अनुक्रमिक स्थान: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Topological space characterized by sequences}} | {{Short description|Topological space characterized by sequences}} | ||
[[टोपोलॉजी|सांस्थिति]] और संबंधित गणित के क्षेत्र में, एक अनुक्रमिक स्थान एक सांस्थितिक स्थान होता है जिसकी [[टोपोलॉजी|सांस्थिति]] को पूरी तरह से उसके आसन्न/विसर्ग सरणियों के द्वारा वर्णन किया जा सकता है। इन्हें एक बहुत ही कमजोर गणनीयता का अभिकरण माना जा सकता है, और सभी प्रथम-गणनीय स्थान अनुक्रमिक होते हैं। किसी भी [[टोपोलॉजी|सांस्थिति]] स्थान (<math>(X, \tau),</math>) में, यदि एक आसन्न सरणी किसी | [[टोपोलॉजी|सांस्थिति]] और संबंधित गणित के क्षेत्र में, एक अनुक्रमिक स्थान एक सांस्थितिक स्थान होता है जिसकी [[टोपोलॉजी|सांस्थिति]] को पूरी तरह से उसके आसन्न/विसर्ग सरणियों के द्वारा वर्णन किया जा सकता है। इन्हें एक बहुत ही कमजोर गणनीयता का अभिकरण माना जा सकता है, और सभी प्रथम-गणनीय स्थान अनुक्रमिक होते हैं। किसी भी [[टोपोलॉजी|सांस्थिति]] स्थान (<math>(X, \tau),</math>) में, यदि एक आसन्न सरणी किसी संवृत्त समुच्चय <math>C,</math> में समाविष्ट है, तो उस सरणी का सीमा भी <math>C,</math> में होना चाहिए। | ||
अनुक्रमिक रिक्त स्थान वास्तव में वे सांस्थितिक रिक्त स्थान हैं जिनके लिए क्रमिक रूप से संवृत्त समुच्चय वास्तव में संवृत्त हैं। इन परिभाषाओं को क्रमिक रूप से विवृत्त समुच्चयों के संदर्भ में भी पुनरावर्तित किया जा सकता है दूसरे शब्दों मे कहे तो, किसी भी सांस्थिति को [[नेट (गणित)|नेट]] के संदर्भ में वर्णित किया जा सकता है, लेकिन वे अनुक्रम बहुत लंबे हो सकते हैं एक अनुक्रम में संपीड़ित करने के लिए अनुक्रमिक रिक्त स्थान वे सांस्थितिक रिक्त स्थान हैं जिनके लिए गणनीय लंबाई के जाल अर्थात अनुक्रम सांस्थिति का वर्णन करने के लिए पर्याप्त हैं। | |||
किसी भी सांस्थिति को एक अनुक्रमिक सांस्थिति के लिए संशोधित किया जा सकता है, जिसे <math>X.</math> का अनुक्रमिक परावर्तन कहा जाता है। | |||
फ़्रेचेट-उरीसोहन रिक्त स्थान, {{mvar|T}}-अनुक्रमिक रिक्त स्थान, और की संबंधित अवधारणाएँ <math>N</math>-अनुक्रमिक रिक्त स्थान को इस संदर्भ में भी परिभाषित किया जाता है कि किसी स्थान की सांस्थिति अनुक्रमों के साथ कैसे प्रभावित करती है, परंतु इसमें सूक्ष्म रूप से भिन्न गुण होते हैं। | |||
एस. पी. फ्रैंकलिन ने अनुक्रमिक स्थान और N-अनुक्रमिक स्थान को प्रस्तुत किया था।.<ref name="Snipes T-sequential spaces" /> | |||
Line 19: | Line 21: | ||
{{See also|Filters in topology|Net (mathematics)}} | {{See also|Filters in topology|Net (mathematics)}} | ||
होने देना <math>X</math> एक | होने देना <math>X</math> एक समुच्चय हो और चलो <math>x_{\bull} = \left(x_i\right)_{i=1}^{\infty}</math> में एक क्रम हो <math>X</math>; अर्थात्, तत्वों का एक परिवार <math>X</math>, [[प्राकृतिक संख्या]]ओं द्वारा [[अनुक्रमित परिवार]]। इस आलेख में, <math>x_{\bull} \subseteq S</math> इसका मतलब है कि अनुक्रम में प्रत्येक तत्व <math>x_{\bull}</math> का एक तत्व है <math>S,</math> और अगर <math>f : X \to Y</math> तो फिर, यह एक नक्शा है <math>f\left(x_{\bull}\right) = \left(f\left(x_i\right)\right)_{i=1}^{\infty}.</math> किसी भी सूचकांक के लिए <math>i,</math> की पूँछ <math>x_{\bull}</math> पे शुरुवात <math>i</math> अनुक्रम है <math display="block">x_{\geq i} = (x_i, x_{i+1}, x_{i+2}, \ldots)\text{.}</math> एक क्रम <math>x_{\bull}</math> अंततः अंदर है <math>S</math> अगर कुछ पूँछ <math>x_{\bull}</math> संतुष्ट <math>x_{\geq i} \subseteq S.</math> | ||
होने देना <math>\tau</math> पर एक | होने देना <math>\tau</math> पर एक सांस्थितिक स्पेस बनें <math>X</math> और <math>x_{\bull}</math> उसमें एक क्रम. क्रम <math>x_{\bull}</math> एक बिंदु पर अभिसरण अनुक्रम <math>x \in X,</math> लिखा हुआ <math>x_{\bull}\overset{\tau}{\to} x</math> (जब संदर्भ अनुमति देता है, <math>x_\bull\to x</math>), यदि, प्रत्येक पड़ोस के लिए <math>U\in\tau</math> का <math>x,</math> अंततः <math>x_{\bull}</math> में है <math>U.</math> <math>x</math> तब इसे सीमा बिंदु कहा जाता है <math>x_{\bull}.</math> | ||
एक समारोह <math>f : X \to Y</math> | एक समारोह <math>f : X \to Y</math> सांस्थितिक रिक्त स्थान के बीच [[क्रमिक रूप से निरंतर]] है यदि <math>x_\bull\to x</math> तात्पर्य <math>f(x_\bull)\to f(x).</math> | ||
== अनुक्रमिक समापन/आंतरिक == | == अनुक्रमिक समापन/आंतरिक == | ||
होने देना <math>(X, \tau)</math> एक | होने देना <math>(X, \tau)</math> एक सांस्थितिक स्पेस बनें और रहने दें <math>S \subseteq X</math> एक उपसमुच्चय हो. [[ समापन (टोपोलॉजी) | समापन (सांस्थिति )]] (रेस्पेक्ट [[ आंतरिक (टोपोलॉजी) | आंतरिक (सांस्थिति )]] )। <math>S</math> में <math>(X, \tau)</math> द्वारा निरूपित किया जाता है <math>\operatorname{cl}_X S</math> (सम्मान. <math>\operatorname{int}_X S</math>). | ||
का क्रमिक समापन <math>S</math> में <math>(X, \tau)</math> | का क्रमिक समापन <math>S</math> में <math>(X, \tau)</math> समुच्चय है<math display="block">\operatorname{scl}(S) = \left\{x : \text{there exists a sequence }s_{\bull} \subseteq S\text{ such that }s_{\bull} \to x \right\}</math>जो कि पावर समुच्चय पर एक मानचित्र, अनुक्रमिक समापन ऑपरेटर को परिभाषित करता है <math>X.</math> यदि स्पष्टता के लिए आवश्यक हो तो यह समुच्चय भी लिखा जा सकता है <math>\operatorname{scl}_{X}(S)</math> या <math>\operatorname{scl}_{(X,\tau)}(S).</math> हमेशा ऐसा ही होता है <math>\operatorname{scl}_X S \subseteq \operatorname{cl}_X S,</math> लेकिन इसका उलटा विफल हो सकता है। | ||
का अनुक्रमिक आंतरिक भाग <math>S</math> में <math>(X, \tau)</math> | का अनुक्रमिक आंतरिक भाग <math>S</math> में <math>(X, \tau)</math> समुच्चय है<math display="block">\operatorname{sint}(S) = \{s : \text{whenever }x_{\bull}\subseteq X\text{ and }x_{\bull}\to s,\text{ then }x_{\bull}\text{ is eventually in }S\}</math>(यदि आवश्यक हो तो सांस्थितिक स्पेस को फिर से एक सबस्क्रिप्ट के साथ दर्शाया गया है)। | ||
अनुक्रमिक समापन और इंटीरियर | अनुक्रमिक समापन और इंटीरियर सांस्थितिक क्लोजर और इंटीरियर के कई अच्छे गुणों को संतुष्ट करते हैं: सभी उपसमूहों के लिए <math>R, S \subseteq X,</math> | ||
