स्पर्शरेखा अर्धकोण प्रतिस्थापन: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 150: Line 150:
== बाहरी संबंध ==
== बाहरी संबंध ==
* [https://planetmath.org/WeierstrassSubstitutionFormulas Weierstrass substitution formulas] at [[PlanetMath]]
* [https://planetmath.org/WeierstrassSubstitutionFormulas Weierstrass substitution formulas] at [[PlanetMath]]
{{Integrals}}[[Category: समाकलन गणित]]
{{Integrals}}


 
[[Category:CS1 Deutsch-language sources (de)]]
 
[[Category:CS1 français-language sources (fr)]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 04/07/2023]]
[[Category:Created On 04/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using sidebar with the child parameter]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:समाकलन गणित]]

Latest revision as of 17:46, 16 July 2023

समाकलन गणित में स्पर्शरेखा अर्ध-कोण प्रतिस्थापन समाकलन के मूल्यांकन के लिए उपयोग किए जाने वाले चर (गणित) का एक रूपांतरण है, जो के त्रिकोणमितीय फलनों को तर्कसंगत फलन के द्वारा के एक सामान्य तर्कसंगत फलन में परिवर्तित करता है। यह वास्तविक रेखा पर कोण माप द्वारा मापित इकाई वृत्त का एक आयामी त्रिविम प्रक्षेपण है, जिसका सामान्य रूपांतरण सूत्र है:[1]

गोलीय त्रिकोणमिति में अर्ध-कोण की स्पर्शरेखा महत्वपूर्ण होती है। इसे 17वीं शताब्दी में कभी-कभी अर्ध-स्पर्शरेखीय अनुपात या अर्ध-स्पर्शरेखा के रूप में जाना जाता था।[2] लियोनहार्ड यूलर ने 1768 मे अपनी समाकलन गणित पाठ्यपुस्तक में समाकलन का मूल्यांकन करने के लिए इसका उपयोग किया और एड्रियन-मैरी लीजेंड्रे ने 1817 में इसकी सामान्य विधि का वर्णन किया था।[3]

प्रतिस्थापन का वर्णन 19वीं शताब्दी के उत्तरार्ध से अधिकांश समाकलन पाठ्यपुस्तकों में सामान्यतः बिना किसी विशेष नाम के किया गया है।[4] इसे रूस में व्यापक त्रिकोणमितीय प्रतिस्थापन के रूप में जाना जाता है और अर्ध-स्पर्शरेखा प्रतिस्थापन या अर्ध-कोण प्रतिस्थापन जैसे भिन्न नामों से भी जाना जाता है।[5] इसे कभी-कभी वीयरस्ट्रैस प्रतिस्थापन के रूप में ग़लत माना जाता है।[6] माइकल स्पिवक ने इसे "विश्व का सबसे गुप्त प्रतिस्थापन" भी कहा है।[7]

प्रतिस्थापन

एक नए चर (गणित) का परिचय देते हुए, ज्या और कोज्या को के परिमेय फलन के रूप में व्यक्त किया जा सकता है और को के गुणनफल के परिमेय फलन के रूप में निम्नानुसार व्यक्त किया जा सकता है:

व्युत्पत्ति

युग्म-कोण सूत्रों का उपयोग करते हुए, पाइथागोरस प्रमेय के लिए 1 के बराबर हर का परिचय देने तथा अंश और हर को से विभाजित करने से निम्न मान प्राप्त होता है:

अंततः के बाद अवकलन नियम प्रयुक्त होते हैं:
और इस प्रकार

उदाहरण

सहसंयोजक का प्रतिव्युत्पन्न

हम अंश और हर को से गुणा करके और से सहसंयोजक समाकलन का मूल्यांकन करने की एक मानक विधि का उपयोग करके उपरोक्त परिणाम की पुष्टि कर सकते हैं:
ये दोनों उत्तर एक ही हैं क्योंकि होता है:

इसी प्रकार से व्युत्क्रम कोटिज्या समाकलन का मूल्यांकन किया जा सकता है।

निश्चित समाकलन

पहली पंक्ति में समाकलन की दोनों सीमाओं के लिए केवल को प्रतिस्थापित नहीं किया जा सकता है। इस स्थिति में एक ऊर्ध्वाधर अनंतस्पर्शी रेखा को पर को ध्यान में रखा जाना चाहिए। सामान्यतः पहले अनिश्चित समाकलन का मूल्यांकन करें, फिर सीमा मान को प्रयुक्त करें:
समरूपता से,
जो पिछले उत्तर के समान ही है।

तीसरा उदाहरण: ज्या और कोज्या दोनों

यदि

ज्यामिति

जैसे ही x परिवर्तित होता है, बिंदु (cos x, syn x) बार-बार (0, 0) पर केन्द्रित इकाई वृत्त के चारों ओर घूमता है:


