सामान्यीकृत फूरियर श्रृंखला: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Decompositions of inner product spaces into orthonormal bases}}
{{Short description|Decompositions of inner product spaces into orthonormal bases}}
[[गणितीय विश्लेषण]] में, फूरियर श्रृंखला के कई सामान्यीकरण उपयोगी सिद्ध हुए हैं। वे सभी [[आंतरिक उत्पाद स्थान]] के [[ऑर्थोनॉर्मल आधार]] पर विघटन की विशेष स्तिथि हैं। यहां हम वास्तविक रेखा के [[अंतराल (गणित)]] पर परिभाषित [[वर्ग-अभिन्न]] कार्यों पर विचार करते हैं, जो अन्य बातों के अतिरिक्त, [[प्रक्षेप]] सिद्धांत के लिए महत्वपूर्ण है।
[[गणितीय विश्लेषण]] में, '''फूरियर श्रृंखला''' के कई '''सामान्यीकरण''' उपयोगी सिद्ध हुए हैं। वे सभी [[आंतरिक उत्पाद स्थान]] के [[ऑर्थोनॉर्मल आधार]] पर विघटन की विशेष स्तिथि हैं। यहां हम वास्तविक रेखा के [[अंतराल (गणित)]] पर परिभाषित [[वर्ग-अभिन्न]] कार्यों पर विचार करते हैं, जो अन्य बातों के अतिरिक्त, [[प्रक्षेप]] सिद्धांत के लिए महत्वपूर्ण है।


==परिभाषा==
==परिभाषा==
Line 14: Line 13:


: <math> \left((1-x^2)P_n'(x)\right)'+n(n+1)P_n(x)=0</math>
: <math> \left((1-x^2)P_n'(x)\right)'+n(n+1)P_n(x)=0</math>
और स्टर्म-लिउविले सिद्धांत के कारण, ये बहुपद समस्या के स्वदेशी फलन हैं और इकाई भार के साथ उपरोक्त आंतरिक उत्पाद के संबंध में ऑर्थोगोनल समाधान हैं। तो हम लीजेंड्रे बहुपदों को सम्मिलित करते हुए सामान्यीकृत फूरियर श्रृंखला (जिसे फूरियर-लीजेंडर श्रृंखला के रूप में जाना जाता है) बना सकते हैं, और
और स्टर्म-लिउविले सिद्धांत के कारण, ये बहुपद समस्या के फलन हैं और इकाई भार के साथ उपरोक्त आंतरिक उत्पाद के संबंध में ऑर्थोगोनल समाधान हैं। तो हम लीजेंड्रे बहुपदों को सम्मिलित करते हुए सामान्यीकृत फूरियर श्रृंखला (जिसे फूरियर-लीजेंडर श्रृंखला के रूप में जाना जाता है) बना सकते हैं, और


:<math>f(x) \sim \sum_{n=0}^\infty c_n P_n(x),</math>
:<math>f(x) \sim \sum_{n=0}^\infty c_n P_n(x),</math>
Line 27: Line 26:
\end{align}
\end{align}
</math>
</math>
और इन नियमों को सम्मिलित करने वाली श्रृंखला
और इन नियमों को सम्मिलित करने वाली श्रृंखला है:


:<math>\begin{align}c_2P_2(x)+c_1P_1(x)+c_0P_0(x)&= {5 \over 2} (6 \cos{1} - 4\sin{1})\left({3x^2 - 1 \over 2}\right) + \sin1\\
:<math>\begin{align}c_2P_2(x)+c_1P_1(x)+c_0P_0(x)&= {5 \over 2} (6 \cos{1} - 4\sin{1})\left({3x^2 - 1 \over 2}\right) + \sin1\\
&= \left({45 \over 2} \cos{1} - 15 \sin{1}\right)x^2+6 \sin{1} - {15 \over 2}\cos{1}\end{align}</math>
&= \left({45 \over 2} \cos{1} - 15 \sin{1}\right)x^2+6 \sin{1} - {15 \over 2}\cos{1}\end{align}</math>
जो cos x से लगभग 0.003, लगभग 0 से भिन्न है। ऐसी फूरियर-लीजेंड्रे श्रृंखला का उपयोग करना लाभ हो सकता है क्योंकि स्वयं के फलन सभी बहुपद हैं और इसलिए अभिन्न अंग हैं और इस प्रकार गुणांक की गणना करना सरल है।
जो cos x से लगभग 0.003, लगभग 0 से भिन्न है। ऐसी फूरियर-लीजेंड्रे श्रृंखला का उपयोग करने से लाभ हो सकता है क्योंकि स्वयं के फलन सभी बहुपद हैं और इसलिए अभिन्न अंग हैं और इस प्रकार गुणांक की गणना करना सरल है।