<सड़क> | <सड़क> | ||
<ली><math>\operatorname{scl}_X(X\setminus S)=X\setminus\operatorname{sint}_X(S)</math> और <math>\operatorname{sint}_X(X\setminus S)=X\setminus\operatorname{scl}_X(S)</math>; | <ली><math>\operatorname{scl}_X(X\setminus S)=X\setminus\operatorname{sint}_X(S)</math> और <math>\operatorname{sint}_X(X\setminus S)=X\setminus\operatorname{scl}_X(S)</math>; | ||
Line 45: | Line 47: | ||
<ली><math display="inline">\operatorname{scl}(S)\subseteq\operatorname{scl}(\operatorname{scl}(S)).</math> | <ली><math display="inline">\operatorname{scl}(S)\subseteq\operatorname{scl}(\operatorname{scl}(S)).</math> | ||
अर्थात्, अनुक्रमिक समापन एक [[प्रीक्लोज़र ऑपरेटर]] है। | अर्थात्, अनुक्रमिक समापन एक [[प्रीक्लोज़र ऑपरेटर]] है। सांस्थितिक क्लोजर के विपरीत, अनुक्रमिक क्लोजर [[नपुंसकता]] नहीं है: अंतिम रोकथाम सख्त हो सकती है। इस प्रकार अनुक्रमिक समापन एक (कुराटोव्स्की [[ बंद करने वाला ऑपरेटर | संवृत्त करने वाला ऑपरेटर]] ) क्लोजर ऑपरेटर नहीं है। | ||
===क्रमिक रूप से | ===क्रमिक रूप से संवृत्त और विवृत्त समुच्चय=== | ||
{{anchor|Sequentially open|Sequentially closed}} | {{anchor|Sequentially open|Sequentially closed}} | ||
एक | एक समुच्चय <math>S</math> यदि क्रमिक रूप से संवृत्त है <math>S=\operatorname{scl}(S)</math>; समान रूप से, सभी के लिए <math>s_{\bull}\subseteq S</math> और <math>x \in X</math> ऐसा है कि <math>s_{\bull}\overset{\tau}{\to}x,</math> हमारे पास यह होना चाहिए <math>x\in S.</math><ref group="note">You cannot simultaneously apply this "test" to infinitely many subsets (for example, you can not use something akin to the [[axiom of choice]]). Not all sequential spaces are [[Fréchet-Urysohn space|Fréchet-Urysohn]], but only in those spaces can the closure of a set <math>S</math> can be determined without it ever being necessary to consider any set other than <math>S.</math> </ref> एक समुच्चय <math>S</math> इसे क्रमिक रूप से विवृत्त होने के रूप में परिभाषित किया गया है यदि इसका [[पूरक (सेट सिद्धांत)|पूरक (समुच्चय सिद्धांत)]] क्रमिक रूप से संवृत्त है। समतुल्य शर्तों में शामिल हैं: | ||
<ul> | <ul> | ||
Line 59: | Line 61: | ||
स्थापित करना <math>S</math> एक बिंदु का अनुक्रमिक पड़ोस है <math>x \in X</math> यदि इसमें शामिल है <math>x</math> इसके अनुक्रमिक आंतरिक भाग में; अनुक्रमिक पड़ोस को क्रमिक रूप से खोलने की आवश्यकता नहीं है (देखें)। {{Slink||T- and N-sequential spaces}} नीचे)। | स्थापित करना <math>S</math> एक बिंदु का अनुक्रमिक पड़ोस है <math>x \in X</math> यदि इसमें शामिल है <math>x</math> इसके अनुक्रमिक आंतरिक भाग में; अनुक्रमिक पड़ोस को क्रमिक रूप से खोलने की आवश्यकता नहीं है (देखें)। {{Slink||T- and N-sequential spaces}} नीचे)। | ||
के एक उपसमुच्चय के लिए यह संभव है <math>X</math> क्रमिक रूप से खुला होना लेकिन खुला नहीं होना। इसी प्रकार, यह संभव है कि क्रमिक रूप से | के एक उपसमुच्चय के लिए यह संभव है <math>X</math> क्रमिक रूप से खुला होना लेकिन खुला नहीं होना। इसी प्रकार, यह संभव है कि क्रमिक रूप से संवृत्त उपसमुच्चय का अस्तित्व हो जो संवृत्त न हो। | ||
==अनुक्रमिक रिक्त स्थान और कोरफ्लेक्शन== | ==अनुक्रमिक रिक्त स्थान और कोरफ्लेक्शन== | ||
जैसा कि ऊपर चर्चा की गई है, अनुक्रमिक समापन सामान्य रूप से निष्क्रिय नहीं है, और इसलिए सांस्थिति का समापन ऑपरेटर नहीं है। कोई व्यक्ति ट्रांसफिनिट पुनरावृत्ति के माध्यम से एक निष्क्रिय अनुक्रमिक समापन प्राप्त कर सकता है: एक उत्तराधिकारी क्रम के लिए <math>\alpha+1,</math> परिभाषित करें (हमेशा की तरह)<math display="block">(\operatorname{scl})^{\alpha+1}(S)=\operatorname{scl}((\operatorname{scl})^\alpha(S))</math>और, एक [[सीमा क्रमसूचक]] के लिए <math>\alpha,</math> परिभाषित करना<math display="block">(\operatorname{scl})^\alpha(S)=\bigcup_{\beta<\alpha}{(\operatorname{scl})^\beta(S)}\text{.}</math>यह प्रक्रिया | जैसा कि ऊपर चर्चा की गई है, अनुक्रमिक समापन सामान्य रूप से निष्क्रिय नहीं है, और इसलिए सांस्थिति का समापन ऑपरेटर नहीं है। कोई व्यक्ति ट्रांसफिनिट पुनरावृत्ति के माध्यम से एक निष्क्रिय अनुक्रमिक समापन प्राप्त कर सकता है: एक उत्तराधिकारी क्रम के लिए <math>\alpha+1,</math> परिभाषित करें (हमेशा की तरह)<math display="block">(\operatorname{scl})^{\alpha+1}(S)=\operatorname{scl}((\operatorname{scl})^\alpha(S))</math>और, एक [[सीमा क्रमसूचक]] के लिए <math>\alpha,</math> परिभाषित करना<math display="block">(\operatorname{scl})^\alpha(S)=\bigcup_{\beta<\alpha}{(\operatorname{scl})^\beta(S)}\text{.}</math>यह प्रक्रिया समुच्चयों का क्रमिक-अनुक्रमित बढ़ता क्रम देती है; जैसा कि यह पता चला है, वह अनुक्रम हमेशा सूचकांक द्वारा स्थिर होता है <math>\omega_1</math> ([[पहला बेशुमार क्रमसूचक]])। इसके विपरीत, का अनुक्रमिक क्रम <math>X</math> किसी भी विकल्प के लिए न्यूनतम क्रमसूचक है <math>S,</math> उपरोक्त क्रम स्थिर हो जाएगा.<ref>*{{cite journal |last1=Arhangel'skiĭ |first1=A. V. |last2=Franklin |first2=S. P. |year=1968 |title=Ordinal invariants for topological spaces. |journal=Michigan Math. J. |volume=15 |issue=3 |pages=313–320 |doi=10.1307/mmj/1029000034 |doi-access=free}}</ref> | ||
का अनंत अनुक्रमिक समापन <math>S</math> उपरोक्त अनुक्रम में टर्मिनल | का अनंत अनुक्रमिक समापन <math>S</math> उपरोक्त अनुक्रम में टर्मिनल समुच्चय है: <math>(\operatorname{scl})^{\omega_1}(S).</math> परिचालक <math>(\operatorname{scl})^{\omega_1}</math> निष्क्रिय है और इस प्रकार एक संवृत्त ऑपरेटर है। विशेष रूप से, यह एक सांस्थिति , अनुक्रमिक कोरफ्लेक्शन को परिभाषित करता है। अनुक्रमिक कोरफ्लेक्शन में, प्रत्येक क्रमिक रूप से संवृत्त समुच्चय संवृत्त होता है (और प्रत्येक क्रमिक रूप से खुला समुच्चय खुला होता है)।<ref>{{Cite journal |last=Baron |first=S. |date=October 1968 |title=अनुक्रमिक स्थानों की कोरफ्लेक्टिव उपश्रेणी|url=https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/coreflective-subcategory-of-sequential-spaces/6902D4BA6B5D196EA1DEB3C1A4B71F57# |journal=Canadian Mathematical Bulletin |language=en |volume=11 |issue=4 |pages=603–604 |doi=10.4153/CMB-1968-074-4 |s2cid=124685527 |issn=0008-4395}}</ref> | ||
