अनुक्रमिक स्थान: Difference between revisions

From Vigyanwiki
No edit summary
Line 21: Line 21:
{{See also|Filters in topology|Net (mathematics)}}
{{See also|Filters in topology|Net (mathematics)}}


यदि <math>X</math> एक सेट हो और <math>x_{\bull} = \left(x_i\right){i=1}^{\infty}</math> <math>X</math> में एक सरणी हो, अर्थात्, एक <math>X</math> के तत्वों का परिवार हो, [[प्राक्तिन संख्या|प्राक्तिन संख्याओं]] द्वारा अनुक्रमित। इस लेख में <math>x{\bull} \subseteq S</math> यह अर्थ होता है कि सभी सरणी <math>x_{\bull}</math> के तत्व <math>S</math> के तत्व हैं, और अगर <math>f : X \to Y</math> एक अवलोकन हो, तो <math>f\left(x_{\bull}\right) = \left(f\left(x_i\right)\right){i=1}^{\infty}</math> होता है। किसी भी प्राक्तिन <math>i</math> के लिए, <math>i</math> से शुरू होने वाली सरणी को <math>x{\bull}</math> की पूर्ववर्ती कहते हैं, जोकि सरणी <math display="block">x_{\geq i} = (x_i, x_{i+1}, x_{i+2}, \ldots)\text{.}</math> होती है। सरणी <math>x_{\bull}</math> सभी प्रायः <math>S</math> में होती है यदि कोई पूर्ववर्ती <math>x_{\bull}</math> <math>x_{\geq i} \subseteq S</math> को पूरा करती है।
यदि <math>X</math> एक समुच्चय हो और <math>x_{\bull} = \left(x_i\right){i=1}^{\infty}</math> <math>X</math> में एक सरणी हो, अर्थात्, एक <math>X</math> के तत्वों का परिवार हो, [[प्राक्तिन संख्या|प्राक्तिन संख्याओं]] द्वारा अनुक्रमित। इस लेख में <math>x{\bull} \subseteq S</math> यह अर्थ होता है कि सभी सरणी <math>x_{\bull}</math> के तत्व <math>S</math> के तत्व हैं, और यदि  <math>f : X \to Y</math> एक अवलोकन हो, तो <math>f\left(x_{\bull}\right) = \left(f\left(x_i\right)\right){i=1}^{\infty}</math> होता है। किसी भी प्राक्तिन <math>i</math> के लिए, <math>i</math> से शुरू होने वाली सरणी को <math>x{\bull}</math> की पूर्ववर्ती कहते हैं, जोकि सरणी <math display="block">x_{\geq i} = (x_i, x_{i+1}, x_{i+2}, \ldots)\text{.}</math> होती है। सरणी <math>x_{\bull}</math> सभी प्रायः <math>S</math> में होती है यदि कोई पूर्ववर्ती <math>x_{\bull}</math> <math>x_{\geq i} \subseteq S</math> को पूरा करती है।
यदि <math>X</math> पर <math>\tau</math> एक [[टोपोलॉजी स्थान|टोपोलॉजी]] हो और <math>x_{\bull}</math> उसमें एक सरणी हो, तो सरणी <math>x_{\bull}</math> एक बिंदु <math>x \in X</math> की ओर [[Convergent sequence|संघुश्य]] होती है, जिसे <math>x_{\bull}\overset{\tau}{\to} x</math> (जब संदर्भ प्राप्त हो तो <math>x_\bull\to x</math> कहते हैं), यदि हर बार <math>U\in\tau</math> का पड़ोस <math>x</math> के लिए होता है, प्रायः <math>x_{\bull}</math> <math>U</math> में होती है। इसके बाद <math>x</math> को <math>x_{\bull}</math> का सीमा बिंदु कहा जाता है।
यदि <math>X</math> पर <math>\tau</math> एक [[टोपोलॉजी स्थान|टोपोलॉजी]] हो और <math>x_{\bull}</math> उसमें एक सरणी हो, तो सरणी <math>x_{\bull}</math> एक बिंदु <math>x \in X</math> की ओर [[Convergent sequence|संघुश्य]] होती है, जिसे <math>x_{\bull}\overset{\tau}{\to} x</math> (जब संदर्भ प्राप्त हो तो <math>x_\bull\to x</math> कहते हैं), यदि हर बार <math>U\in\tau</math> का पड़ोस <math>x</math> के लिए होता है, प्रायः <math>x_{\bull}</math> <math>U</math> में होती है। इसके बाद <math>x</math> को <math>x_{\bull}</math> का सीमा बिंदु कहा जाता है।
यदि <math>f : X \to Y</math> टोपोलॉजिक स्थानों के बीच एक फ़ंक्शन हो तो वह [[sequentially continuous|अनुक्रमिक रूप से स्थिर]] है अगर <math>x_\bull\to x</math> सत्य हो तो <math>f(x_\bull)\to f(x)</math> होता है।
यदि <math>f : X \to Y</math> टोपोलॉजिक स्थानों के बीच एक फ़ंक्शन हो तो वह [[sequentially continuous|अनुक्रमिक रूप से स्थिर]] है यदि  <math>x_\bull\to x</math> सत्य हो तो <math>f(x_\bull)\to f(x)</math> होता है।


[[Category:All accuracy disputes]]
[[Category:All accuracy disputes]]
Line 39: Line 39:
यदि <math>(X, \tau)</math> एक  संस्थानिक स्थान हो और <math>S \subseteq X</math> एक उपसमूह हो, तो <math>(X, \tau)</math> में <math>S</math> की  [[घेराव (टोपोलॉजी)|संस्थानिक]] संवृत्त(इंगित किया जाता है: <math>\operatorname{cl}_X S</math>) और  [[आंतर (टोपोलॉजी)|संस्थानिक आंतर]] (इंगित किया जाता है: <math>\operatorname{int}_X S</math>) इस प्रकार परिभाषित होते हैं:.
यदि <math>(X, \tau)</math> एक  संस्थानिक स्थान हो और <math>S \subseteq X</math> एक उपसमूह हो, तो <math>(X, \tau)</math> में <math>S</math> की  [[घेराव (टोपोलॉजी)|संस्थानिक]] संवृत्त(इंगित किया जाता है: <math>\operatorname{cl}_X S</math>) और  [[आंतर (टोपोलॉजी)|संस्थानिक आंतर]] (इंगित किया जाता है: <math>\operatorname{int}_X S</math>) इस प्रकार परिभाषित होते हैं:.


