विरोधाभास द्वारा प्रमाण: Difference between revisions
No edit summary |
|||
Line 92: | Line 92: | ||
== [[अंतर्ज्ञानवादी तर्क]] में विरोधाभास द्वारा प्रमाण == | == [[अंतर्ज्ञानवादी तर्क]] में विरोधाभास द्वारा प्रमाण == | ||
अंतर्ज्ञानवादी तर्क में विरोधाभास द्वारा प्रमाण | अंतर्ज्ञानवादी तर्क में विरोधाभास द्वारा प्रमाण सामान्यतौर पर मान्य नहीं होता है, चूँकि कुछ विशेष उदाहरण प्राप्त किए जा सकते हैं। इसके विपरीत, निषेध का प्रमाण और अविरोधाभास का सिद्धांत दोनों अंतर्ज्ञान की दृष्टि से मान्य हैं। | ||
ब्रौवर-हेटिंग-कोलमोगोरोव द्वारा विरोधाभास द्वारा प्रमाण की व्याख्या निम्नलिखित अंतर्ज्ञानवादी वैधता स्थिति देती है: | ब्रौवर-हेटिंग-कोलमोगोरोव द्वारा विरोधाभास द्वारा प्रमाण की व्याख्या निम्नलिखित अंतर्ज्ञानवादी वैधता स्थिति देती है: | ||
: यदि यह स्थापित करने की कोई विधि नहीं है कि कोई प्रस्ताव गलत है, तो यह स्थापित करने की | : यदि यह स्थापित करने की कोई विधि नहीं है कि कोई प्रस्ताव गलत है, तो यह स्थापित करने की विधि है कि प्रस्ताव सत्य है। | ||
यदि हम विधि को [[कलन विधि]] के रूप में लेते हैं, तो यह | यदि हम विधि को [[कलन विधि]] के रूप में लेते हैं, तो यह स्थिति स्वीकार्य नहीं है, क्योंकि यह हमें हॉल्टिंग समस्या को सिद्ध करने की अनुमति देगी। यह देखने के लिए कि कैसे, कथन H(M) पर विचार करें जिसमें बताया गया है कि [[ट्यूरिंग मशीन]] M रुकती है या नहीं रुकती है। इसका निषेध ¬H(M) बताता है कि M न तो रुकता है और नही रुकता है, जो कि अविरोधाभास के नियम (जो अंतर्ज्ञान की दृष्टि से मान्य है) द्वारा गलत है। यदि विरोधाभास द्वारा प्रमाण अंतर्ज्ञानात्मक रूप से मान्य थे, तो हम यह निश्चित करने के लिए कलन विधि प्राप्त करेंगे कि क्या अपने ढंग ट्यूरिंग मशीन ''M'' रुकती है, जिससे हॉल्टिंग समस्या की असमाधान क्षमता के (अंतर्ज्ञानात्मक रूप से मान्य) प्रमाण का उल्लंघन होता है। | ||
प्रस्ताव P जो <math>\lnot\lnot P \Rightarrow P</math> संतुष्ट करता है, इसे ¬¬-स्थिर प्रस्ताव के रूप में जाना जाता है। इस प्रकार अंतर्ज्ञानवादी तर्क में विरोधाभास द्वारा प्रमाण सार्वभौमिक रूप से मान्य नहीं है, अपितु इसे केवल ¬-स्थिर प्रस्तावों पर ही क्रियान्वित किया जा सकता है। इस तरह के प्रस्ताव का एक उदाहरण निर्णय लेने योग्य अर्थात संतोषजनक है <math>P \lor \lnot P</math>. वास्तव में, उपरोक्त प्रमाण कि बहिष्कृत मध्य का नियम विरोधाभास द्वारा प्रमाण का तात्पर्य करता है, यह दिखाने के लिए पुन: उपयोग किया जा सकता है कि निर्णायक प्रस्ताव ¬¬-स्थिर है। निर्णायक प्रस्ताव का विशिष्ट उदाहरण है जिसे प्रत्यक्ष गणना द्वारा जांचा जा सकता है, जैसे <math>n</math> प्रमुख या <math>a</math> विभाजित <math>b</math> है | | |||
==विरोधाभास द्वारा प्रमाण के उदाहरण== | ==विरोधाभास द्वारा प्रमाण के उदाहरण== | ||
Line 113: | Line 113: | ||
===हिल्बर्ट का नलस्टेलेंसत्ज़=== | ===हिल्बर्ट का नलस्टेलेंसत्ज़=== | ||
विरोधाभास द्वारा | विरोधाभास द्वारा प्रभावशाली प्रमाण [[डेविड हिल्बर्ट]] द्वारा दिया गया था। उसका हिल्बर्ट के नलस्टेलेंसत्ज़ कहते हैं: | ||
हिल्बर्ट के नलस्टेलेंसत्ज़ कहते हैं: | |||