=== अनुक्रमिक रिक्त स्थान === | === अनुक्रमिक रिक्त स्थान === | ||
एक | एक सांस्थितिक स्पेस <math>(X, \tau)</math> अनुक्रमिक है यदि यह निम्नलिखित समकक्ष शर्तों में से किसी को संतुष्ट करता है: | ||
<ul> | <ul> | ||
<ली><math>\tau</math> इसका अपना अनुक्रमिक कोरफ्लेक्शन है।<ref>{{cite web |title=Topology of sequentially open sets is sequential? |url=https://math.stackexchange.com/questions/3737020 |website=Mathematics Stack Exchange}}</ref></li> | <ली><math>\tau</math> इसका अपना अनुक्रमिक कोरफ्लेक्शन है।<ref>{{cite web |title=Topology of sequentially open sets is sequential? |url=https://math.stackexchange.com/questions/3737020 |website=Mathematics Stack Exchange}}</ref></li> | ||
<li>प्रत्येक क्रमिक रूप से खुला उपसमुच्चय <math>X</math> खुला है.</li> | <li>प्रत्येक क्रमिक रूप से खुला उपसमुच्चय <math>X</math> खुला है.</li> | ||
<li>प्रत्येक क्रमिक रूप से | <li>प्रत्येक क्रमिक रूप से संवृत्त उपसमूह <math>X</math> संवृत्त है.</li> | ||
<li>किसी भी उपसमुच्चय के लिए <math>S \subseteq X</math> वह है {{em|not}} | <li>किसी भी उपसमुच्चय के लिए <math>S \subseteq X</math> वह है {{em|not}} संवृत्त किया <math>X,</math> वहाँ कुछ मौजूद है<ref group="note">A [[Fréchet–Urysohn space]] is defined by the analogous condition for all such <math>x</math>: <blockquote>For any subset <math>S \subseteq X</math> that is not closed in <math>X,</math> ''for any'' <math>x \in \operatorname{cl}_X(S) \setminus S,</math> there exists a sequence in <math>S</math> that converges to <math>x.</math></blockquote></ref> <math>x\in\operatorname{cl}(S)\setminus S</math> और एक क्रम <math>S</math> जो कि एकत्रित हो जाता है <math>x.</math><ref name="Arkhangel'skii, A.V. and Pontryagin L.S."> Arkhangel'skii, A.V. and Pontryagin L.S.,{{pad|1px}} General Topology I, definition 9 p.12 </ref> </li> | ||
<li>(सार्वभौमिक संपत्ति) प्रत्येक | <li>(सार्वभौमिक संपत्ति) प्रत्येक सांस्थितिक स्पेस के लिए <math>Y,</math> नक्षा <math>f : X \to Y</math> [[सतत कार्य (टोपोलॉजी)|सतत कार्य (सांस्थिति )]] है यदि और केवल यदि यह [[अनुक्रमिक निरंतरता]] (यदि) है <math>x_{\bull} \to x</math> तब <math>f\left(x_{\bull}\right) \to f(x)</math>).<ref>{{Cite journal |last1=Baron |first1=S. |last2=Leader |first2=Solomon |date=1966 |title=Solution to Problem #5299 |url=https://www.jstor.org/stable/2314834 |journal=The American Mathematical Monthly |volume=73 |issue=6 |pages=677–678 |doi=10.2307/2314834 |jstor=2314834 |issn=0002-9890}}</ref> </li> | ||
<ली><math>X</math> प्रथम-गणनीय स्थान का भागफल है। | <ली><math>X</math> प्रथम-गणनीय स्थान का भागफल है। | ||
<ली><math>X</math> एक मीट्रिक स्थान का भागफल है। | <ली><math>X</math> एक मीट्रिक स्थान का भागफल है। | ||
</ul> | </ul> | ||
ले कर <math>Y = X</math> और <math>f</math> पहचान मानचित्र पर होना <math>X</math> सार्वभौमिक संपत्ति में, यह इस प्रकार है कि अनुक्रमिक रिक्त स्थान के वर्ग में सटीक रूप से वे स्थान शामिल होते हैं जिनकी | ले कर <math>Y = X</math> और <math>f</math> पहचान मानचित्र पर होना <math>X</math> सार्वभौमिक संपत्ति में, यह इस प्रकार है कि अनुक्रमिक रिक्त स्थान के वर्ग में सटीक रूप से वे स्थान शामिल होते हैं जिनकी सांस्थितिक संरचना अभिसरण अनुक्रमों द्वारा निर्धारित होती है। यदि दो सांस्थिति अभिसरण अनुक्रमों पर सहमत हैं, तो उनके पास आवश्यक रूप से समान अनुक्रमिक कोरफ्लेक्शन होता है। इसके अलावा, से एक समारोह <math>Y</math> क्रमिक रूप से निरंतर है यदि और केवल यदि यह अनुक्रमिक कोरफ्लेक्शन पर निरंतर है (अर्थात्, जब पूर्व-निर्मित हो) <math>f</math>). | ||
== {{mvar|T}}- और {{Mvar|N}}-अनुक्रमिक रिक्त स्थान == | == {{mvar|T}}- और {{Mvar|N}}-अनुक्रमिक रिक्त स्थान == | ||
ए{{mvar|T}}-अनुक्रमिक स्थान अनुक्रमिक क्रम 1 वाला एक | ए{{mvar|T}}-अनुक्रमिक स्थान अनुक्रमिक क्रम 1 वाला एक सांस्थितिक स्थान है, जो निम्नलिखित में से किसी भी स्थिति के बराबर है:<ref name="Snipes T-sequential spaces">{{Cite journal |last=Snipes |first=Ray |date=1972 |title=टी-अनुक्रमिक टोपोलॉजिकल रिक्त स्थान|url=http://matwbn.icm.edu.pl/ksiazki/fm/fm77/fm7719.pdf |journal=Fundamenta Mathematicae |language=en |volume=77 |issue=2 |pages=95–98 |doi=10.4064/fm-77-2-95-98 |issn=0016-2736}}</ref> <ul> | ||
<li>प्रत्येक उपसमुच्चय का अनुक्रमिक समापन (या आंतरिक भाग)। <math>X</math> क्रमिक रूप से | <li>प्रत्येक उपसमुच्चय का अनुक्रमिक समापन (या आंतरिक भाग)। <math>X</math> क्रमिक रूप से संवृत्त है (resp. open).</li> | ||
<ली><math>\operatorname{scl}</math> या <math>\operatorname{sint}</math> नपुंसक हैं. | <ली><math>\operatorname{scl}</math> या <math>\operatorname{sint}</math> नपुंसक हैं. | ||
<वह><math display="inline">\operatorname{scl}(S)=\bigcap_{\text{sequentially closed }C\supseteq S}{C}</math> या <math display="inline">\operatorname{sint}(S)=\bigcup_{\text{sequentially open }U\subseteq S}{U}</math> | <वह><math display="inline">\operatorname{scl}(S)=\bigcap_{\text{sequentially closed }C\supseteq S}{C}</math> या <math display="inline">\operatorname{sint}(S)=\bigcup_{\text{sequentially open }U\subseteq S}{U}</math> | ||
<li>कोई अनुक्रमिक पड़ोस <math>x \in X</math> अनुक्रमिक रूप से | <li>कोई अनुक्रमिक पड़ोस <math>x \in X</math> अनुक्रमिक रूप से विवृत्त समुच्चय में सिकुड़ा जा सकता है जिसमें शामिल है <math>x</math>; औपचारिक रूप से, क्रमिक रूप से विवृत्त पड़ोस अनुक्रमिक पड़ोस के लिए [[पड़ोस का आधार]] हैं।</li> | ||
<li>किसी के लिए <math>x \in X</math> और कोई अनुक्रमिक पड़ोस <math>N</math> का <math>x,</math> वहां एक अनुक्रमिक पड़ोस मौजूद है <math>M</math> का <math>x</math> ऐसा कि, हर किसी के लिए <math>m \in M,</math> | <li>किसी के लिए <math>x \in X</math> और कोई अनुक्रमिक पड़ोस <math>N</math> का <math>x,</math> वहां एक अनुक्रमिक पड़ोस मौजूद है <math>M</math> का <math>x</math> ऐसा कि, हर किसी के लिए <math>m \in M,</math> समुच्चय <math>N</math> का अनुक्रमिक पड़ोस है <math>m.</math> | ||