क्रमिक समापन <math>S</math> in <math>(X, \tau)</math> का समुच्चय है<math display="block">\operatorname{scl}(S) = \left\{x : \text{there exists a sequence }s_{\bull} \subseteq S\text{ such that }s_{\bull} \to x \right\}</math>आवश्यकता के अनुसार स्पष्टता के लिए, इस सेट को <math>\operatorname{scl}X(S)</math> या <math>\operatorname{scl}{(X,\tau)}(S)</math> भी लिखा जा सकता है।:
क्रमिक समापन <math>S</math> in <math>(X, \tau)</math> का समुच्चय है<math display="block">\operatorname{scl}(S) = \left\{x : \text{there exists a sequence }s_{\bull} \subseteq S\text{ such that }s_{\bull} \to x \right\}</math>आवश्यकता के अनुसार स्पष्टता के लिए, इस समुच्चय को <math>\operatorname{scl}X(S)</math> या <math>\operatorname{scl}{(X,\tau)}(S)</math> भी लिखा जा सकता है।:


यह एक नकारात्मक समुच्चय है जो संयोजन संगणक के रूप में प्राप्त होता है, यह '''अनुक्रमिक संवृत्तसंचालक'''  को निर्धारित करता है। <math>X</math> की पावर सेट पर यह एक नकारात्मक अभिकल्पना है। आवश्यकता के अनुसार स्पष्टता के लिए, इस सेट को यहां भी लिखा जा सकता है <math>\operatorname{scl}{X}(S)</math> या <math>\operatorname{scl}{(X,\tau)}(S)</math>। हमेशा सत्य होता है कि <math>\operatorname{scl}_X S \subseteq \operatorname{cl}_X S,</math> लेकिन उल्टा हो सकता है।
यह एक नकारात्मक समुच्चय है जो संयोजन संगणक के रूप में प्राप्त होता है, यह '''अनुक्रमिक संवृत्तसंचालक'''  को निर्धारित करता है। <math>X</math> की पावर समुच्चय पर यह एक नकारात्मक अभिकल्पना है। आवश्यकता के अनुसार स्पष्टता के लिए, इस समुच्चय को यहां भी लिखा जा सकता है <math>\operatorname{scl}{X}(S)</math> या <math>\operatorname{scl}{(X,\tau)}(S)</math>। हमेशा सत्य होता है कि <math>\operatorname{scl}_X S \subseteq \operatorname{cl}_X S,</math> लेकिन उल्टा हो सकता है।


का अनुक्रमिक आंतरिक भाग <math>(X, \tau)</math> में <math>S</math> समुच्चय है  जिसे निम्न रूप में परिभाषित किया जाता है:
का अनुक्रमिक आंतरिक भाग <math>(X, \tau)</math> में <math>S</math> समुच्चय है  जिसे निम्न रूप में परिभाषित किया जाता है:
Line 65: Line 65:


===क्रमिक रूप से संवृत्त और विवृत्त समुच्चय===
===क्रमिक रूप से संवृत्त और विवृत्त समुच्चय===
एक सेट <math>S</math> को क्रमशः बंद कहा जाता है अगर <math>S=\operatorname{scl}(S)</math> हो; समकक्षता के अनुसार, हर <math>s_{\bull}\subseteq S</math> और <math>x \in X</math> के लिए जहां <math>s_{\bull}\overset{\tau}{\to}x</math> हो, हमें <math>x\in S</math> होना चाहिए।<ref group="note">तुलनात्मकता के अनुसार आप असंख्य बहुभुजों पर एक साथ इस "परीक्षण" का लागू नहीं कर सकते हैं (उदाहरण के लिए, आप कुछ भी चुनने के [[चयन का अभियान]] की तरह कुछ नहीं कर सकते हैं)। सभी क्रमशः बंद स्थान वाले अवकलन स्थान [[Fréchet-Urysohn space|Fréchet-Urysohn]] नहीं होते हैं, लेकिन केवल उन स्थानों में हम किसी सेट <math>S</math> के बंद में किसी सेट को देखने की आवश्यकता होती है।</ref>
एक समुच्चय <math>S</math> को क्रमशः संवृत्त कहा जाता है यदि  <math>S=\operatorname{scl}(S)</math> हो; समकक्षता के अनुसार, हर <math>s_{\bull}\subseteq S</math> और <math>x \in X</math> के लिए जहां <math>s_{\bull}\overset{\tau}{\to}x</math> हो, तो  <math>x\in S</math> होना चाहिए।<ref group="note">तुलनात्मकता के अनुसार आप असंख्य बहुभुजों पर एक साथ इस "परीक्षण" का लागू नहीं कर सकते हैं (उदाहरण के लिए, आप कुछ भी चुनने के [[चयन का अभियान]] की तरह कुछ नहीं कर सकते हैं)। सभी क्रमशः बंद स्थान वाले अवकलन स्थान [[Fréchet-Urysohn space|Fréchet-Urysohn]] नहीं होते हैं, लेकिन केवल उन स्थानों में हम किसी सेट <math>S</math> के बंद में किसी सेट को देखने की आवश्यकता होती है।</ref>


<ul>
<ul>
एक सेट <math>S</math> को क्रमशः खुला कहा जाता है अगर उसका [[Complement (set theory)|complement]] क्रमशः बंद होता है। समकक्षताएँ निम्नलिखित हैं:
एक समुच्चय <math>S</math> को क्रमशः विवृत्त कहा जाता है यदि  उसका [[Complement (set theory)|समपूरक]] क्रमशः संवृत्त होता है। समकक्षताएँ निम्नलिखित हैं:
</ul>
</ul>


एक सेट <math>S</math> को निम्न शर्तों के अनुसार क्रमशः खुला कहा जाता है:
एक समुच्चय <math>S</math> को निम्न शर्तों के अनुसार क्रमशः विवृत्तकहा जाता है:


<li><math>S = \operatorname{sint}(S)</math></li>
<math>S = \operatorname{sint}(S)</math><li>सभी <math>x_{\bull}\subseteq X</math> और <math>s \in S</math> के लिए जहां <math>x_{\bull}\overset{\tau}{\to}s</math> होता है, अंततः <math>x_{\bull}</math> <math>S</math> में होता है (यानी, कुछ संख्या <math>i</math> ऐसी होती है जिस पर पूरा <math>x_{\geq i} \subseteq S</math> होता है।  
<li>सभी <math>x_{\bull}\subseteq X</math> और <math>s \in S</math> के लिए जहां <math>x_{\bull}\overset{\tau}{\to}s</math> होता है, अंततः <math>x_{\bull}</math> <math>S</math> में होता है (यानी, कुछ संख्या <math>i</math> ऐसी होती है जिस पर पूरा <math>x_{\geq i} \subseteq S</math> होता है।)
<li>एक समुच्चय <math>S</math> को बिंदु <math>x \in X</math> का क्रमशः प्रतिवैस कहा जाता है यदि  यह अपने क्रमशः आंतरिकता में <math>x</math> को सम्मिलित करता है; क्रमशः प्रतिवैसो को क्रमशः विवृत्त होने की आवश्यकता नहीं होती एक महत्वपूर्ण बात है कि <math>X</math> के एक उपसमुच्चय क्रमशः विवृत्त होने के बाद भी वह विवृत्त नहीं हो सकता। उसी तरह, एक क्रमशः संवृत्त उपसमुच्चय संवृत्त होने के बाद भी नहीं हो सकता है
एक सेट <math>S</math> को बिंदु <math>x \in X</math> का '''क्रमशः पड़ोस''' कहा जाता है अगर यह अपने क्रमशः आंतरिकता में <math>x</math> को सम्मिलित करता है; क्रमशः पड़ोसों को ''क्रमशः खुला'' होने की आवश्यकता नहीं होती (नीचे {{Slink||T- and N-sequential spaces}} देखें)।
 