: | : यदि <math>f_1,\ldots,f_k</math> में [[बहुपद]] हैं {{mvar|n}} सम्मिश्र संख्या गुणांकों के साथ अनिश्चित होता है, जिसमें किसी फ़ंक्शन का कोई सामान्य सम्मिश्र शून्य नहीं होता है, तो बहुपद होते हैं <math>g_1,\ldots, g_k</math> ऐसा है कि <math>f_1g_1+\ldots +f_kg_k=1.</math> | ||
हिल्बर्ट ने यह मानकर कथन को सिद्ध किया कि ऐसे कोई बहुपद नहीं हैं <math>g_1, \ldots, g_k</math> और एक विरोधाभास निकाला।<ref>{{Cite journal |last=Hilbert |first=David |author-link=David Hilbert |date=1893 |title=पूर्ण अपरिवर्तनीय प्रणालियों के बारे में|journal=[[Mathematische Annalen]] |volume=42 |issue=3 |pages=313–373 |doi=10.1007/BF01444162 | url=https://resolver.sub.uni-goettingen.de/purl?PPN235181684_0042 }}</ref> | हिल्बर्ट ने यह मानकर कथन को सिद्ध किया कि ऐसे कोई बहुपद नहीं हैं <math>g_1, \ldots, g_k</math> और एक विरोधाभास निकाला।<ref>{{Cite journal |last=Hilbert |first=David |author-link=David Hilbert |date=1893 |title=पूर्ण अपरिवर्तनीय प्रणालियों के बारे में|journal=[[Mathematische Annalen]] |volume=42 |issue=3 |pages=313–373 |doi=10.1007/BF01444162 | url=https://resolver.sub.uni-goettingen.de/purl?PPN235181684_0042 }}</ref> | ||
Revision as of 12:49, 12 July 2023
तर्क में, विरोधाभास द्वारा प्रमाण गणितीय प्रमाण का रूप है जो किसी प्रस्ताव के सत्य औपचारिक सिद्धांतों या वैधता (तर्क) को स्थापित करता है, यह दिखाते हुए कि प्रस्ताव को गलत मानने से विरोधाभास उत्पन्न होता है। यद्यपि इसका उपयोग गणितीय प्रमाणों में बहुत स्वतंत्र रूप से किया जाता है, परन्तु गणित का प्रत्येक दर्शन इस प्रकार के अरचनात्मक प्रमाण को सार्वभौमिक रूप से मान्य नहीं मानता है।
अधिक व्यापक रूप से, विरोधाभास द्वारा प्रमाण तर्क का कोई भी रूप है जो किसी विरोधाभास पर पहुंचकर विवरण स्थापित करता है, भले ही प्रारंभिक धारणा सिद्ध किए जाने वाले विवरण का खंडन न हो। इस सामान्य अर्थ में, विरोधाभास द्वारा प्रमाण को अप्रत्यक्ष प्रमाण, विपरीत मानकर प्रमाण, के रूप में भी जाना जाता है।[1]और रिडक्टियो विज्ञापन असंभव[2] विरोधाभास द्वारा प्रमाण को नियोजित करने वाला गणितीय प्रमाण सामान्यतौर पर इस प्रकार आगे बढ़ता है:
- सिद्ध किया जाने वाला प्रस्ताव P है।
- हम P को गलत मानते हैं, अर्थात हम ¬P मानते हैं।
- फिर यह दिखाया गया है कि ¬P का अर्थ गलत है। यह सामान्यतौर पर दो परस्पर विरोधाभासी निश्चित वाक्य, Q और ¬Q प्राप्त करके और अविरोधाभास के नियम की अनुरोध करके पूरा किया जाता है।
- चूंकि P को असत्य मानने से विरोधाभास उत्पन्न होता है, इसलिए यह निष्कर्ष निकाला जाता है कि P वास्तव में सत्य है।
महत्वपूर्ण विशेष कथन विरोधाभास द्वारा अस्तित्व प्रमाण है: यह प्रदर्शित करने के लिए कि किसी दिए गए गुण वाली वस्तु उपस्थित है, हम इस धारणा से विरोधाभास प्राप्त करते हैं कि सभी वस्तुएं गुण के निषेध को संतुष्ट करती हैं।
औपचारिकीकरण
सिद्धांत को औपचारिक रूप से प्रस्ताव सूत्र ¬¬P ⇒ P, समकक्ष रूप से (¬P ⇒ ⊥) ⇒ P के रूप में व्यक्त किया जा सकता है, जिसमें लिखा है: यदि P को गलत मानने का अर्थ गलत है, तो P सत्य है।
प्राकृतिक निगमन में सिद्धांत अनुमान के नियम का रूप ले लेता है
जिसमें लिखा है: यदि तो फिर सिद्ध हो गया निष्कर्ष निकाला जा सकता है.