</li> | </li> | ||
</ul> | </ul> | ||
होने के नाते {{mvar|T}}-अनुक्रमिक स्थान अनुक्रमिक स्थान होने के साथ अतुलनीय है; ऐसे अनुक्रमिक स्थान हैं जो नहीं हैं {{mvar|T}}-अनुक्रमिक और इसके विपरीत। हालाँकि, एक | होने के नाते {{mvar|T}}-अनुक्रमिक स्थान अनुक्रमिक स्थान होने के साथ अतुलनीय है; ऐसे अनुक्रमिक स्थान हैं जो नहीं हैं {{mvar|T}}-अनुक्रमिक और इसके विपरीत। हालाँकि, एक सांस्थितिक स्पेस <math>(X, \tau)</math> ए कहा जाता है<math>N</math>-अनुक्रमिक (या पड़ोस-अनुक्रमिक) यदि यह अनुक्रमिक और दोनों है {{mvar|T}}-अनुक्रमिक. एक समान शर्त यह है कि प्रत्येक अनुक्रमिक पड़ोस में एक खुला (शास्त्रीय) पड़ोस होता है।<ref name="Snipes T-sequential spaces" /> प्रत्येक प्रथम-गणनीय स्थान (और इस प्रकार प्रत्येक मापनीय स्थान) है <math>N</math>-क्रमिक. वहाँ [[टोपोलॉजिकल वेक्टर रिक्त स्थान|सांस्थितिक वेक्टर रिक्त स्थान]] मौजूद हैं जो अनुक्रमिक हैं लेकिन {{em|not}} <math>N</math>-अनुक्रमिक (और इस प्रकार नहीं {{mvar|T}}-अनुक्रमिक).<ref name="Snipes T-sequential spaces" /> | ||
===फ़्रेचेट-उरीसोहन रिक्त स्थान=== | ===फ़्रेचेट-उरीसोहन रिक्त स्थान=== | ||
{{Main|Fréchet–Urysohn space}} | {{Main|Fréchet–Urysohn space}} | ||
एक | एक सांस्थितिक स्पेस <math>(X, \tau)</math> इसे फ़्रेचेट-उरीसोहन स्थान कहा जाता है|फ़्रेचेट-उरीसोहन यदि यह निम्नलिखित समकक्ष शर्तों में से किसी को संतुष्ट करता है: <ul> | ||
<ली><math>X</math> वंशानुगत रूप से अनुक्रमिक है; अर्थात्, प्रत्येक | <ली><math>X</math> वंशानुगत रूप से अनुक्रमिक है; अर्थात्, प्रत्येक सांस्थितिक उपस्थान अनुक्रमिक है। | ||
<li>प्रत्येक उपसमुच्चय के लिए <math>S \subseteq X,</math> <math>\operatorname{scl}_X S = \operatorname{cl}_X S.</math> | <li>प्रत्येक उपसमुच्चय के लिए <math>S \subseteq X,</math> <math>\operatorname{scl}_X S = \operatorname{cl}_X S.</math> | ||
</li> | </li> | ||
<li>किसी भी उपसमुच्चय के लिए <math>S \subseteq X</math> वह | <li>किसी भी उपसमुच्चय के लिए <math>S \subseteq X</math> वह संवृत्त नहीं है <math>X</math> और हर <math>x \in \left(\operatorname{cl}_X S\right) \setminus S,</math> इसमें एक क्रम मौजूद है <math>S</math> जो कि एकत्रित हो जाता है <math>x.</math> | ||
</li> | </li> | ||
</ul> | </ul> | ||
Line 112: | Line 114: | ||
[[ज़ारिस्की टोपोलॉजी|ज़ारिस्की सांस्थिति]] के साथ एक कम्यूटेटिव [[नोथेरियन अंगूठी]] का [[प्राइम स्पेक्ट्रम]] अनुक्रमिक है। | [[ज़ारिस्की टोपोलॉजी|ज़ारिस्की सांस्थिति]] के साथ एक कम्यूटेटिव [[नोथेरियन अंगूठी]] का [[प्राइम स्पेक्ट्रम]] अनुक्रमिक है। | ||
असली लाइन लो <math>\R</math> और कोटिएंट स्पेस (सांस्थिति ) | असली लाइन लो <math>\R</math> और कोटिएंट स्पेस (सांस्थिति ) समुच्चय <math>\Z</math> एक बिंदु तक पूर्णांकों का. मीट्रिक स्थान के भागफल के रूप में, परिणाम अनुक्रमिक है, लेकिन यह पहले गणनीय नहीं है। | ||
प्रत्येक प्रथम-गणनीय स्थान फ़्रेचेट-उरीसोहन है और प्रत्येक फ़्रेचेट-उरीसोहन स्थान अनुक्रमिक है। इस प्रकार प्रत्येक मेट्रिज़ेबल या [[स्यूडोमेट्रिज़ेबल स्थान]] स्पेस - विशेष रूप से, प्रत्येक सेकंड-गणनीय स्पेस, मीट्रिक स्पेस, या असतत स्पेस - अनुक्रमिक है। | प्रत्येक प्रथम-गणनीय स्थान फ़्रेचेट-उरीसोहन है और प्रत्येक फ़्रेचेट-उरीसोहन स्थान अनुक्रमिक है। इस प्रकार प्रत्येक मेट्रिज़ेबल या [[स्यूडोमेट्रिज़ेबल स्थान]] स्पेस - विशेष रूप से, प्रत्येक सेकंड-गणनीय स्पेस, मीट्रिक स्पेस, या असतत स्पेस - अनुक्रमिक है। | ||
होने देना <math>\mathcal{F}</math> फ़्रेचेट-उरीसोहन स्थान से मानचित्रों का एक | होने देना <math>\mathcal{F}</math> फ़्रेचेट-उरीसोहन स्थान से मानचित्रों का एक समुच्चय बनें|फ़्रेचेट-उरीसोहन स्थान से लेकर <math>X.</math> फिर [[अंतिम टोपोलॉजी|अंतिम सांस्थिति]] वह <math>\mathcal{F}</math> प्रेरित करता है <math>X</math> अनुक्रमिक है. | ||
हॉसडॉर्फ़ [[टोपोलॉजिकल वेक्टर स्पेस]] अनुक्रमिक है यदि और केवल तभी यदि समान अभिसरण अनुक्रमों के साथ कोई सख्ती से बेहतर सांस्थिति मौजूद नहीं है।{{sfn|Wilansky|2013|p=224}}<ref name="Dudley on conv 1964">Dudley, R. M., On sequential convergence - Transactions of the American Mathematical Society Vol 112, 1964, pp. 483-507</ref> | हॉसडॉर्फ़ [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक वेक्टर स्पेस]] अनुक्रमिक है यदि और केवल तभी यदि समान अभिसरण अनुक्रमों के साथ कोई सख्ती से बेहतर सांस्थिति मौजूद नहीं है।{{sfn|Wilansky|2013|p=224}}<ref name="Dudley on conv 1964">Dudley, R. M., On sequential convergence - Transactions of the American Mathematical Society Vol 112, 1964, pp. 483-507</ref> | ||
Line 129: | Line 131: | ||
===गैर-उदाहरण (रिक्त स्थान जो अनुक्रमिक नहीं हैं)=== | ===गैर-उदाहरण (रिक्त स्थान जो अनुक्रमिक नहीं हैं)=== | ||
सबसे सरल स्थान जो अनुक्रमिक नहीं है वह बेशुमार | सबसे सरल स्थान जो अनुक्रमिक नहीं है वह बेशुमार समुच्चय पर [[सहगणनीय टोपोलॉजी|सहगणनीय सांस्थिति]] है। ऐसे स्थान में प्रत्येक अभिसरण अनुक्रम अंततः स्थिर होता है; इसलिए प्रत्येक समुच्चय क्रमिक रूप से खुला है। लेकिन सहगणनीय सांस्थिति पृथक स्थान नहीं है। (कोई सांस्थिति को क्रमिक रूप से असतत कह सकता है।)<ref>{{Cite web |last1=math |last2=Sleziak |first2=Martin |date=Dec 6, 2016 |title=समान अभिसरण अनुक्रमों के साथ विभिन्न टोपोलॉजी का उदाहरण|url=https://math.stackexchange.com/questions/76691/example-of-different-topologies-with-same-convergent-sequences |access-date=2022-06-27 |website=Mathematics Stack Exchange |publisher=StackOverflow |language=en}}</ref> | ||