 
एक महत्वपूर्ण बात है कि <math>X</math> के एक उपसेट क्रमशः खुला होने के बावजूद वह खुला नहीं हो सकता। उसी तरह, एक क्रमशः बंद उपसेट बंद होने के बावजूद नहीं हो सकता है।
 
[[Category:All accuracy disputes]]
[[Category:Articles with disputed statements from March 2019]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Created On 07/07/2023]]
[[Category:Harv and Sfn no-target errors]]
[[Category:Machine Translated Page]]
[[Category:Pages with math errors]]
[[Category:Pages with math render errors]]
[[Category:Pages with script errors]]


==अनुक्रमिक रिक्त स्थान और कोरफ्लेक्शन==
==अनुक्रमिक रिक्त स्थान और कोरफ्लेक्शन==
जैसा कि ऊपर चर्चा की गई है, अनुक्रमिक समापन सामान्य रूप से निष्क्रिय नहीं है, और इसलिए सांस्थिति  का समापन संचालक  नहीं है। कोई व्यक्ति ट्रांसफिनिट पुनरावृत्ति के माध्यम से एक निष्क्रिय अनुक्रमिक समापन प्राप्त कर सकता है: एक उत्तराधिकारी क्रम के लिए <math>\alpha+1,</math> परिभाषित करें (हमेशा की तरह)<math display="block">(\operatorname{scl})^{\alpha+1}(S)=\operatorname{scl}((\operatorname{scl})^\alpha(S))</math>और, एक [[सीमा क्रमसूचक]] के लिए <math>\alpha,</math> परिभाषित करना<math display="block">(\operatorname{scl})^\alpha(S)=\bigcup_{\beta<\alpha}{(\operatorname{scl})^\beta(S)}\text{.}</math>यह प्रक्रिया समुच्चयों का क्रमिक-अनुक्रमित बढ़ता क्रम देती है; जैसा कि यह पता चला है, वह अनुक्रम हमेशा सूचकांक द्वारा स्थिर होता है <math>\omega_1</math> ([[पहला बेशुमार क्रमसूचक]])। इसके विपरीत, का अनुक्रमिक क्रम <math>X</math> किसी भी विकल्प के लिए न्यूनतम क्रमसूचक है <math>S,</math> उपरोक्त क्रम स्थिर हो जाएगा.<ref>*{{cite journal |last1=Arhangel'skiĭ |first1=A. V. |last2=Franklin |first2=S. P. |year=1968 |title=Ordinal invariants for topological spaces. |journal=Michigan Math. J. |volume=15 |issue=3 |pages=313–320 |doi=10.1307/mmj/1029000034 |doi-access=free}}</ref>
जैसा कि ऊपर चर्चा की गई है, अनुक्रमिक समापन सामान्य रूप से निष्क्रिय नहीं है, और इसलिए सांस्थिति  का समापन संचालक  नहीं है। कोई व्यक्ति ट्रांसफिनिट पुनरावृत्ति के माध्यम से एक निष्क्रिय अनुक्रमिक समापन प्राप्त कर सकता है: एक उत्तराधिकारी क्रम के लिए <math>\alpha+1,</math> परिभाषित करें (हमेशा की तरह)<math display="block">(\operatorname{scl})^{\alpha+1}(S)=\operatorname{scl}((\operatorname{scl})^\alpha(S))</math>और, एक [[सीमा क्रमसूचक]] के लिए <math>\alpha,</math> परिभाषित करना<math display="block">(\operatorname{scl})^\alpha(S)=\bigcup_{\beta<\alpha}{(\operatorname{scl})^\beta(S)}\text{.}</math>यह प्रक्रिया समुच्चयों का क्रमिक-अनुक्रमित बढ़ता क्रम देती है; जैसा कि यह पता चला है, वह अनुक्रम हमेशा सूचकांक द्वारा स्थिर होता है <math>\omega_1</math> ([[पहला बेशुमार क्रमसूचक]])। इसके विपरीत, का अनुक्रमिक क्रम <math>X</math> किसी भी विकल्प के लिए न्यूनतम क्रमसूचक है <math>S,</math> उपरोक्त क्रम स्थिर हो जाएगा.<ref>*{{cite journal |last1=Arhangel'skiĭ |first1=A. V. |last2=Franklin |first2=S. P. |year=1968 |title=Ordinal invariants for topological spaces. |journal=Michigan Math. J. |volume=15 |issue=3 |pages=313–320 |doi=10.1307/mmj/1029000034 |doi-access=free}}</ref>
का अनंत अनुक्रमिक समापन <math>S</math> उपरोक्त अनुक्रम में टर्मिनल समुच्चय है: <math>(\operatorname{scl})^{\omega_1}(S).</math> परिचालक <math>(\operatorname{scl})^{\omega_1}</math> निष्क्रिय है और इस प्रकार एक संवृत्त संचालक  है। विशेष रूप से, यह एक सांस्थिति  , अनुक्रमिक कोरफ्लेक्शन को परिभाषित करता है। अनुक्रमिक कोरफ्लेक्शन में, प्रत्येक क्रमिक रूप से संवृत्त समुच्चय संवृत्त होता है (और प्रत्येक क्रमिक रूप से खुला समुच्चय खुला होता है)।<ref>{{Cite journal |last=Baron |first=S. |date=October 1968 |title=अनुक्रमिक स्थानों की कोरफ्लेक्टिव उपश्रेणी|url=https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/coreflective-subcategory-of-sequential-spaces/6902D4BA6B5D196EA1DEB3C1A4B71F57# |journal=Canadian Mathematical Bulletin |language=en |volume=11 |issue=4 |pages=603–604 |doi=10.4153/CMB-1968-074-4 |s2cid=124685527 |issn=0008-4395}}</ref>  
का अनंत अनुक्रमिक समापन <math>S</math> उपरोक्त अनुक्रम में टर्मिनल समुच्चय है: <math>(\operatorname{scl})^{\omega_1}(S).</math> परिचालक <math>(\operatorname{scl})^{\omega_1}</math> निष्क्रिय है और इस प्रकार एक संवृत्त संचालक  है। विशेष रूप से, यह एक सांस्थिति  , अनुक्रमिक कोरफ्लेक्शन को परिभाषित करता है। अनुक्रमिक कोरफ्लेक्शन में, प्रत्येक क्रमिक रूप से संवृत्त समुच्चय संवृत्त होता है (और प्रत्येक क्रमिक रूप से विवृत्तसमुच्चय विवृत्तहोता है)।<ref>{{Cite journal |last=Baron |first=S. |date=October 1968 |title=अनुक्रमिक स्थानों की कोरफ्लेक्टिव उपश्रेणी|url=https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/coreflective-subcategory-of-sequential-spaces/6902D4BA6B5D196EA1DEB3C1A4B71F57# |journal=Canadian Mathematical Bulletin |language=en |volume=11 |issue=4 |pages=603–604 |doi=10.4153/CMB-1968-074-4 |s2cid=124685527 |issn=0008-4395}}</ref>  