अनुक्रमिक गणना में सिद्धांत अनुक्रम द्वारा व्यक्त किया जाता है
जिसमें लिखा है: परिकल्पनाएँ और निष्कर्ष या सम्मिलित करना है।
औचित्य
प्राचीन तर्क में सिद्धांत को प्रस्ताव ¬¬P ⇒ P की सत्य तालिका की जांच द्वारा उचित बताया जा सकता है, जो इसे टॉटोलॉजी (पुनरुक्ति) के रूप में प्रदर्शित करता है:
p | ¬p | ¬¬p | ¬¬p ⇒ p |
---|---|---|---|
T | F | T | T |
F | T | F | T |
सिद्धांत को उचित बताने का दूसरा तरीका यह है कि इसे बहिःक्षिप्त मध्य के नियम से निम्नानुसार प्राप्त किया जाता है। हम ¬¬P मानते हैं और P को सिद्ध करना चाहते हैं। बहिःक्षिप्त मध्य के नियम के अनुसार P या तो इसे धारण करता है या नहीं:
- यदि P धारण करता है, तो निश्चित रूप से P धारण करता है।
- यदि ¬P धारण है, तो हम ¬P और ¬¬P पर अविरोधाभास के नियम को क्रियान्वित करके गलत निकालते हैं, जिसके बाद बाहुल्य का सिद्धांत हमें P निष्कर्ष निकालने की अनुमति देता है।
किसी भी कथन में, हमने P की स्थापना की है। यह पता चला है कि, इसके विपरीत, विरोधाभास द्वारा प्रमाण का उपयोग बहिष्कृत मध्य के नियम को प्राप्त करने के लिए किया जा सकता है।
अनुक्रमिक कलन में विरोधाभास द्वारा प्रमाण अनुक्रमिक कलन से प्राप्त किया जा सकता है |निषेध के लिए अनुमान नियम:
अन्य प्रमाण तकनीकों के साथ संबंध
विरोधाभास द्वारा खंडन
विरोधाभास द्वारा प्रमाण, विरोधाभास द्वारा खंडन के समान है,[3][4] इसे निषेध नियम_के_अनुमान के रूप में भी जाना जाता है, जो बताता है कि ¬P इस प्रकार सिद्ध होता है:
- सिद्ध किया जाने वाला प्रस्ताव ¬P है।
- मान लीजिए P.
- गलत निष्कर्ष निकालें.
- निष्कर्ष ¬P.
इसके विपरीत, विरोधाभास द्वारा प्रमाण इस प्रकार आगे बढ़ता है:
- सिद्ध किया जाने वाला प्रस्ताव P है.
- मान लीजिए ¬P.
- गलत निष्कर्ष निकालें.
- निष्कर्ष P.