होने देना <math>C_c^k(U)</math> वितरण को निरूपित करें (गणित) <math>k</math>वितरण (गणित)|-अपनी विहित सांस्थिति और लेट के साथ सुचारू परीक्षण कार्य करता है <math>\mathcal{D}'(U)</math> वितरण के स्थान, मजबूत दोहरे स्थान को निरूपित करें <math>C_c^{\infty}(U)</math>; न तो अनुक्रमिक हैं (न ही [[स्थान सुनो]] भी)।<ref name=":0" /><ref name="Shirai 1959" /> दूसरी ओर, दोनों <math>C_c^{\infty}(U)</math> और <math>\mathcal{D}'(U)</math> मोंटेल अंतरिक्ष स्थान हैं<ref name="Encyc. Math TVS">{{cite web |author=<!--Not stated--> |date= |title=टोपोलॉजिकल वेक्टर स्पेस|url=https://encyclopediaofmath.org/wiki/Topological_vector_space |access-date=September 6, 2020 |website=Encyclopedia of Mathematics |publisher=Encyclopedia of Mathematics |quote="It is a Montel space, hence paracompact, and so normal."}}</ref> और, किसी भी मॉन्टेल स्पेस के निरंतर दोहरे स्थान में, निरंतर रैखिक कार्यात्मकताओं का एक क्रम मजबूत दोहरे स्थान में परिवर्तित होता है यदि और केवल यदि यह कमजोर [[कमज़ोर* टोपोलॉजी|कमज़ोर* सांस्थिति]] में परिवर्तित होता है (अर्थात, बिंदुवार परिवर्तित होता है)।<ref name=":0" />{{sfn|Trèves|2006|pp=351-359}} | होने देना <math>C_c^k(U)</math> वितरण को निरूपित करें (गणित) <math>k</math>वितरण (गणित)|-अपनी विहित सांस्थिति और लेट के साथ सुचारू परीक्षण कार्य करता है <math>\mathcal{D}'(U)</math> वितरण के स्थान, मजबूत दोहरे स्थान को निरूपित करें <math>C_c^{\infty}(U)</math>; न तो अनुक्रमिक हैं (न ही [[स्थान सुनो]] भी)।<ref name=":0" /><ref name="Shirai 1959" /> दूसरी ओर, दोनों <math>C_c^{\infty}(U)</math> और <math>\mathcal{D}'(U)</math> मोंटेल अंतरिक्ष स्थान हैं<ref name="Encyc. Math TVS">{{cite web |author=<!--Not stated--> |date= |title=टोपोलॉजिकल वेक्टर स्पेस|url=https://encyclopediaofmath.org/wiki/Topological_vector_space |access-date=September 6, 2020 |website=Encyclopedia of Mathematics |publisher=Encyclopedia of Mathematics |quote="It is a Montel space, hence paracompact, and so normal."}}</ref> और, किसी भी मॉन्टेल स्पेस के निरंतर दोहरे स्थान में, निरंतर रैखिक कार्यात्मकताओं का एक क्रम मजबूत दोहरे स्थान में परिवर्तित होता है यदि और केवल यदि यह कमजोर [[कमज़ोर* टोपोलॉजी|कमज़ोर* सांस्थिति]] में परिवर्तित होता है (अर्थात, बिंदुवार परिवर्तित होता है)।<ref name=":0" />{{sfn|Trèves|2006|pp=351-359}} | ||
Line 135: | Line 137: | ||
प्रत्येक अनुक्रमिक स्थान में [[गणनीय जकड़न]] होती है और यह कॉम्पैक्ट रूप से उत्पन्न स्थान होता है। | प्रत्येक अनुक्रमिक स्थान में [[गणनीय जकड़न]] होती है और यह कॉम्पैक्ट रूप से उत्पन्न स्थान होता है। | ||
अगर <math>f : X \to Y</math> | अगर <math>f : X \to Y</math> समुच्चय के बाद दो हॉसडॉर्फ अनुक्रमिक स्थानों के बीच एक निरंतर खुला मानचित्र है <math>\{y:{|f^{-1}(y)| = 1}\}\subseteq Y</math> अद्वितीय प्रीइमेज वाले बिंदुओं को संवृत्त कर दिया गया है। (निरंतरता से, इसकी पूर्वछवि भी वैसी ही है <math>X,</math> जिस पर सभी बिंदुओं का समुच्चय <math>f</math> इंजेक्शन है.) | ||
अगर <math>f : X \to Y</math> हॉसडॉर्फ़ अनुक्रमिक स्थान पर एक विशेषण मानचित्र (आवश्यक रूप से निरंतर नहीं) है <math>Y</math> और <math>\mathcal{B}</math> सांस्थिति के लिए [[आधार (टोपोलॉजी)|आधार (सांस्थिति )]]। <math>X,</math> तब <math>f : X \to Y</math> यदि और केवल यदि, प्रत्येक के लिए एक खुला मानचित्र है <math>x \in X,</math> बुनियादी पड़ोस <math>B \in \mathcal{B}</math> का <math>x,</math> और क्रम <math>y_{\bull} = \left(y_i\right)_{i=1}^{\infty} \to f(x)</math> में <math>Y,</math> का एक क्रम है <math>y_\bull</math> वह अंततः अंदर है<math>f(B).</math> | अगर <math>f : X \to Y</math> हॉसडॉर्फ़ अनुक्रमिक स्थान पर एक विशेषण मानचित्र (आवश्यक रूप से निरंतर नहीं) है <math>Y</math> और <math>\mathcal{B}</math> सांस्थिति के लिए [[आधार (टोपोलॉजी)|आधार (सांस्थिति )]]। <math>X,</math> तब <math>f : X \to Y</math> यदि और केवल यदि, प्रत्येक के लिए एक खुला मानचित्र है <math>x \in X,</math> बुनियादी पड़ोस <math>B \in \mathcal{B}</math> का <math>x,</math> और क्रम <math>y_{\bull} = \left(y_i\right)_{i=1}^{\infty} \to f(x)</math> में <math>Y,</math> का एक क्रम है <math>y_\bull</math> वह अंततः अंदर है<math>f(B).</math> | ||
Line 142: | Line 144: | ||
==श्रेणीबद्ध गुण== | ==श्रेणीबद्ध गुण== | ||
सभी अनुक्रमिक रिक्त स्थान की [[पूर्ण उपश्रेणी]] Seq | सभी अनुक्रमिक रिक्त स्थान की [[पूर्ण उपश्रेणी]] Seq सांस्थितिक रिक्त स्थान की [[श्रेणी (गणित)]] शीर्ष में निम्नलिखित परिचालनों के तहत संवृत्त है: | ||
{{collist| | {{collist| | ||
* Quotients | * Quotients | ||
Line 150: | Line 152: | ||
* Open and closed [[Subspace topology|subspaces]] | * Open and closed [[Subspace topology|subspaces]] | ||
}} | }} | ||
Seq श्रेणी है {{em|not}} शीर्ष में निम्नलिखित परिचालनों के अंतर्गत | Seq श्रेणी है {{em|not}} शीर्ष में निम्नलिखित परिचालनों के अंतर्गत संवृत्त किया गया: | ||
{{collist| | {{collist| | ||
* Continuous images | * Continuous images | ||
Line 156: | Line 158: | ||
* Finite [[Product (category theory)|products]] | * Finite [[Product (category theory)|products]] | ||
}} | }} | ||
चूँकि वे | चूँकि वे सांस्थितिक योगों और भागफलों के अंतर्गत संवृत्त होते हैं, अनुक्रमिक रिक्त स्थान [[टोपोलॉजिकल रिक्त स्थान की श्रेणी|सांस्थितिक रिक्त स्थान की श्रेणी]] का एक [[कोरफ्लेक्टिव उपश्रेणी]] बनाते हैं। वास्तव में, वे मेट्रिज़ेबल रिक्त स्थान (अर्थात्, योग और भागफल के अंतर्गत संवृत्त सांस्थितिक रिक्त स्थान का सबसे छोटा वर्ग और मेट्रिज़ेबल रिक्त स्थान युक्त) के कोरफ्लेक्टिव पतवार हैं। | ||
उपश्रेणी Seq अपने स्वयं के उत्पाद (शीर्ष के नहीं) के संबंध में एक कार्टेशियन | उपश्रेणी Seq अपने स्वयं के उत्पाद (शीर्ष के नहीं) के संबंध में एक कार्टेशियन संवृत्त श्रेणी है। [[घातीय वस्तु]]एं (अभिसरण अनुक्रम)-ओपन सांस्थिति से सुसज्जित हैं। | ||
पी.आई. बूथ और ए. टिलोटसन ने दिखाया है कि Seq टॉप की सबसे छोटी कार्टेशियन | पी.आई. बूथ और ए. टिलोटसन ने दिखाया है कि Seq टॉप की सबसे छोटी कार्टेशियन संवृत्त उपश्रेणी है जिसमें सभी मीट्रिक स्पेस, सीडब्ल्यू-कॉम्प्लेक्स और अलग-अलग मैनिफोल्ड्स के अंतर्निहित सांस्थितिक स्पेस शामिल हैं और यह कोलिमिट्स, भागफल और अन्य कुछ उचित पहचानों के तहत संवृत्त है जो [[नॉर्मन स्टीनरोड]] को सुविधाजनक बताया गया।<ref name="Steenrod1967">{{harvnb|Steenrod|1967|p=}}</ref>. | ||
