने इन्हें संचयी क्षण फलन कहा था।[16] इस प्रकार से सांख्यिकीय भौतिकी में विभाजन फलन के प्रारंभ 1901 में जोशिया विलार्ड गिब्स द्वारा की गई थी। मुक्त ऊर्जा को प्रायः गिब्स मुक्त ऊर्जा कहा जाता है। सांख्यिकीय यांत्रिकी में, संचयी को 1927 में प्रकाशन से संबंधित उर्सेल फलन के रूप में भी जाना जाता है।

सामान्यीकृत समायोजन में संचयक

औपचारिक संचयक

इस प्रकार से अधिक सामान्यतः, किसी अनुक्रम के संचयी { mn : n = 1, 2, 3, ... }, आवश्यक नहीं कि किसी प्रायिकता वितरण के क्षण, परिभाषा के अनुसार,

हों, जहां n = 1, 2, 3, ... के लिए κn का मान हो, औपचारिक रूप से पाए जाते हैं, अर्थात, अकेले बीजगणित द्वारा, इस प्रश्न की उपेक्षा करते हुए कि क्या कोई श्रृंखला अभिसरण करती है। जब कोई औपचारिक रूप से कार्य करता है तो संचयकों की समस्या की सभी कठिनाइयां अनुपस्थित हो जाती हैं। अतः सबसे सरल उदाहरण यह है कि प्रायिकता वितरण का दूसरा संचयी सदैव गैर-ऋणात्मक होना चाहिए, और मात्र तभी शून्य होता है जब सभी उच्च संचयी शून्य हों। औपचारिक सहचालक ऐसी किसी बाध्यता के अधीन नहीं हैं।

बेल संख्या

इस प्रकार से साहचर्य में, n-वें बेल संख्या आकार n के समूह के विभाजन की संख्या है। बेल संख्याओं के अनुक्रम के सभी संचयक 1 के बराबर हैं। अतः बेल संख्याएँ अपेक्षित मान 1 के साथ पॉइसन वितरण के क्षण हैं।

द्विपद प्रकार के बहुपद अनुक्रम के संचयी

विशेषता शून्य के क्षेत्र में अदिश (गणित) के किसी भी अनुक्रम { κn : n = 1, 2, 3, ... } के लिए, जिसे औपचारिक संचयी माना जाता है, एक संगत अनुक्रम होता है { μ ′ : n = 1, 2, 3, ...}औपचारिक क्षणों का, ऊपर बहुपद द्वारा दिया गया है। उन बहुपदों के लिए, निम्नलिखित विधि से बहुपद अनुक्रम बनाएं। इस प्रकार से बहुपद

में से एक अतिरिक्त चर x के साथ एक नवीन बहुपद बनाएं:

और फिर प्रतिरूप को सामान्यीकृत करें। प्रतिरूप यह है कि उपरोक्त विभाजनों में वर्गों की संख्या x पर घातांक हैं। अतः संचयकों में प्रत्येक गुणांक बहुपद है; ये बेल बहुपद हैं, जिनका नाम एरिक टेम्पल बेल के नाम पर रखा गया है।

बहुपदों का यह क्रम द्विपद प्रकार का होता है। वस्तुतः, द्विपद प्रकार का कोई अन्य क्रम स्थित नहीं है; द्विपद प्रकार का प्रत्येक बहुपद अनुक्रम पूर्ण रूप से उसके औपचारिक संचयकों के अनुक्रम से निर्धारित होता है।

मुक्त संचयक

इस प्रकार से संयुक्त संचयी के लिए उपरोक्त क्षण-संचयी सूत्र

में, समूह के सभी विभाजनों का एक योग { 1, ..., n }। यदि इसके अतिरिक्त, कोई मात्र गैर-अनुप्रस्थ विभाजनों पर योग करता है, तो, क्षणों के संदर्भ में के लिए इन सूत्रों को हल करके, ऊपर बताए गए पारंपरिक संचयी के अतिरिक्त मुक्त संचयी प्राप्त होता है। अतः ये मुक्त संचयी रोलैंड स्पीचर द्वारा प्रस्तुत किए गए थे और मुक्त प्रायिकता सिद्धांत में केंद्रीय भूमिका निभाते हैं।[17][18] उस सिद्धांत में, यादृच्छिक चर के बीजगणित के टेन्सर उत्पाद के संदर्भ में परिभाषित यादृच्छिक चर की सांख्यिकीय स्वतंत्रता पर विचार करने के अतिरिक्त, बीजगणित के मुक्त उत्पादों के संदर्भ में परिभाषित यादृच्छिक चर की स्वतंत्र स्वतंत्रता पर विचार किया जाता है।[18]