=== अनुक्रमिक रिक्त स्थान ===
=== अनुक्रमिक रिक्त स्थान ===
एक सांस्थितिक स्पेस <math>(X, \tau)</math> अनुक्रमिक है यदि यह निम्नलिखित समकक्ष शर्तों में से किसी को संतुष्ट करता है:
एक सांस्थितिक स्पेस <math>(X, \tau)</math> अनुक्रमिक है यदि यह निम्नलिखित समकक्ष शर्तों में से किसी को संतुष्ट करता है:
<ul>
<ul>
<ली><math>\tau</math> इसका अपना अनुक्रमिक कोरफ्लेक्शन है।<ref>{{cite web |title=Topology of sequentially open sets is sequential? |url=https://math.stackexchange.com/questions/3737020 |website=Mathematics Stack Exchange}}</ref></li>
<ली><math>\tau</math> इसका अपना अनुक्रमिक कोरफ्लेक्शन है।<ref>{{cite web |title=Topology of sequentially open sets is sequential? |url=https://math.stackexchange.com/questions/3737020 |website=Mathematics Stack Exchange}}</ref><li>प्रत्येक क्रमिक रूप से विवृत्तउपसमुच्चय <math>X</math> विवृत्तहै.</li>
<li>प्रत्येक क्रमिक रूप से खुला उपसमुच्चय <math>X</math> खुला है.</li>
<li>प्रत्येक क्रमिक रूप से संवृत्त उपसमूह <math>X</math> संवृत्त है.</li>
<li>प्रत्येक क्रमिक रूप से संवृत्त उपसमूह <math>X</math> संवृत्त है.</li>
<li>किसी भी उपसमुच्चय के लिए <math>S \subseteq X</math> वह है {{em|not}} संवृत्त किया <math>X,</math> वहाँ कुछ मौजूद है<ref group="note">A [[Fréchet–Urysohn space]] is defined by the analogous condition for all such <math>x</math>: <blockquote>For any subset <math>S \subseteq X</math> that is not closed in <math>X,</math> ''for any'' <math>x \in \operatorname{cl}_X(S) \setminus S,</math> there exists a sequence in <math>S</math> that converges to <math>x.</math></blockquote></ref> <math>x\in\operatorname{cl}(S)\setminus S</math> और एक क्रम <math>S</math> जो कि एकत्रित हो जाता है <math>x.</math><ref name="Arkhangel'skii, A.V. and Pontryagin L.S."> Arkhangel'skii, A.V. and Pontryagin L.S.,{{pad|1px}} General Topology I, definition 9 p.12 </ref> </li>
<li>किसी भी उपसमुच्चय के लिए <math>S \subseteq X</math> वह है {{em|not}} संवृत्त किया <math>X,</math> वहाँ कुछ मौजूद है<ref group="note">A [[Fréchet–Urysohn space]] is defined by the analogous condition for all such <math>x</math>: <blockquote>For any subset <math>S \subseteq X</math> that is not closed in <math>X,</math> ''for any'' <math>x \in \operatorname{cl}_X(S) \setminus S,</math> there exists a sequence in <math>S</math> that converges to <math>x.</math></blockquote></ref> <math>x\in\operatorname{cl}(S)\setminus S</math> और एक क्रम <math>S</math> जो कि एकत्रित हो जाता है <math>x.</math><ref name="Arkhangel'skii, A.V. and Pontryagin L.S."> Arkhangel'skii, A.V. and Pontryagin L.S.,{{pad|1px}} General Topology I, definition 9 p.12 </ref> </li>
Line 120: Line 104:
</ul>
</ul>


होने के नाते {{mvar|T}}-अनुक्रमिक स्थान अनुक्रमिक स्थान होने के साथ अतुलनीय है; ऐसे अनुक्रमिक स्थान हैं जो नहीं हैं {{mvar|T}}-अनुक्रमिक और इसके विपरीत। हालाँकि, एक सांस्थितिक स्पेस <math>(X, \tau)</math> ए कहा जाता है<math>N</math>-अनुक्रमिक (या पड़ोस-अनुक्रमिक) यदि यह अनुक्रमिक और दोनों है {{mvar|T}}-अनुक्रमिक. एक समान शर्त यह है कि प्रत्येक अनुक्रमिक पड़ोस में एक खुला (शास्त्रीय) पड़ोस होता है।<ref name="Snipes T-sequential spaces" />  प्रत्येक प्रथम-गणनीय स्थान (और इस प्रकार प्रत्येक मापनीय स्थान) है <math>N</math>-क्रमिक. वहाँ [[टोपोलॉजिकल वेक्टर रिक्त स्थान|सांस्थितिक वेक्टर रिक्त स्थान]] मौजूद हैं जो अनुक्रमिक हैं लेकिन {{em|not}} <math>N</math>-अनुक्रमिक (और इस प्रकार नहीं {{mvar|T}}-अनुक्रमिक).<ref name="Snipes T-sequential spaces" />   
होने के नाते {{mvar|T}}-अनुक्रमिक स्थान अनुक्रमिक स्थान होने के साथ अतुलनीय है; ऐसे अनुक्रमिक स्थान हैं जो नहीं हैं {{mvar|T}}-अनुक्रमिक और इसके विपरीत। हालाँकि, एक सांस्थितिक स्पेस <math>(X, \tau)</math> ए कहा जाता है<math>N</math>-अनुक्रमिक (या पड़ोस-अनुक्रमिक) यदि यह अनुक्रमिक और दोनों है {{mvar|T}}-अनुक्रमिक. एक समान शर्त यह है कि प्रत्येक अनुक्रमिक पड़ोस में एक विवृत्त(शास्त्रीय) पड़ोस होता है।<ref name="Snipes T-sequential spaces" />  प्रत्येक प्रथम-गणनीय स्थान (और इस प्रकार प्रत्येक मापनीय स्थान) है <math>N</math>-क्रमिक. वहाँ [[टोपोलॉजिकल वेक्टर रिक्त स्थान|सांस्थितिक वेक्टर रिक्त स्थान]] मौजूद हैं जो अनुक्रमिक हैं लेकिन {{em|not}} <math>N</math>-अनुक्रमिक (और इस प्रकार नहीं {{mvar|T}}-अनुक्रमिक).<ref name="Snipes T-sequential spaces" />   