प्रत्येक अनुक्रमिक स्थान कॉम्पैक्ट रूप से उत्पन्न स्थान है, और Seq में परिमित उत्पाद कॉम्पैक्ट रूप से उत्पन्न स्थानों के साथ मेल खाते हैं, क्योंकि कॉम्पैक्ट रूप से उत्पन्न स्थानों की श्रेणी में उत्पाद मीट्रिक रिक्त स्थान के भागफल को संरक्षित करते हैं। | प्रत्येक अनुक्रमिक स्थान कॉम्पैक्ट रूप से उत्पन्न स्थान है, और Seq में परिमित उत्पाद कॉम्पैक्ट रूप से उत्पन्न स्थानों के साथ मेल खाते हैं, क्योंकि कॉम्पैक्ट रूप से उत्पन्न स्थानों की श्रेणी में उत्पाद मीट्रिक रिक्त स्थान के भागफल को संरक्षित करते हैं। |
Revision as of 09:28, 13 July 2023
सांस्थिति और संबंधित गणित के क्षेत्र में, एक अनुक्रमिक स्थान एक सांस्थितिक स्थान होता है जिसकी सांस्थिति को पूरी तरह से उसके आसन्न/विसर्ग सरणियों के द्वारा वर्णन किया जा सकता है। इन्हें एक बहुत ही कमजोर गणनीयता का अभिकरण माना जा सकता है, और सभी प्रथम-गणनीय स्थान अनुक्रमिक होते हैं। किसी भी सांस्थिति स्थान () में, यदि एक आसन्न सरणी किसी संवृत्त समुच्चय में समाविष्ट है, तो उस सरणी का सीमा भी में होना चाहिए।
अनुक्रमिक रिक्त स्थान वास्तव में वे सांस्थितिक रिक्त स्थान हैं जिनके लिए क्रमिक रूप से संवृत्त समुच्चय वास्तव में संवृत्त हैं। इन परिभाषाओं को क्रमिक रूप से विवृत्त समुच्चयों के संदर्भ में भी पुनरावर्तित किया जा सकता है दूसरे शब्दों मे कहे तो, किसी भी सांस्थिति को नेट के संदर्भ में वर्णित किया जा सकता है, लेकिन वे अनुक्रम बहुत लंबे हो सकते हैं एक अनुक्रम में संपीड़ित करने के लिए अनुक्रमिक रिक्त स्थान वे सांस्थितिक रिक्त स्थान हैं जिनके लिए गणनीय लंबाई के जाल अर्थात अनुक्रम सांस्थिति का वर्णन करने के लिए पर्याप्त हैं।
किसी भी सांस्थिति को एक अनुक्रमिक सांस्थिति के लिए संशोधित किया जा सकता है, जिसे का अनुक्रमिक परावर्तन कहा जाता है।
फ़्रेचेट-उरीसोहन रिक्त स्थान, T-अनुक्रमिक रिक्त स्थान, और की संबंधित अवधारणाएँ -अनुक्रमिक रिक्त स्थान को इस संदर्भ में भी परिभाषित किया जाता है कि किसी स्थान की सांस्थिति अनुक्रमों के साथ कैसे प्रभावित करती है, परंतु इसमें सूक्ष्म रूप से भिन्न गुण होते हैं।
एस. पी. फ्रैंकलिन ने अनुक्रमिक स्थान और N-अनुक्रमिक स्थान को प्रस्तुत किया था।.[1]
इतिहास
हालाँकि ऐसे गुणों को संतुष्ट करने वाले स्थानों का कई वर्षों तक अप्रत्यक्ष रूप से अध्ययन किया गया था, पहली औपचारिक परिभाषा 1965 में एस. प्रथम-गणनीय रिक्त स्थान|प्रथम-गणनीय रिक्त स्थान की जांच करना, जिसके लिए यह पहले से ही ज्ञात था कि अनुक्रम पर्याप्त थे। इसके बाद फ्रैंकलिन प्रथम-गणनीय स्थानों के आवश्यक गुणों का सार निकालकर आधुनिक परिभाषा पर पहुंचे।
प्रारंभिक परिभाषाएँ
होने देना एक समुच्चय हो और चलो में एक क्रम हो ; अर्थात्, तत्वों का एक परिवार , प्राकृतिक संख्याओं द्वारा अनुक्रमित परिवार। इस आलेख में, इसका मतलब है कि अनुक्रम में प्रत्येक तत्व का एक तत्व है और अगर तो फिर, यह एक नक्शा है किसी भी सूचकांक के लिए की पूँछ पे शुरुवात अनुक्रम है
अनुक्रमिक समापन/आंतरिक
होने देना एक सांस्थितिक स्पेस बनें और रहने दें एक उपसमुच्चय हो. समापन (सांस्थिति ) (रेस्पेक्ट आंतरिक (सांस्थिति ) )। में द्वारा निरूपित किया जाता है (सम्मान. ).
का क्रमिक समापन में समुच्चय है
का अनुक्रमिक आंतरिक भाग में समुच्चय है
अनुक्रमिक समापन और इंटीरियर सांस्थितिक क्लोजर और इंटीरियर के कई अच्छे गुणों को संतुष्ट करते हैं: सभी उपसमूहों के लिए <सड़क> <ली> और ;
Proof |
---|
Fix If then there exists with But by the definition of sequential interior, eventually is in contradicting Conversely, suppose ; then there exists a sequence with that is not eventually in By passing to the subsequence of elements not in we may assume that But then ▮
|
<ली> और ; <ली>; <ली>; और <ली>
अर्थात्, अनुक्रमिक समापन एक प्रीक्लोज़र ऑपरेटर है। सांस्थितिक क्लोजर के विपरीत, अनुक्रमिक क्लोजर नपुंसकता नहीं है: अंतिम रोकथाम सख्त हो सकती है। इस प्रकार अनुक्रमिक समापन एक (कुराटोव्स्की संवृत्त करने वाला ऑपरेटर ) क्लोजर ऑपरेटर नहीं है।
क्रमिक रूप से संवृत्त और विवृत्त समुच्चय
एक समुच्चय यदि क्रमिक रूप से संवृत्त है ; समान रूप से, सभी के लिए और ऐसा है कि हमारे पास यह होना चाहिए [note 1] एक समुच्चय इसे क्रमिक रूप से विवृत्त होने के रूप में परिभाषित किया गया है यदि इसका पूरक (समुच्चय सिद्धांत) क्रमिक रूप से संवृत्त है। समतुल्य शर्तों में शामिल हैं:
-
<ली> या
- सभी के लिए और ऐसा है कि अंततः में है (अर्थात, कुछ पूर्णांक मौजूद हैं ऐसे कि पूँछ ).
स्थापित करना एक बिंदु का अनुक्रमिक पड़ोस है यदि इसमें शामिल है इसके अनुक्रमिक आंतरिक भाग में; अनुक्रमिक पड़ोस को क्रमिक रूप से खोलने की आवश्यकता नहीं है (देखें)। § T- and N-sequential spaces नीचे)।
के एक उपसमुच्चय के लिए यह संभव है क्रमिक रूप से खुला होना लेकिन खुला नहीं होना। इसी प्रकार, यह संभव है कि क्रमिक रूप से संवृत्त उपसमुच्चय का अस्तित्व हो जो संवृत्त न हो।
अनुक्रमिक रिक्त स्थान और कोरफ्लेक्शन
जैसा कि ऊपर चर्चा की गई है, अनुक्रमिक समापन सामान्य रूप से निष्क्रिय नहीं है, और इसलिए सांस्थिति का समापन ऑपरेटर नहीं है। कोई व्यक्ति ट्रांसफिनिट पुनरावृत्ति के माध्यम से एक निष्क्रिय अनुक्रमिक समापन प्राप्त कर सकता है: एक उत्तराधिकारी क्रम के लिए परिभाषित करें (हमेशा की तरह)
अनुक्रमिक रिक्त स्थान
एक सांस्थितिक स्पेस अनुक्रमिक है यदि यह निम्नलिखित समकक्ष शर्तों में से किसी को संतुष्ट करता है:
-
<ली> इसका अपना अनुक्रमिक कोरफ्लेक्शन है।[4]
- प्रत्येक क्रमिक रूप से खुला उपसमुच्चय खुला है.
- प्रत्येक क्रमिक रूप से संवृत्त उपसमूह संवृत्त है.
- किसी भी उपसमुच्चय के लिए वह है not संवृत्त किया वहाँ कुछ मौजूद है[note 2] और एक क्रम जो कि एकत्रित हो जाता है [5]
- (सार्वभौमिक संपत्ति) प्रत्येक सांस्थितिक स्पेस के लिए नक्षा सतत कार्य (सांस्थिति ) है यदि और केवल यदि यह अनुक्रमिक निरंतरता (यदि) है तब ).[6] <ली> प्रथम-गणनीय स्थान का भागफल है। <ली> एक मीट्रिक स्थान का भागफल है।
ले कर और पहचान मानचित्र पर होना सार्वभौमिक संपत्ति में, यह इस प्रकार है कि अनुक्रमिक रिक्त स्थान के वर्ग में सटीक रूप से वे स्थान शामिल होते हैं जिनकी सांस्थितिक संरचना अभिसरण अनुक्रमों द्वारा निर्धारित होती है। यदि दो सांस्थिति अभिसरण अनुक्रमों पर सहमत हैं, तो उनके पास आवश्यक रूप से समान अनुक्रमिक कोरफ्लेक्शन होता है। इसके अलावा, से एक समारोह क्रमिक रूप से निरंतर है यदि और केवल यदि यह अनुक्रमिक कोरफ्लेक्शन पर निरंतर है (अर्थात्, जब पूर्व-निर्मित हो) ).