औपचारिक रूप से ये समान नहीं हैं, क्योंकि विरोधाभास द्वारा खंडन तभी क्रियान्वित होता है जब सिद्ध किए जाने वाले प्रस्ताव को अस्वीकार कर दिया जाता है, जबकि विरोधाभास द्वारा प्रमाण किसी भी प्रस्ताव पर क्रियान्वित किया जा सकता है।[5] प्राचीन तर्क में, जहाँ और स्वतंत्र रूप से आदान-प्रदान किया जा सकता है, अंतर बहुत सिमा तक अस्पष्ट है। इस प्रकार गणितीय अभ्यास में, दोनों सिद्धांतों को विरोधाभास द्वारा प्रमाण कहा जाता है।
बहिष्कृत मध्य का नियम
विरोधाभास द्वारा प्रमाण बहिष्कृत मध्य के नियम के बराबर है, जिसे सबसे पहले अरस्तू ने तैयार किया था, जिसमें कहा गया है कि P ∨ ¬P या तो कथन या उसका निषेध सत्य है।
अविरोधाभास का नियम
अविरोधाभास के नियम को सबसे पहले अरस्तू ने एक आध्यात्मिक सिद्धांत के रूप में बताया था। यह मानता है कि प्रस्ताव और उसका निषेध दोनों सत्य नहीं हो सकते हैं, या समकक्ष रूप से, प्रस्ताव सत्य और गलत दोनों नहीं हो सकता है। औपचारिक रूप से अविरोधाभास के नियम को ¬(P ∧ ¬P) के रूप में लिखा जाता है और पढ़ा जाता है क्योंकि ऐसा नहीं है कि कोई प्रस्ताव सत्य और गलत दोनों है। अविरोधाभास का नियम न तो विरोधाभास द्वारा प्रमाण के सिद्धांत का पालन करता है और न ही इसमें निहित है।
बहिष्कृत मध्य और अविरोधाभास के नियमों का एक साथ अर्थ यह है कि P और ¬P में से बिल्कुल सत्य है।
अंतर्ज्ञानवादी तर्क में विरोधाभास द्वारा प्रमाण
अंतर्ज्ञानवादी तर्क में विरोधाभास द्वारा प्रमाण सामान्यतौर पर मान्य नहीं होता है, चूँकि कुछ विशेष उदाहरण प्राप्त किए जा सकते हैं। इसके विपरीत, निषेध का प्रमाण और अविरोधाभास का सिद्धांत दोनों अंतर्ज्ञान की दृष्टि से मान्य हैं।
ब्रौवर-हेटिंग-कोलमोगोरोव द्वारा विरोधाभास द्वारा प्रमाण की व्याख्या निम्नलिखित अंतर्ज्ञानवादी वैधता स्थिति देती है:
- यदि यह स्थापित करने की कोई विधि नहीं है कि कोई प्रस्ताव गलत है, तो यह स्थापित करने की विधि है कि प्रस्ताव सत्य है।
यदि हम विधि को कलन विधि के रूप में लेते हैं, तो यह स्थिति स्वीकार्य नहीं है, क्योंकि यह हमें हॉल्टिंग समस्या को सिद्ध करने की अनुमति देगी। यह देखने के लिए कि कैसे, कथन H(M) पर विचार करें जिसमें बताया गया है कि ट्यूरिंग मशीन M रुकती है या नहीं रुकती है। इसका निषेध ¬H(M) बताता है कि M न तो रुकता है और नही रुकता है, जो कि अविरोधाभास के नियम (जो अंतर्ज्ञान की दृष्टि से मान्य है) द्वारा गलत है। यदि विरोधाभास द्वारा प्रमाण अंतर्ज्ञानात्मक रूप से मान्य थे, तो हम यह निश्चित करने के लिए कलन विधि प्राप्त करेंगे कि क्या अपने ढंग ट्यूरिंग मशीन M रुकती है, जिससे हॉल्टिंग समस्या की असमाधान क्षमता के (अंतर्ज्ञानात्मक रूप से मान्य) प्रमाण का उल्लंघन होता है।
प्रस्ताव P जो संतुष्ट करता है, इसे ¬¬-स्थिर प्रस्ताव के रूप में जाना जाता है। इस प्रकार अंतर्ज्ञानवादी तर्क में विरोधाभास द्वारा प्रमाण सार्वभौमिक रूप से मान्य नहीं है, अपितु इसे केवल ¬-स्थिर प्रस्तावों पर ही क्रियान्वित किया जा सकता है। इस तरह के प्रस्ताव का एक उदाहरण निर्णय लेने योग्य अर्थात संतोषजनक है . वास्तव में, उपरोक्त प्रमाण कि बहिष्कृत मध्य का नियम विरोधाभास द्वारा प्रमाण का तात्पर्य करता है, यह दिखाने के लिए पुन: उपयोग किया जा सकता है कि निर्णायक प्रस्ताव ¬¬-स्थिर है। निर्णायक प्रस्ताव का विशिष्ट उदाहरण है जिसे प्रत्यक्ष गणना द्वारा जांचा जा सकता है, जैसे प्रमुख या विभाजित है |