इस प्रकार से सामान्य वितरण के 2 से अधिक परिमाण वाले सामान्य संचयी शून्य होते हैं। विग्नर अर्धवृत्त वितरण के 2 से अधिक परिमाण के मुक्त संचयी शून्य हैं।[18] यह ऐसा संबंध है जिसमें मुक्त प्रायिकता सिद्धांत में विग्नर वितरण की भूमिका पारंपरिक प्रायिकता सिद्धांत में सामान्य वितरण के अनुरूप है।

यह भी देखें

  • एन्ट्रोपिक मान संकट में है
  • बहुसमूह संचयी जनक फलन
  • कोर्निश-फिशर विस्तार
  • एडगेवर्थ विस्तार
  • पॉलीके
  • के-सांख्यिकी, संचयी का न्यूनतम-विचरण निष्पक्ष अनुमानक
  • उर्सेल फलन
  • क्वांटम रसायन विज्ञान में इलेक्ट्रॉनिक तरंग फलन का विश्लेषण करने के लिए संचयी के अनुप्रयोग के रूप में कुल स्थिति फैला हुआ टेंसर।
  1. Weisstein, Eric W. "Cumulant". From MathWorld – A Wolfram Web Resource. http://mathworld.wolfram.com/Cumulant.html
  2. Kendall, M. G., Stuart, A. (1969) The Advanced Theory of Statistics, Volume 1 (3rd Edition). Griffin, London. (Section 3.12)
  3. Lukacs, E. (1970) Characteristic Functions (2nd Edition). Griffin, London. (Page 27)
  4. Lukacs, E. (1970) Characteristic Functions (2nd Edition). Griffin, London. (Section 2.4)
  5. Aapo Hyvarinen, Juha Karhunen, and Erkki Oja (2001) Independent Component Analysis, John Wiley & Sons. (Section 2.7.2)
  6. Hamedani, G. G.; Volkmer, Hans; Behboodian, J. (2012-03-01). "A note on sub-independent random variables and a class of bivariate mixtures". Studia Scientiarum Mathematicarum Hungarica. 49 (1): 19–25. doi:10.1556/SScMath.2011.1183.
  7. Lukacs, E. (1970) Characteristic Functions (2nd Edition), Griffin, London. (Theorem 7.3.5)
  8. Smith, Peter J. (May 1995). "क्यूमुलेंट्स से क्षण प्राप्त करने की पुरानी समस्या का एक पुनरावर्ती सूत्रीकरण और इसके विपरीत". The American Statistician. 49 (2): 217–218. doi:10.2307/2684642. JSTOR 2684642.
  9. Rota, G.-C.; Shen, J. (2000). "क्यूमुलेंट्स के कॉम्बिनेटरिक्स पर". Journal of Combinatorial Theory. Series A. 91 (1–2): 283–304. doi:10.1006/jcta.1999.3017.
  10. Brillinger, D.R. (1969). "कंडीशनिंग के माध्यम से संचयकों की गणना". Annals of the Institute of Statistical Mathematics. 21: 215–218. doi:10.1007/bf02532246. S2CID 122673823.
  11. Hald, A. (2000) "The early history of the cumulants and the Gram–Charlier series" International Statistical Review, 68 (2): 137–153. (Reprinted in Lauritzen, Steffen L., ed. (2002). Thiele: Pioneer in Statistics. Oxford U. P. ISBN 978-0-19-850972-1.)
  12. Hald, Anders (1998). A History of Mathematical Statistics from 1750 to 1930. New York: Wiley. ISBN 978-0-471-17912-2.
  13. H. Cramér (1946) Mathematical Methods of Statistics, Princeton University Press, Section 15.10, p. 186.
  14. Fisher, R.A., John Wishart, J. (1932) The derivation of the pattern formulae of two-way partitions from those of simpler patterns, Proceedings of the London Mathematical Society, Series 2, v. 33, pp. 195–208 doi:10.1112/plms/s2-33.1.195
  15. Neyman, J. (1956): ‘Note on an Article by Sir Ronald Fisher,’ Journal of the Royal Statistical Society, Series B (Methodological), 18, pp. 288–94.
  16. Fisher, R. A. (1929). "नमूना वितरण के क्षण और उत्पाद क्षण" (PDF). Proceedings of the London Mathematical Society. 30: 199–238. doi:10.1112/plms/s2-30.1.199. hdl:2440/15200.
  17. Speicher, Roland (1994). "गैर-क्रॉसिंग विभाजन और मुक्त कनवल्शन की जाली पर गुणक कार्य". Mathematische Annalen. 298 (4): 611–628. doi:10.1007/BF01459754. S2CID 123022311.
  18. 18.0 18.1 18.2 Novak, Jonathan; Śniady, Piotr (2011). "एक निःशुल्क संचयक क्या है?". Notices of the American Mathematical Society. 58 (2): 300–301. ISSN 0002-9920.

बाहरी संबंध