===फ़्रेचेट-उरीसोहन रिक्त स्थान===
===फ़्रेचेट-उरीसोहन रिक्त स्थान===
Line 159: Line 143:


===गैर-उदाहरण (रिक्त स्थान जो अनुक्रमिक नहीं हैं)===
===गैर-उदाहरण (रिक्त स्थान जो अनुक्रमिक नहीं हैं)===
सबसे सरल स्थान जो अनुक्रमिक नहीं है वह बेशुमार समुच्चय पर [[सहगणनीय टोपोलॉजी|सहगणनीय सांस्थिति]]  है। ऐसे स्थान में प्रत्येक अभिसरण अनुक्रम अंततः स्थिर होता है; इसलिए प्रत्येक समुच्चय क्रमिक रूप से खुला है। लेकिन सहगणनीय सांस्थिति  पृथक स्थान नहीं है। (कोई सांस्थिति  को क्रमिक रूप से असतत कह सकता है।)<ref>{{Cite web |last1=math |last2=Sleziak |first2=Martin |date=Dec 6, 2016 |title=समान अभिसरण अनुक्रमों के साथ विभिन्न टोपोलॉजी का उदाहरण|url=https://math.stackexchange.com/questions/76691/example-of-different-topologies-with-same-convergent-sequences |access-date=2022-06-27 |website=Mathematics Stack Exchange |publisher=StackOverflow |language=en}}</ref>
सबसे सरल स्थान जो अनुक्रमिक नहीं है वह बेशुमार समुच्चय पर [[सहगणनीय टोपोलॉजी|सहगणनीय सांस्थिति]]  है। ऐसे स्थान में प्रत्येक अभिसरण अनुक्रम अंततः स्थिर होता है; इसलिए प्रत्येक समुच्चय क्रमिक रूप से विवृत्तहै। लेकिन सहगणनीय सांस्थिति  पृथक स्थान नहीं है। (कोई सांस्थिति  को क्रमिक रूप से असतत कह सकता है।)<ref>{{Cite web |last1=math |last2=Sleziak |first2=Martin |date=Dec 6, 2016 |title=समान अभिसरण अनुक्रमों के साथ विभिन्न टोपोलॉजी का उदाहरण|url=https://math.stackexchange.com/questions/76691/example-of-different-topologies-with-same-convergent-sequences |access-date=2022-06-27 |website=Mathematics Stack Exchange |publisher=StackOverflow |language=en}}</ref>
होने देना <math>C_c^k(U)</math> वितरण को निरूपित करें (गणित) <math>k</math>वितरण (गणित)|-अपनी विहित सांस्थिति  और लेट के साथ सुचारू परीक्षण कार्य करता है <math>\mathcal{D}'(U)</math> वितरण के स्थान, मजबूत दोहरे स्थान को निरूपित करें <math>C_c^{\infty}(U)</math>; न तो अनुक्रमिक हैं (न ही [[स्थान सुनो]] भी)।<ref name=":0" /><ref name="Shirai 1959" />  दूसरी ओर, दोनों <math>C_c^{\infty}(U)</math> और <math>\mathcal{D}'(U)</math> मोंटेल अंतरिक्ष स्थान हैं<ref name="Encyc. Math TVS">{{cite web |author=<!--Not stated--> |date= |title=टोपोलॉजिकल वेक्टर स्पेस|url=https://encyclopediaofmath.org/wiki/Topological_vector_space |access-date=September 6, 2020 |website=Encyclopedia of Mathematics |publisher=Encyclopedia of Mathematics |quote="It is a Montel space, hence paracompact, and so normal."}}</ref> और, किसी भी मॉन्टेल स्पेस के निरंतर दोहरे स्थान में, निरंतर रैखिक कार्यात्मकताओं का एक क्रम मजबूत दोहरे स्थान में परिवर्तित होता है यदि और केवल यदि यह कमजोर [[कमज़ोर* टोपोलॉजी|कमज़ोर* सांस्थिति]]  में परिवर्तित होता है (अर्थात, बिंदुवार परिवर्तित होता है)।<ref name=":0" />{{sfn|Trèves|2006|pp=351-359}}
होने देना <math>C_c^k(U)</math> वितरण को निरूपित करें (गणित) <math>k</math>वितरण (गणित)|-अपनी विहित सांस्थिति  और लेट के साथ सुचारू परीक्षण कार्य करता है <math>\mathcal{D}'(U)</math> वितरण के स्थान, मजबूत दोहरे स्थान को निरूपित करें <math>C_c^{\infty}(U)</math>; न तो अनुक्रमिक हैं (न ही [[स्थान सुनो]] भी)।<ref name=":0" /><ref name="Shirai 1959" />  दूसरी ओर, दोनों <math>C_c^{\infty}(U)</math> और <math>\mathcal{D}'(U)</math> मोंटेल अंतरिक्ष स्थान हैं<ref name="Encyc. Math TVS">{{cite web |author=<!--Not stated--> |date= |title=टोपोलॉजिकल वेक्टर स्पेस|url=https://encyclopediaofmath.org/wiki/Topological_vector_space |access-date=September 6, 2020 |website=Encyclopedia of Mathematics |publisher=Encyclopedia of Mathematics |quote="It is a Montel space, hence paracompact, and so normal."}}</ref> और, किसी भी मॉन्टेल स्पेस के निरंतर दोहरे स्थान में, निरंतर रैखिक कार्यात्मकताओं का एक क्रम मजबूत दोहरे स्थान में परिवर्तित होता है यदि और केवल यदि यह कमजोर [[कमज़ोर* टोपोलॉजी|कमज़ोर* सांस्थिति]]  में परिवर्तित होता है (अर्थात, बिंदुवार परिवर्तित होता है)।<ref name=":0" />{{sfn|Trèves|2006|pp=351-359}}


Line 165: Line 149:
प्रत्येक अनुक्रमिक स्थान में [[गणनीय जकड़न]] होती है और यह कॉम्पैक्ट रूप से उत्पन्न स्थान होता है।
प्रत्येक अनुक्रमिक स्थान में [[गणनीय जकड़न]] होती है और यह कॉम्पैक्ट रूप से उत्पन्न स्थान होता है।