विरोधाभास द्वारा प्रमाण के उदाहरण
यूक्लिड के तत्व
विरोधाभास द्वारा प्रमाण की प्रारंभिक घटना यूक्लिड के तत्वों, पुस्तक 1, प्रस्ताव 6 में पाई जा सकती है:[6]
- यदि किसी त्रिभुज में दो कोण एक दूसरे के बराबर होते हैं, तो समान कोणों की सम्मुख भुजाएँ भी एक दूसरे के बराबर होती हैं।
प्रमाण यह मानकर आगे बढ़ता है कि विपरीत कोण समान नहीं हैं, और विरोधाभास उत्पन्न होता है।
हिल्बर्ट का नलस्टेलेंसत्ज़
विरोधाभास द्वारा प्रभावशाली प्रमाण डेविड हिल्बर्ट द्वारा दिया गया था। उसका हिल्बर्ट के नलस्टेलेंसत्ज़ कहते हैं:
- यदि में बहुपद हैं n सम्मिश्र संख्या गुणांकों के साथ अनिश्चित होता है, जिसमें किसी फ़ंक्शन का कोई सामान्य सम्मिश्र शून्य नहीं होता है, तो बहुपद होते हैं ऐसा है कि
हिल्बर्ट ने यह मानकर कथन को सिद्ध किया कि ऐसे कोई बहुपद नहीं हैं और एक विरोधाभास निकाला।[7]
अभाज्य संख्याओं का अनंत
यूक्लिड का प्रमेय कहता है कि अपरिमित रूप से अनेक अभाज्य संख्याएँ होती हैं। यूक्लिड के तत्वों में प्रमेय पुस्तक IX, प्रस्ताव 20 में बताया गया है:[8]
- अभाज्य संख्याएँ अभाज्य संख्याओं की किसी भी निर्दिष्ट संख्या से अधिक होती हैं।
इस पर निर्भर करते हुए कि हम उपरोक्त कथन को औपचारिक रूप से कैसे लिखते हैं, सामान्य प्रमाण या तो विरोधाभास द्वारा प्रमाण या विरोधाभास द्वारा खंडन का रूप लेता है। हम यहां पूर्व प्रस्तुत करते हैं, नीचे देखें कि विरोधाभास द्वारा खंडन के रूप में प्रमाण कैसे किया जाता है।
यदि हम औपचारिक रूप से यूक्लिड के प्रमेय को यह कहते हुए व्यक्त करते हैं कि प्रत्येक प्राकृतिक संख्या के लिए इससे बड़ा कोई अभाज्य है, तो हम विरोधाभास द्वारा प्रमाण का उपयोग इस प्रकार करते हैं।
कोई भी संख्या दी गई , हम यह सिद्ध करना चाहते हैं कि इससे बड़ा कोई अभाज्य है . इसके विपरीत मान लीजिए कि ऐसा कोई पी मौजूद नहीं है (विरोधाभास द्वारा प्रमाण का एक अनुप्रयोग)। तब सभी अभाज्य संख्याएँ इससे छोटी या उसके बराबर होती हैं , और हम सूची बना सकते हैं उन सब का। होने देना सभी अभाज्यों का गुणनफल बनें और . क्योंकि यह सभी अभाज्य संख्याओं से बड़ा है, यह अभाज्य नहीं है, इसलिए इसे उनमें से किसी एक से विभाज्य होना चाहिए, मान लीजिए . अब दोनों और से विभाज्य हैं , इसलिए उनका अंतर इतना है , लेकिन ऐसा नहीं हो सकता क्योंकि 1 किसी भी अभाज्य संख्या से विभाज्य नहीं है। इसलिए हमारे पास विरोधाभास है और इसलिए इससे बड़ी एक अभाज्य संख्या है
विरोधाभास द्वारा खंडन के उदाहरण
निम्नलिखित उदाहरणों को आमतौर पर विरोधाभास द्वारा प्रमाण के रूप में संदर्भित किया जाता है, लेकिन औपचारिक रूप से विरोधाभास द्वारा खंडन का उपयोग किया जाता है (और इसलिए अंतर्ज्ञान की दृष्टि से मान्य हैं)।[9]
अभाज्य संख्याओं का अनंत
आइए यूक्लिड के प्रमेय पर दोबारा नज़र डालें - पुस्तक IX, प्रस्ताव 20:[10]
- अभाज्य संख्याएँ अभाज्य संख्याओं की किसी भी निर्दिष्ट संख्या से अधिक होती हैं।