T- और N-अनुक्रमिक रिक्त स्थान
एT-अनुक्रमिक स्थान अनुक्रमिक क्रम 1 वाला एक सांस्थितिक स्थान है, जो निम्नलिखित में से किसी भी स्थिति के बराबर है:[1]
- प्रत्येक उपसमुच्चय का अनुक्रमिक समापन (या आंतरिक भाग)। क्रमिक रूप से संवृत्त है (resp. open). <ली> या नपुंसक हैं. <वह> या
- कोई अनुक्रमिक पड़ोस अनुक्रमिक रूप से विवृत्त समुच्चय में सिकुड़ा जा सकता है जिसमें शामिल है ; औपचारिक रूप से, क्रमिक रूप से विवृत्त पड़ोस अनुक्रमिक पड़ोस के लिए पड़ोस का आधार हैं।
- किसी के लिए और कोई अनुक्रमिक पड़ोस का वहां एक अनुक्रमिक पड़ोस मौजूद है का ऐसा कि, हर किसी के लिए समुच्चय का अनुक्रमिक पड़ोस है
होने के नाते T-अनुक्रमिक स्थान अनुक्रमिक स्थान होने के साथ अतुलनीय है; ऐसे अनुक्रमिक स्थान हैं जो नहीं हैं T-अनुक्रमिक और इसके विपरीत। हालाँकि, एक सांस्थितिक स्पेस ए कहा जाता है-अनुक्रमिक (या पड़ोस-अनुक्रमिक) यदि यह अनुक्रमिक और दोनों है T-अनुक्रमिक. एक समान शर्त यह है कि प्रत्येक अनुक्रमिक पड़ोस में एक खुला (शास्त्रीय) पड़ोस होता है।[1] प्रत्येक प्रथम-गणनीय स्थान (और इस प्रकार प्रत्येक मापनीय स्थान) है -क्रमिक. वहाँ सांस्थितिक वेक्टर रिक्त स्थान मौजूद हैं जो अनुक्रमिक हैं लेकिन not -अनुक्रमिक (और इस प्रकार नहीं T-अनुक्रमिक).[1]
फ़्रेचेट-उरीसोहन रिक्त स्थान
एक सांस्थितिक स्पेस इसे फ़्रेचेट-उरीसोहन स्थान कहा जाता है|फ़्रेचेट-उरीसोहन यदि यह निम्नलिखित समकक्ष शर्तों में से किसी को संतुष्ट करता है:
-
<ली> वंशानुगत रूप से अनुक्रमिक है; अर्थात्, प्रत्येक सांस्थितिक उपस्थान अनुक्रमिक है।
- प्रत्येक उपसमुच्चय के लिए
- किसी भी उपसमुच्चय के लिए वह संवृत्त नहीं है और हर इसमें एक क्रम मौजूद है जो कि एकत्रित हो जाता है
फ़्रेचेट-उरीसोहन रिक्त स्थान को कभी-कभी फ़्रेचेट भी कहा जाता है, लेकिन कार्यात्मक विश्लेषण में न तो फ़्रेचेट रिक्त स्थान और न ही टी1 स्पेस|टी के साथ भ्रमित होना चाहिए।1 स्थिति।
उदाहरण और पर्याप्त शर्तें
प्रत्येक सीडब्ल्यू-कॉम्प्लेक्स अनुक्रमिक है, क्योंकि इसे मीट्रिक स्थान के भागफल के रूप में माना जा सकता है।
ज़ारिस्की सांस्थिति के साथ एक कम्यूटेटिव नोथेरियन अंगूठी का प्राइम स्पेक्ट्रम अनुक्रमिक है।
असली लाइन लो और कोटिएंट स्पेस (सांस्थिति ) समुच्चय एक बिंदु तक पूर्णांकों का. मीट्रिक स्थान के भागफल के रूप में, परिणाम अनुक्रमिक है, लेकिन यह पहले गणनीय नहीं है।
प्रत्येक प्रथम-गणनीय स्थान फ़्रेचेट-उरीसोहन है और प्रत्येक फ़्रेचेट-उरीसोहन स्थान अनुक्रमिक है। इस प्रकार प्रत्येक मेट्रिज़ेबल या स्यूडोमेट्रिज़ेबल स्थान स्पेस - विशेष रूप से, प्रत्येक सेकंड-गणनीय स्पेस, मीट्रिक स्पेस, या असतत स्पेस - अनुक्रमिक है।
होने देना फ़्रेचेट-उरीसोहन स्थान से मानचित्रों का एक समुच्चय बनें|फ़्रेचेट-उरीसोहन स्थान से लेकर फिर अंतिम सांस्थिति वह प्रेरित करता है अनुक्रमिक है.
हॉसडॉर्फ़ सांस्थितिक वेक्टर स्पेस अनुक्रमिक है यदि और केवल तभी यदि समान अभिसरण अनुक्रमों के साथ कोई सख्ती से बेहतर सांस्थिति मौजूद नहीं है।[7][8]
===वे स्थान जो अनुक्रमिक हैं लेकिन फ़्रेचेट-उरीसोहन=== नहीं हैं
श्वार्ट्ज स्थान और स्थान सुचारू कार्य, जैसा कि वितरण (गणित)गणित) पर लेख में चर्चा की गई है, दोनों व्यापक रूप से उपयोग किए जाने वाले अनुक्रमिक स्थान हैं, लेकिन फ़्रेचेट-उरीसोहन स्पेस नहीं हैं|फ़्रेचेट-उरीसोहन। वास्तव में इन दोनों स्थानों के मजबूत दोहरे स्थान फ़्रेचेट-उरीसोहन स्थान नहीं हैं|फ़्रेचेट-उरीसोहन भी नहीं हैं।[9][10]
अधिक आम तौर पर, प्रत्येक अनंत-आयामी मॉन्टेल स्पेस डीएफ-स्पेस अनुक्रमिक है, लेकिन फ़्रेचेट-उरीसोहन स्पेस नहीं|फ़्रेचेट-उरीसोहन।
एरेन्स का स्थान अनुक्रमिक है, लेकिन फ़्रेचेट-उरीसोहन नहीं।[11][12]
गैर-उदाहरण (रिक्त स्थान जो अनुक्रमिक नहीं हैं)
सबसे सरल स्थान जो अनुक्रमिक नहीं है वह बेशुमार समुच्चय पर सहगणनीय सांस्थिति है। ऐसे स्थान में प्रत्येक अभिसरण अनुक्रम अंततः स्थिर होता है; इसलिए प्रत्येक समुच्चय क्रमिक रूप से खुला है। लेकिन सहगणनीय सांस्थिति पृथक स्थान नहीं है। (कोई सांस्थिति को क्रमिक रूप से असतत कह सकता है।)[13] होने देना वितरण को निरूपित करें (गणित) वितरण (गणित)|-अपनी विहित सांस्थिति और लेट के साथ सुचारू परीक्षण कार्य करता है वितरण के स्थान, मजबूत दोहरे स्थान को निरूपित करें ; न तो अनुक्रमिक हैं (न ही स्थान सुनो भी)।[9][10] दूसरी ओर, दोनों और मोंटेल अंतरिक्ष स्थान हैं[14] और, किसी भी मॉन्टेल स्पेस के निरंतर दोहरे स्थान में, निरंतर रैखिक कार्यात्मकताओं का एक क्रम मजबूत दोहरे स्थान में परिवर्तित होता है यदि और केवल यदि यह कमजोर कमज़ोर* सांस्थिति में परिवर्तित होता है (अर्थात, बिंदुवार परिवर्तित होता है)।[9][15]
परिणाम
प्रत्येक अनुक्रमिक स्थान में गणनीय जकड़न होती है और यह कॉम्पैक्ट रूप से उत्पन्न स्थान होता है।
अगर समुच्चय के बाद दो हॉसडॉर्फ अनुक्रमिक स्थानों के बीच एक निरंतर खुला मानचित्र है अद्वितीय प्रीइमेज वाले बिंदुओं को संवृत्त कर दिया गया है। (निरंतरता से, इसकी पूर्वछवि भी वैसी ही है जिस पर सभी बिंदुओं का समुच्चय इंजेक्शन है.)