अगर <math>f : X \to Y</math> समुच्चय के बाद दो हॉसडॉर्फ अनुक्रमिक स्थानों के बीच एक निरंतर खुला मानचित्र है <math>\{y:{|f^{-1}(y)| = 1}\}\subseteq Y</math> अद्वितीय प्रीइमेज वाले बिंदुओं को संवृत्त कर दिया गया है। (निरंतरता से, इसकी पूर्वछवि भी वैसी ही है <math>X,</math> जिस पर सभी बिंदुओं का समुच्चय <math>f</math> इंजेक्शन है.)
यदि  <math>f : X \to Y</math> समुच्चय के बाद दो हॉसडॉर्फ अनुक्रमिक स्थानों के बीच एक निरंतर विवृत्तमानचित्र है <math>\{y:{|f^{-1}(y)| = 1}\}\subseteq Y</math> अद्वितीय प्रीइमेज वाले बिंदुओं को संवृत्त कर दिया गया है। (निरंतरता से, इसकी पूर्वछवि भी वैसी ही है <math>X,</math> जिस पर सभी बिंदुओं का समुच्चय <math>f</math> इंजेक्शन है.)


अगर <math>f : X \to Y</math> हॉसडॉर्फ़ अनुक्रमिक स्थान पर एक विशेषण मानचित्र (आवश्यक रूप से निरंतर नहीं) है <math>Y</math> और <math>\mathcal{B}</math> सांस्थिति  के लिए [[आधार (टोपोलॉजी)|आधार (सांस्थिति  )]]। <math>X,</math> तब <math>f : X \to Y</math> यदि और केवल यदि, प्रत्येक के लिए एक खुला मानचित्र है <math>x \in X,</math> बुनियादी पड़ोस <math>B \in \mathcal{B}</math> का <math>x,</math> और क्रम <math>y_{\bull} = \left(y_i\right)_{i=1}^{\infty} \to f(x)</math> में <math>Y,</math> का एक क्रम है <math>y_\bull</math> वह अंततः अंदर है<math>f(B).</math>
यदि  <math>f : X \to Y</math> हॉसडॉर्फ़ अनुक्रमिक स्थान पर एक विशेषण मानचित्र (आवश्यक रूप से निरंतर नहीं) है <math>Y</math> और <math>\mathcal{B}</math> सांस्थिति  के लिए [[आधार (टोपोलॉजी)|आधार (सांस्थिति  )]]। <math>X,</math> तब <math>f : X \to Y</math> यदि और केवल यदि, प्रत्येक के लिए एक विवृत्तमानचित्र है <math>x \in X,</math> बुनियादी पड़ोस <math>B \in \mathcal{B}</math> का <math>x,</math> और क्रम <math>y_{\bull} = \left(y_i\right)_{i=1}^{\infty} \to f(x)</math> में <math>Y,</math> का एक क्रम है <math>y_\bull</math> वह अंततः अंदर है<math>f(B).</math>




Line 195: Line 179:


==यह भी देखें==
==यह भी देखें==
* {{annotated link|Axiom of countability}}
* {{annotated link|Axiom of countability}}
* {{annotated link|Closed graph property}}
* {{annotated link|Closed graph property}}
Line 211: Line 194:


==संदर्भ==
==संदर्भ==
* Arkhangel'skii, A.V. and Pontryagin, L.S., ''General Topology I'', Springer-Verlag, New York (1990) {{isbn|3-540-18178-4}}.
* Arkhangel'skii, A.V. and Pontryagin, L.S., ''General Topology I'', Springer-Verlag, New York (1990) {{isbn|3-540-18178-4}}.
* {{cite journal|last1=Arkhangel'skii|first1=A V|title=Mappings and spaces|journal=Russian Mathematical Surveys|volume=21|issue=4|year=1966|pages=115–162|issn=0036-0279|doi=10.1070/RM1966v021n04ABEH004169|bibcode=1966RuMaS..21..115A|s2cid=250900871 |url=http://www.mathnet.ru/links/0411dc60fab54ffac1cb8172e57c8f69/rm5901.pdf|access-date=10 February 2021}} <!--<ref name="Arkhangel'skii1966">{{harvnb|Arkhangel'skii|1966|p=}}</ref>-->
* {{cite journal|last1=Arkhangel'skii|first1=A V|title=Mappings and spaces|journal=Russian Mathematical Surveys|volume=21|issue=4|year=1966|pages=115–162|issn=0036-0279|doi=10.1070/RM1966v021n04ABEH004169|bibcode=1966RuMaS..21..115A|s2cid=250900871 |url=http://www.mathnet.ru/links/0411dc60fab54ffac1cb8172e57c8f69/rm5901.pdf|access-date=10 February 2021}}<!--<ref name="Arkhangel'skii1966">{{harvnb|Arkhangel'skii|1966|p=}}</ref>-->
* {{cite journal|last1=Akiz|first1=Hürmet Fulya|last2=Koçak|first2=Lokman|title=Sequentially Hausdorff and full sequentially Hausdorff spaces|journal=Communications Faculty of Science University of Ankara Series A1Mathematics and Statistics|volume=68|issue=2|year=2019|pages=1724–1732|issn=1303-5991|doi=10.31801/cfsuasmas.424418|url=https://dergipark.org.tr/en/download/article-file/692156|access-date=10 February 2021|doi-access=free}} <!--<ref name="AkizKoçak2019">{{harvnb|Akiz|Koçak|2019|p=}}</ref>-->
* {{cite journal|last1=Akiz|first1=Hürmet Fulya|last2=Koçak|first2=Lokman|title=Sequentially Hausdorff and full sequentially Hausdorff spaces|journal=Communications Faculty of Science University of Ankara Series A1Mathematics and Statistics|volume=68|issue=2|year=2019|pages=1724–1732|issn=1303-5991|doi=10.31801/cfsuasmas.424418|url=https://dergipark.org.tr/en/download/article-file/692156|access-date=10 February 2021|doi-access=free}}<!--<ref name="AkizKoçak2019">{{harvnb|Akiz|Koçak|2019|p=}}</ref>-->
* {{cite journal|last1=Boone|first1=James|title=A note on mesocompact and sequentially mesocompact spaces|journal=Pacific Journal of Mathematics|volume=44|issue=1|year=1973|pages=69–74|issn=0030-8730|doi=10.2140/pjm.1973.44.69|doi-access=free}} <!---->
* {{cite journal|last1=Boone|first1=James|title=A note on mesocompact and sequentially mesocompact spaces|journal=Pacific Journal of Mathematics|volume=44|issue=1|year=1973|pages=69–74|issn=0030-8730|doi=10.2140/pjm.1973.44.69|doi-access=free}}<!---->
* {{cite journal|last1=Booth|first1=Peter|last2=Tillotson|first2=J.|title=Monoidal closed, Cartesian closed and convenient categories of topological spaces|journal=Pacific Journal of Mathematics|volume=88|issue=1|year=1980|pages=35–53|issn=0030-8730|doi=10.2140/pjm.1980.88.35|url=http://projecteuclid.org/euclid.pjm/1102779712|access-date=10 February 2021|doi-access=free}} <!--<ref name="BoothTillotson1980">{{harvnb|Booth|Tillotson|1973|p=1980}}</ref>-->
* {{cite journal|last1=Booth|first1=Peter|last2=Tillotson|first2=J.|title=Monoidal closed, Cartesian closed and convenient categories of topological spaces|journal=Pacific Journal of Mathematics|volume=88|issue=1|year=1980|pages=35–53|issn=0030-8730|doi=10.2140/pjm.1980.88.35|url=http://projecteuclid.org/euclid.pjm/1102779712|access-date=10 February 2021|doi-access=free}}<!--<ref name="BoothTillotson1980">{{harvnb|Booth|Tillotson|1973|p=1980}}</ref>-->
* Engelking, R., ''General Topology'', Heldermann, Berlin (1989). Revised and completed edition.
* Engelking, R., ''General Topology'', Heldermann, Berlin (1989). Revised and completed edition.
* {{cite journal|last1=Foged|first1=L.|title=A characterization of closed images of metric spaces|journal=Proceedings of the American Mathematical Society|volume=95|issue=3|year=1985|pages=487–490|issn=0002-9939|doi=10.1090/S0002-9939-1985-0806093-3|doi-access=free}} <!--<ref name="Foged1985">{{harvnb|Foged|1985|p=}}</ref>-->
* {{cite journal|last1=Foged|first1=L.|title=A characterization of closed images of metric spaces|journal=Proceedings of the American Mathematical Society|volume=95|issue=3|year=1985|pages=487–490|issn=0002-9939|doi=10.1090/S0002-9939-1985-0806093-3|doi-access=free}}<!--<ref name="Foged1985">{{harvnb|Foged|1985|p=}}</ref>-->
* {{cite journal|last1=Franklin|first1=S.|title=Spaces in which sequences suffice|journal=Fundamenta Mathematicae|volume=57|issue=1|year=1965|pages=107–115|issn=0016-2736|doi=10.4064/fm-57-1-107-115|doi-access=free|url=http://matwbn.icm.edu.pl/ksiazki/fm/fm57/fm5717.pdf}} <!--<ref name="Franklin1965">{{harvnb|Franklin|1965|p=}}</ref>-->
* {{cite journal|last1=Franklin|first1=S.|title=Spaces in which sequences suffice|journal=Fundamenta Mathematicae|volume=57|issue=1|year=1965|pages=107–115|issn=0016-2736|doi=10.4064/fm-57-1-107-115|doi-access=free|url=http://matwbn.icm.edu.pl/ksiazki/fm/fm57/fm5717.pdf}}<!--<ref name="Franklin1965">{{harvnb|Franklin|1965|p=}}</ref>-->
* {{cite journal|last1=Franklin|first1=S.|title=Spaces in which sequences suffice II|journal=Fundamenta Mathematicae|volume=61|issue=1|year=1967|pages=51–56|issn=0016-2736|doi=10.4064/fm-61-1-51-56|url=http://matwbn.icm.edu.pl/ksiazki/fm/fm61/fm6115.pdf|access-date=10 February 2021|doi-access=free}} <!--<ref name="Franklin1967">{{harvnb|Franklin|1967|p=}}</ref>-->
* {{cite journal|last1=Franklin|first1=S.|title=Spaces in which sequences suffice II|journal=Fundamenta Mathematicae|volume=61|issue=1|year=1967|pages=51–56|issn=0016-2736|doi=10.4064/fm-61-1-51-56|url=http://matwbn.icm.edu.pl/ksiazki/fm/fm61/fm6115.pdf|access-date=10 February 2021|doi-access=free}}<!--<ref name="Franklin1967">{{harvnb|Franklin|1967|p=}}</ref>-->
* Goreham, Anthony, "[https://arxiv.org/abs/math/0412558 Sequential Convergence in Topological Spaces]", (2016)
* Goreham, Anthony, "[https://arxiv.org/abs/math/0412558 Sequential Convergence in Topological Spaces]", (2016)
* {{cite journal|last1=Gruenhage|first1=Gary|last2=Michael|first2=Ernest|last3=Tanaka|first3=Yoshio|title=Spaces determined by point-countable covers|journal=Pacific Journal of Mathematics|volume=113|issue=2|year=1984|pages=303–332|issn=0030-8730|doi=10.2140/pjm.1984.113.303|doi-access=free}} <!--<ref name="GruenhageMichael1984">{{harvnb|Gruenhage|Michael|Tanaka|1984|p=}}</ref>-->
* {{cite journal|last1=Gruenhage|first1=Gary|last2=Michael|first2=Ernest|last3=Tanaka|first3=Yoshio|title=Spaces determined by point-countable covers|journal=Pacific Journal of Mathematics|volume=113|issue=2|year=1984|pages=303–332|issn=0030-8730|doi=10.2140/pjm.1984.113.303|doi-access=free}}<!--<ref name="GruenhageMichael1984">{{harvnb|Gruenhage|Michael|Tanaka|1984|p=}}</ref>-->
* {{cite journal|last1=Michael|first1=E.A.|title=A quintuple quotient quest|journal=General Topology and Its Applications|volume=2|issue=2|year=1972|pages=91–138|issn=0016-660X|doi=10.1016/0016-660X(72)90040-2|doi-access=free}} <!--<ref name="Michael1972">{{harvnb|Michael|1972|p=}}</ref>-->
* {{cite journal|last1=Michael|first1=E.A.|title=A quintuple quotient quest|journal=General Topology and Its Applications|volume=2|issue=2|year=1972|pages=91–138|issn=0016-660X|doi=10.1016/0016-660X(72)90040-2|doi-access=free}}<!--<ref name="Michael1972">{{harvnb|Michael|1972|p=}}</ref>-->
* {{cite journal|last1=Shou|first1=Lin|last2=Chuan|first2=Liu|last3=Mumin|first3=Dai|title=Images on locally separable metric spaces|journal=Acta Mathematica Sinica|volume=13|issue=1|year=1997|pages=1–8|issn=1439-8516|doi=10.1007/BF02560519|s2cid=122383748}} <!--<ref name="ShouChuan1997">{{harvnb|Shou|Chuan|Mumin|1997|p=}}</ref>-->
* {{cite journal|last1=Shou|first1=Lin|last2=Chuan|first2=Liu|last3=Mumin|first3=Dai|title=Images on locally separable metric spaces|journal=Acta Mathematica Sinica|volume=13|issue=1|year=1997|pages=1–8|issn=1439-8516|doi=10.1007/BF02560519|s2cid=122383748}}<!--<ref name="ShouChuan1997">{{harvnb|Shou|Chuan|Mumin|1997|p=}}</ref>-->
* {{cite journal|last1=Steenrod|first1=N. E.|title=A convenient category of topological spaces.|journal=The Michigan Mathematical Journal|volume=14|issue=2|year=1967|pages=133–152|doi=10.1307/mmj/1028999711|url=http://projecteuclid.org/euclid.mmj/1028999711|access-date=10 February 2021|doi-access=free}} <!--<ref name="Steenrod1967">{{harvnb|Steenrod|1967|p=}}</ref>-->
* {{cite journal|last1=Steenrod|first1=N. E.|title=A convenient category of topological spaces.|journal=The Michigan Mathematical Journal|volume=14|issue=2|year=1967|pages=133–152|doi=10.1307/mmj/1028999711|url=http://projecteuclid.org/euclid.mmj/1028999711|access-date=10 February 2021|doi-access=free}}<!--<ref name="Steenrod1967">{{harvnb|Steenrod|1967|p=}}</ref>-->
* {{Trèves François Topological vector spaces, distributions and kernels}}
* {{Trèves François Topological vector spaces, distributions and kernels}}
* {{Wilansky Modern Methods in Topological Vector Spaces|edition=1}}
* {{Wilansky Modern Methods in Topological Vector Spaces|edition=1}}
[[Category: सामान्य टोपोलॉजी]] [[Category: टोपोलॉजिकल रिक्त स्थान के गुण]]  
[[Category:All accuracy disputes]]
 