हम इस कथन को यह कहते हुए पढ़ सकते हैं कि अभाज्य संख्याओं की प्रत्येक सीमित सूची के लिए, उस सूची में नहीं एक और अभाज्य होता है, जो यकीनन यूक्लिड के मूल सूत्रीकरण के करीब और उसी भावना में है। इस मामले में यूक्लिड का प्रमेय#यूक्लिड का प्रमाण|यूक्लिड का प्रमाण एक चरण में विरोधाभास द्वारा खंडन को निम्नानुसार लागू करता है।
अभाज्य संख्याओं की कोई सीमित सूची दी गई है , यह दिखाया जाएगा कि कम से कम एक अतिरिक्त अभाज्य संख्या जो इस सूची में नहीं है, मौजूद है। होने देना सभी सूचीबद्ध अभाज्य संख्याओं का गुणनफल बनें और का एक प्रमुख कारक , संभवतः अपने आप। हम इसका दावा करते हैं अभाज्य संख्याओं की दी गई सूची में नहीं है। इसके विपरीत मान लीजिए कि यह (विरोधाभास द्वारा खंडन का एक अनुप्रयोग) था। तब दोनों को बांट देंगे और , इसलिए उनका अंतर भी है, जो है . इससे विरोधाभास उत्पन्न होता है, क्योंकि कोई भी अभाज्य संख्या 1 को विभाजित नहीं करती है।
2 के वर्गमूल की अतार्किकता
2#अनंत वंश द्वारा प्रमाण का क्लासिक वर्गमूल विरोधाभास द्वारा खंडन है।[11] वास्तव में, हम निषेधन ¬ ∃ a, b ∈ को सिद्ध करने के लिए निकले हैं . ए/बी = √2 यह मानकर कि प्राकृतिक संख्याएँ a और b मौजूद हैं जिनका अनुपात दो का वर्गमूल है, और एक विरोधाभास प्राप्त करें।
अनंत वंश द्वारा प्रमाण
अनंत वंश द्वारा प्रमाण प्रमाण की एक विधि है जिसके तहत वांछित संपत्ति वाली सबसे छोटी वस्तु को निम्नानुसार अस्तित्व में नहीं दिखाया जाता है:
- मान लें कि वांछित संपत्ति वाली एक छोटी वस्तु है।
- प्रदर्शित करें कि वांछित संपत्ति वाली एक छोटी वस्तु भी मौजूद है, जिससे विरोधाभास उत्पन्न होता है।
ऐसा प्रमाण फिर से विरोधाभास द्वारा खंडन है। एक विशिष्ट उदाहरण इस प्रस्ताव का प्रमाण है कि कोई सबसे छोटी सकारात्मक परिमेय संख्या नहीं है: मान लें कि एक सबसे छोटी सकारात्मक परिमेय संख्या q है और इसे देखकर एक विरोधाभास प्राप्त करें q/2, q से भी छोटा है और फिर भी सकारात्मक है।
रसेल का विरोधाभास
रसेल का विरोधाभास, सेट-सैद्धांतिक रूप से कहा गया है क्योंकि ऐसा कोई सेट नहीं है जिसके तत्व बिल्कुल वे सेट हैं जिनमें स्वयं शामिल नहीं हैं, एक नकारा हुआ कथन है जिसका सामान्य प्रमाण विरोधाभास द्वारा खंडन है।
नोटेशन
विरोधाभास से प्रमाण कभी-कभी विरोधाभास शब्द के साथ समाप्त होते हैं! . आइजैक बैरो और बर्मन ने क्यू.ई.डी. की तर्ज पर क्वॉड एस्ट एब्सर्डम (जो बेतुका है) के लिए क्यू.ई.ए. नोटेशन का उपयोग किया, लेकिन इस नोटेशन का उपयोग आज शायद ही कभी किया जाता है।[12] कभी-कभी विरोधाभासों के लिए उपयोग किया जाने वाला एक ग्राफिकल प्रतीक नीचे की ओर टेढ़ा तीर वाला बिजली का प्रतीक (U+21AF: ↯) होता है, उदाहरण के लिए डेवी और प्रीस्टले में।[13] कभी-कभी उपयोग किए जाने वाले अन्य में एरिस का हाथ (जैसे) की एक जोड़ी शामिल होती है [citation needed] या ),[citation needed] मारे गए तीर (),[citation needed] हैश का एक शैलीबद्ध रूप (जैसे U+2A33: ⨳),[citation needed] या संदर्भ चिह्न (U+203B: ※),[citation needed] या .[14][15]
हार्डी का दृष्टिकोण