जब यह t −∞ से +∞ तक जाता है तो वृत्त के चारों ओर केवल एक बार ही जाता है और बिंदु (−1, 0) तक कभी नहीं जाता है जिसे t से ±∞ के निकट जाने पर एक सीमा के रूप में देखा जाता है जैसे ही यह t, −∞ से −1 तक जाता है तो t द्वारा निर्धारित बिंदु तीसरे चतुर्थांश में वृत्त के भाग से होकर (−1, 0) से (0, −1) तक जाता है जैसे ही t, -1 से 0 तक जाता है तब बिंदु चौथे चतुर्थांश में (0, -1) से (1, 0) तक वृत्त के एक भाग का अनुसरण करता है, जैसे ही t, 0 से 1 तक जाता है तो बिंदु पहले चतुर्थांश में वृत्त के एक भाग (1, 0) से (0, 1) का अनुसरण करता है अंत में जैसे ही t, 1 से +∞ तक जाता है, तब बिंदु दूसरे चतुर्थांश में वृत्त के एक भाग (0, 1) से (−1, 0) का अनुसरण करता है।

यहाँ एक और ज्यामितीय दृष्टिकोण है। इकाई वृत्त बनाएं और मान लें कि बिंदु P (−1, 0) है, P से होकर जाने वाली एक रेखा (ऊर्ध्वाधर रेखा को छोड़कर) उसकी प्रवणता से निर्धारित होती है। इसके अतिरिक्त प्रत्येक रेखा (ऊर्ध्वाधर रेखा को छोड़कर) इकाई वृत्त को दो बिंदुओं पर प्रतिच्छेदित करती है, जिनमें से एक बिन्दु P है। यह इकाई वृत्त पर बिंदुओं की प्रवणता तक एक फलन को निर्धारित करती है। त्रिकोणमितीय फलन इकाई वृत्त पर कोणों से बिंदुओं तक एक फलन निर्धारित करते हैं और इन दो फलनों के संयोजन से हमारे पास कोणों के प्रतिस्थापन के लिए एक फलन होता है।

आकृति

अतिपरवलीय फलन

त्रिकोणमितीय फलनों और अतिपरवलीय फलनों के बीच साझा किए गए अन्य गुणों की तरह प्रतिस्थापन के समान रूप का निर्माण करने के लिए अतिपरवलीय फलन का उपयोग करना संभव है:

ज्यामितीय रूप से चरों का यह रूपांतरण पोंकारे वृत्त प्रक्षेपण का एक आयामी बिन्दु है।

यह भी देखें

अग्रिम पठन

  • Courant, Richard (1937) [1934]. "1.4.6. Integration of Some Other Classes of Functions §1–3". Differential and Integral Calculus. Vol. 1. Blackie & Son. pp. 234–237.
  • Edwards, Joseph (1921). "§1.6.193". A Treatise on the Integral Calculus. Vol. 1. Macmillan. pp. 187–188.
  • Hardy, Godfrey Harold (1905). "VI. Transcendental functions". The integration of functions of a single variable. Cambridge. pp. 42–51. Second edition 1916, pp. 52–62
  • Hermite, Charles (1873). "Intégration des fonctions transcendentes" [Integration of transcendental functions]. Cours d'analyse de l'école polytechnique (in français). Vol. 1. Gauthier-Villars. pp. 320–380.

नोट्स और संदर्भ

  1. Other trigonometric functions can be written in terms of sine and cosine.
  2. Gunter, Edmund (1673) [1624]. एडमंड गंटर का कार्य. Francis Eglesfield. p. 73
  3. Legendre, Adrien-Marie (1817). Exercices de calcul intégral [Exercises in integral calculus] (in français). Vol. 2. Courcier. p. 245–246.
  4. For example, in chronological order,
  5. Piskunov, Nikolai (1969). डिफरेंशियल और इंटीग्रल कैलकुलस. Mir. p. 379
  6. James Stewart mentioned Karl Weierstrass when discussing the substitution in his popular calculus textbook, first published in 1987:

    Stewart, James (1987). "§7.5 Rationalizing substitutions". Calculus. Brooks/Cole. p. 431. The German mathematician Karl Weierstrauss (1815–1897) noticed that the substitution t = tan(x/2) will convert any rational function of sin x and cos x into an ordinary rational function.

    Later authors, citing Stewart, have sometimes referred to this as the Weierstrass substitution, for instance:

    Jeffrey, David J.; Rich, Albert D. (1994). "The evaluation of trigonometric integrals avoiding spurious discontinuities". Transactions on Mathematical Software. 20 (1): 124–135. doi:10.1145/174603.174409. S2CID 13891212.

    Merlet, Jean-Pierre (2004). "A Note on the History of Trigonometric Functions" (PDF). In Ceccarelli, Marco (ed.). International Symposium on History of Machines and Mechanisms. Kluwer. pp. 195–200. doi:10.1007/1-4020-2204-2_16. ISBN 978-1-4020-2203-6.

    Weisstein, Eric W. (2011). "Weierstrass Substitution". MathWorld. Retrieved 2020-04-01.

    Stewart provided no evidence for the attribution to Weierstrass. A related substitution appears in Weierstrass’s Mathematical Works, from an 1875 lecture wherein Weierstrass credits Carl Gauss (1818) with the idea of solving an integral of the form by the substitution

    Weierstrass, Karl (1915) [1875]. "8. Bestimmung des Integrals ...". Mathematische Werke von Karl Weierstrass (in Deutsch). Vol. 6. Mayer & Müller. pp. 89–99.

  7. Spivak, Michael (1967). "Ch. 9, problems 9–10". गणना. Benjamin. pp. 325–326.

बाहरी संबंध