अगर हॉसडॉर्फ़ अनुक्रमिक स्थान पर एक विशेषण मानचित्र (आवश्यक रूप से निरंतर नहीं) है और सांस्थिति के लिए आधार (सांस्थिति )। तब यदि और केवल यदि, प्रत्येक के लिए एक खुला मानचित्र है बुनियादी पड़ोस का और क्रम में का एक क्रम है वह अंततः अंदर है
श्रेणीबद्ध गुण
सभी अनुक्रमिक रिक्त स्थान की पूर्ण उपश्रेणी Seq सांस्थितिक रिक्त स्थान की श्रेणी (गणित) शीर्ष में निम्नलिखित परिचालनों के तहत संवृत्त है:
- Quotients
- Continuous closed or open images
- Sums
- Inductive limits[disputed ]
- Open and closed subspaces
Seq श्रेणी है not शीर्ष में निम्नलिखित परिचालनों के अंतर्गत संवृत्त किया गया:
- Continuous images
- Subspaces
- Finite products
चूँकि वे सांस्थितिक योगों और भागफलों के अंतर्गत संवृत्त होते हैं, अनुक्रमिक रिक्त स्थान सांस्थितिक रिक्त स्थान की श्रेणी का एक कोरफ्लेक्टिव उपश्रेणी बनाते हैं। वास्तव में, वे मेट्रिज़ेबल रिक्त स्थान (अर्थात्, योग और भागफल के अंतर्गत संवृत्त सांस्थितिक रिक्त स्थान का सबसे छोटा वर्ग और मेट्रिज़ेबल रिक्त स्थान युक्त) के कोरफ्लेक्टिव पतवार हैं।
उपश्रेणी Seq अपने स्वयं के उत्पाद (शीर्ष के नहीं) के संबंध में एक कार्टेशियन संवृत्त श्रेणी है। घातीय वस्तुएं (अभिसरण अनुक्रम)-ओपन सांस्थिति से सुसज्जित हैं।
पी.आई. बूथ और ए. टिलोटसन ने दिखाया है कि Seq टॉप की सबसे छोटी कार्टेशियन संवृत्त उपश्रेणी है जिसमें सभी मीट्रिक स्पेस, सीडब्ल्यू-कॉम्प्लेक्स और अलग-अलग मैनिफोल्ड्स के अंतर्निहित सांस्थितिक स्पेस शामिल हैं और यह कोलिमिट्स, भागफल और अन्य कुछ उचित पहचानों के तहत संवृत्त है जो नॉर्मन स्टीनरोड को सुविधाजनक बताया गया।[16].
प्रत्येक अनुक्रमिक स्थान कॉम्पैक्ट रूप से उत्पन्न स्थान है, और Seq में परिमित उत्पाद कॉम्पैक्ट रूप से उत्पन्न स्थानों के साथ मेल खाते हैं, क्योंकि कॉम्पैक्ट रूप से उत्पन्न स्थानों की श्रेणी में उत्पाद मीट्रिक रिक्त स्थान के भागफल को संरक्षित करते हैं।
यह भी देखें
- Axiom of countability
- Closed graph property – Graph of a map closed in the product space
- First-countable space – Topological space where each point has a countable neighbourhood basis
- Fréchet–Urysohn space
- Sequence covering map
टिप्पणियाँ
- ↑ You cannot simultaneously apply this "test" to infinitely many subsets (for example, you can not use something akin to the axiom of choice). Not all sequential spaces are Fréchet-Urysohn, but only in those spaces can the closure of a set can be determined without it ever being necessary to consider any set other than
- ↑ A Fréchet–Urysohn space is defined by the analogous condition for all such :
For any subset that is not closed in for any there exists a sequence in that converges to
उद्धरण
- ↑ 1.0 1.1 1.2 1.3 Snipes, Ray (1972). "टी-अनुक्रमिक टोपोलॉजिकल रिक्त स्थान" (PDF). Fundamenta Mathematicae (in English). 77 (2): 95–98. doi:10.4064/fm-77-2-95-98. ISSN 0016-2736.
- ↑ *Arhangel'skiĭ, A. V.; Franklin, S. P. (1968). "Ordinal invariants for topological spaces". Michigan Math. J. 15 (3): 313–320. doi:10.1307/mmj/1029000034.
- ↑ Baron, S. (October 1968). "अनुक्रमिक स्थानों की कोरफ्लेक्टिव उपश्रेणी". Canadian Mathematical Bulletin (in English). 11 (4): 603–604. doi:10.4153/CMB-1968-074-4. ISSN 0008-4395. S2CID 124685527.
- ↑ "Topology of sequentially open sets is sequential?". Mathematics Stack Exchange.
- ↑ Arkhangel'skii, A.V. and Pontryagin L.S., General Topology I, definition 9 p.12
- ↑ Baron, S.; Leader, Solomon (1966). "Solution to Problem #5299". The American Mathematical Monthly. 73 (6): 677–678. doi:10.2307/2314834. ISSN 0002-9890. JSTOR 2314834.
- ↑ Wilansky 2013, p. 224.
- ↑ Dudley, R. M., On sequential convergence - Transactions of the American Mathematical Society Vol 112, 1964, pp. 483-507
- ↑ 9.0 9.1 9.2 Gabrielyan, Saak (25 Feb 2017). "सख्त $(LF)$-स्पेस के टोपोलॉजिकल गुण और मोंटेल सख्त $(LF)$-स्पेस के मजबूत दोहरे". arXiv:1702.07867v1 [math.FA].
- ↑ 10.0 10.1 T. Shirai, Sur les Topologies des Espaces de L. Schwartz, Proc. Japan Acad. 35 (1959), 31-36.
- ↑ Engelking 1989, Example 1.6.19
- ↑ Ma, Dan (19 August 2010). "एरेन्स स्थान के बारे में एक नोट". Retrieved 1 August 2013.
- ↑ math; Sleziak, Martin (Dec 6, 2016). "समान अभिसरण अनुक्रमों के साथ विभिन्न टोपोलॉजी का उदाहरण". Mathematics Stack Exchange (in English). StackOverflow. Retrieved 2022-06-27.
- ↑ "टोपोलॉजिकल वेक्टर स्पेस". Encyclopedia of Mathematics. Encyclopedia of Mathematics. Retrieved September 6, 2020.
It is a Montel space, hence paracompact, and so normal.
- ↑ Trèves 2006, pp. 351–359.
- ↑ Steenrod 1967
संदर्भ
- Arkhangel'skii, A.V. and Pontryagin, L.S., General Topology I, Springer-Verlag, New York (1990) ISBN 3-540-18178-4.
- Arkhangel'skii, A V (1966). "Mappings and spaces" (PDF). Russian Mathematical Surveys. 21 (4): 115–162. Bibcode:1966RuMaS..21..115A. doi:10.1070/RM1966v021n04ABEH004169. ISSN 0036-0279. S2CID 250900871. Retrieved 10 February 2021.
- Akiz, Hürmet Fulya; Koçak, Lokman (2019). "Sequentially Hausdorff and full sequentially Hausdorff spaces". Communications Faculty of Science University of Ankara Series A1Mathematics and Statistics. 68 (2): 1724–1732. doi:10.31801/cfsuasmas.424418. ISSN 1303-5991. Retrieved 10 February 2021.
- Boone, James (1973). "A note on mesocompact and sequentially mesocompact spaces". Pacific Journal of Mathematics. 44 (1): 69–74. doi:10.2140/pjm.1973.44.69. ISSN 0030-8730.
- Booth, Peter; Tillotson, J. (1980). "Monoidal closed, Cartesian closed and convenient categories of topological spaces". Pacific Journal of Mathematics. 88 (1): 35–53. doi:10.2140/pjm.1980.88.35. ISSN 0030-8730. Retrieved 10 February 2021.
- Engelking, R., General Topology, Heldermann, Berlin (1989). Revised and completed edition.
- Foged, L. (1985). "A characterization of closed images of metric spaces". Proceedings of the American Mathematical Society. 95 (3): 487–490. doi:10.1090/S0002-9939-1985-0806093-3. ISSN 0002-9939.
- Franklin, S. (1965). "Spaces in which sequences suffice" (PDF). Fundamenta Mathematicae. 57 (1): 107–115. doi:10.4064/fm-57-1-107-115. ISSN 0016-2736.
- Franklin, S. (1967). "Spaces in which sequences suffice II" (PDF). Fundamenta Mathematicae. 61 (1): 51–56. doi:10.4064/fm-61-1-51-56. ISSN 0016-2736. Retrieved 10 February 2021.
- Goreham, Anthony, "Sequential Convergence in Topological Spaces", (2016)
- Gruenhage, Gary; Michael, Ernest; Tanaka, Yoshio (1984). "Spaces determined by point-countable covers". Pacific Journal of Mathematics. 113 (2): 303–332. doi:10.2140/pjm.1984.113.303. ISSN 0030-8730.
- Michael, E.A. (1972). "A quintuple quotient quest". General Topology and Its Applications. 2 (2): 91–138. doi:10.1016/0016-660X(72)90040-2. ISSN 0016-660X.
- Shou, Lin; Chuan, Liu; Mumin, Dai (1997). "Images on locally separable metric spaces". Acta Mathematica Sinica. 13 (1): 1–8. doi:10.1007/BF02560519. ISSN 1439-8516. S2CID 122383748.
- Steenrod, N. E. (1967). "A convenient category of topological spaces". The Michigan Mathematical Journal. 14 (2): 133–152. doi:10.1307/mmj/1028999711. Retrieved 10 February 2021.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.