जी. एच. हार्डी ने विरोधाभास द्वारा प्रमाण को गणितज्ञ के बेहतरीन हथियारों में से एक बताया और कहा कि यह किसी भी दांव की तुलना में कहीं अधिक बेहतर जुआ है: एक शतरंज खिलाड़ी एक मोहरे या यहां तक कि एक मोहरे की बलि दे सकता है, लेकिन एक गणितज्ञ खेल की पेशकश करता है।[16]
यह भी देखें
- बहिष्कृत मध्य का नियम
- अविरोधाभास का नियम
- थकावट से प्रमाण
- अनंत वंश द्वारा प्रमाण
- मूड लेना
संदर्भ
- ↑ Making Mathematics: Mentored Research Projects for Young Mathematicians (in English) https://www2.edc.org/makingmath/mathtools/contradiction/contradiction.asp#:~:text=An%20indirect%20proof%20establishes%20that,original%20conclusion%20must%20be%20true. Retrieved 2023-06-12.
{{cite web}}
: Missing or empty|title=
(help) - ↑ "Reductio ad absurdum | logic". Encyclopedia Britannica (in English). Retrieved 2019-10-25.
- ↑ "विरोधाभास द्वारा प्रमाण". nLab. Retrieved 7 October 2022.
- ↑ Richard Hammack, Book of Proof, 3rd edition, 2022, ISBN 978-0-9894721-2-8; see "Chapter 9: Disproof".
- ↑ Bauer, Andrej (29 March 2010). "निषेध का प्रमाण और विरोधाभास का प्रमाण". Mathematics and Computation. Retrieved 26 October 2021.
- ↑ "Euclid's Elements, Book 6, Proposition 1". Retrieved 2 October 2022.
- ↑ Hilbert, David (1893). "पूर्ण अपरिवर्तनीय प्रणालियों के बारे में". Mathematische Annalen. 42 (3): 313–373. doi:10.1007/BF01444162.
- ↑ "Euclid's Elements, Book 9, Proposition 20". Retrieved 2 October 2022.
- ↑ Bauer, Andrej (2017). "रचनात्मक गणित को स्वीकार करने के पाँच चरण". Bull. Amer. Math. Soc. 54 (2017), 481-498. Retrieved 2 October 2022.
- ↑ "Euclid's Elements, Book 9, Proposition 20". Retrieved 2 October 2022.
- ↑ Alfeld, Peter (16 August 1996). "Why is the square root of 2 irrational?". Understanding Mathematics, a study guide. Department of Mathematics, University of Utah. Retrieved 6 February 2013.
- ↑ "Math Forum Discussions".
- ↑ B. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 2002; see "Notation Index", p. 286.
- ↑ Gary Hardegree, Introduction to Modal Logic, Chapter 2, pg. II–2. https://web.archive.org/web/20110607061046/http://people.umass.edu/gmhwww/511/pdf/c02.pdf
- ↑ The Comprehensive LaTeX Symbol List, pg. 20. http://www.ctan.org/tex-archive/info/symbols/comprehensive/symbols-a4.pdf
- ↑ G. H. Hardy, A Mathematician's Apology; Cambridge University Press, 1992. ISBN 9780521427067. PDF p.19.
आगे पढ़ना और बाहरी लिंक
- Franklin, James; Daoud, Albert (2011). गणित में प्रमाण: एक परिचय. chapter 6: Kew. ISBN 978-0-646-54509-7.
{{cite book}}
:|archive-date=
requires|archive-url=
(help)CS1 maint: location (link) - विरोधाभास द्वारा प्रमाण लैरी डब्लू क्यूसिक के से प्रमाण कैसे लिखें
- Reductio ad Absurdum इंटरनेट इनसाइक्लोपीडिया ऑफ फिलॉसफी; आईएसएसएन 2161-0002
श्रेणी:गणितीय प्रमाण
श्रेणी:प्रमाण के तरीके
श्रेणी:प्रस्तावात्मक तर्क में प्रमेय