==गुणांक प्रमेय==
==गुणांक प्रमेय==
गुणांक c<sub>''n''</sub> पर कुछ प्रमेयों में सम्मिलित करना:
गुणांक c<sub>''n''</sub> पर कुछ प्रमेयों में सम्मिलित है:


===बेसेल की असमानता===
===बेसेल की असमानता===
Line 59: Line 58:
श्रेणी:फूरियर विश्लेषण
श्रेणी:फूरियर विश्लेषण


[[Category: Machine Translated Page]]
[[Category:Created On 04/07/2023]]
[[Category:Created On 04/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]

Latest revision as of 09:10, 16 July 2023

गणितीय विश्लेषण में, फूरियर श्रृंखला के कई सामान्यीकरण उपयोगी सिद्ध हुए हैं। वे सभी आंतरिक उत्पाद स्थान के ऑर्थोनॉर्मल आधार पर विघटन की विशेष स्तिथि हैं। यहां हम वास्तविक रेखा के अंतराल (गणित) पर परिभाषित वर्ग-अभिन्न कार्यों पर विचार करते हैं, जो अन्य बातों के अतिरिक्त, प्रक्षेप सिद्धांत के लिए महत्वपूर्ण है।

परिभाषा

मानों के साथ वर्ग-अभिन्न कार्यों के समुच्चय पर विचार करें या ,

जो आंतरिक उत्पाद के लिए ओर्थोगोनल हैं:
जहाँ भार फलन है, और जटिल संयुग्मन का प्रतिनिधित्व करता है, अर्थात, के लिए .


वर्ग-अभिन्न फलन का सामान्यीकृत फूरियर श्रृंखला , Φ के संबंध में, तब है:

जहां गुणांक दिए गए हैं,
यदि Φ पूर्ण समुच्चय है, अर्थात, [a, b] पर सभी वर्ग-अभिन्न फलनों के स्थान का ऑर्थोगोनल आधार, संबंध L2 स्पेस अर्थ में समानता बन जाता है, अधिक त्रुटिहीन रूप से मॉड्यूलो (आवश्यक नहीं कि बिंदुवार, न ही लगभग प्रत्येक स्थान) है।

उदाहरण (फूरियर-लीजेंड्रे श्रृंखला)

लीजेंड्रे बहुपद स्टर्म-लिउविल सिद्धांत का समाधान हैं:

और स्टर्म-लिउविले सिद्धांत के कारण, ये बहुपद समस्या के फलन हैं और इकाई भार के साथ उपरोक्त आंतरिक उत्पाद के संबंध में ऑर्थोगोनल समाधान हैं। तो हम लीजेंड्रे बहुपदों को सम्मिलित करते हुए सामान्यीकृत फूरियर श्रृंखला (जिसे फूरियर-लीजेंडर श्रृंखला के रूप में जाना जाता है) बना सकते हैं, और

उदाहरण, आइए हम [−1,1] पर f(x) = cos x के लिए फूरियर-लीजेंड्रे श्रृंखला की गणना करें। अब,

और इन नियमों को सम्मिलित करने वाली श्रृंखला है:

जो cos x से लगभग 0.003, लगभग 0 से भिन्न है। ऐसी फूरियर-लीजेंड्रे श्रृंखला का उपयोग करने से लाभ हो सकता है क्योंकि स्वयं के फलन सभी बहुपद हैं और इसलिए अभिन्न अंग हैं और इस प्रकार गुणांक की गणना करना सरल है।

गुणांक प्रमेय

गुणांक cn पर कुछ प्रमेयों में सम्मिलित है:

बेसेल की असमानता

पारसेवल का प्रमेय

यदि Φ पूर्ण समुच्चय है, तो

यह भी देखें

श्रेणी:फूरियर विश्लेषण