[[Category:Articles with disputed statements from March 2019]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Created On 07/07/2023]]
[[Category:Harv and Sfn no-target errors]]
[[Category:Machine Translated Page]]
[[Category:Pages with math errors]]
[[Category:Pages with math render errors]]
[[Category:Pages with script errors]]
</li>
[[Category: सामान्य टोपोलॉजी]]  
[[Category: टोपोलॉजिकल रिक्त स्थान के गुण]]  


[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]

Revision as of 11:14, 13 July 2023

सांस्थिति और संबंधित गणित के क्षेत्र में, एक अनुक्रमिक स्थान एक सांस्थितिक स्थान होता है जिसकी सांस्थिति को पूरी तरह से उसके आसन्न/विसर्ग सरणियों के द्वारा वर्णन किया जा सकता है। इन्हें एक बहुत ही कमजोर गणनीयता का अभिकरण माना जा सकता है, और सभी प्रथम-गणनीय स्थान अनुक्रमिक होते हैं। किसी भी सांस्थिति स्थान () में, यदि एक आसन्न सरणी किसी संवृत्त समुच्चय में समाविष्ट है, तो उस सरणी का सीमा भी में होना चाहिए।

अनुक्रमिक रिक्त स्थान वास्तव में वे सांस्थितिक रिक्त स्थान हैं जिनके लिए क्रमिक रूप से संवृत्त समुच्चय वास्तव में संवृत्त हैं। इन परिभाषाओं को क्रमिक रूप से विवृत्त समुच्चयों के संदर्भ में भी पुनरावर्तित किया जा सकता है दूसरे शब्दों मे कहे तो, किसी भी सांस्थिति को नेट के संदर्भ में वर्णित किया जा सकता है, लेकिन वे अनुक्रम बहुत लंबे हो सकते हैं एक अनुक्रम में संपीड़ित करने के लिए अनुक्रमिक रिक्त स्थान वे सांस्थितिक रिक्त स्थान हैं जिनके लिए गणनीय लंबाई के जाल अर्थात अनुक्रम सांस्थिति का वर्णन करने के लिए पर्याप्त हैं।

किसी भी सांस्थिति को एक अनुक्रमिक सांस्थिति के लिए संशोधित किया जा सकता है, जिसे का अनुक्रमिक परावर्तन कहा जाता है।

फ़्रेचेट-उरीसोहन रिक्त स्थान, T-अनुक्रमिक रिक्त स्थान, और की संबंधित अवधारणाएँ -अनुक्रमिक रिक्त स्थान को इस संदर्भ में भी परिभाषित किया जाता है कि किसी स्थान की सांस्थिति अनुक्रमों के साथ कैसे प्रभावित करती है, परंतु इसमें सूक्ष्म रूप से भिन्न गुण होते हैं।

एस. पी. फ्रैंकलिन ने अनुक्रमिक स्थान और N-अनुक्रमिक स्थान को प्रस्तुत किया था।.[1]



इतिहास

यद्यपि ऐसे गुणों को साधने वाले स्थानों का अध्ययन कई वर्षों से बिना किसी विशेष परिभाषा के किया जाता था, लेकिन पहली स्थानिक परिभाषा एस. पी. फ्रैंकलिन के द्वारा 1965 में दी गई थी। फ्रैंकलिन को "वह कक्षाएं जो अपनी आसन्न सरणियों के ज्ञान से पूरी तरह निर्धारित की जा सकती हैं" का पता लगाना था, और उन्होंने पहले-गणनीय स्थानों का अध्ययन किया, जिनके लिए पहले से ही ज्ञात था कि सरणियों की पर्याप्तता होती है। फिर फ्रैंकलिन ने पहले-गणनीय स्थानों की आवश्यक गुणों को संक्षेप में प्रस्तुत करके आधुनिक परिभाषा तय की।

प्रारंभिक परिभाषाएँ

यदि एक समुच्चय हो और में एक सरणी हो, अर्थात्, एक के तत्वों का परिवार हो, प्राक्तिन संख्याओं द्वारा अनुक्रमित। इस लेख में यह अर्थ होता है कि सभी सरणी के तत्व के तत्व हैं, और यदि एक अवलोकन हो, तो होता है। किसी भी प्राक्तिन के लिए, से शुरू होने वाली सरणी को की पूर्ववर्ती कहते हैं, जोकि सरणी

होती है। सरणी सभी प्रायः में होती है यदि कोई पूर्ववर्ती को पूरा करती है। यदि पर एक टोपोलॉजी हो और उसमें एक सरणी हो, तो सरणी एक बिंदु की ओर संघुश्य होती है, जिसे (जब संदर्भ प्राप्त हो तो कहते हैं), यदि हर बार का पड़ोस के लिए होता है, प्रायः में होती है। इसके बाद को का सीमा बिंदु कहा जाता है। यदि टोपोलॉजिक स्थानों के बीच एक फ़ंक्शन हो तो वह अनुक्रमिक रूप से स्थिर है यदि सत्य हो तो होता है।

अनुक्रमिक समापन/आंतरिक

यदि एक संस्थानिक स्थान हो और एक उपसमूह हो, तो में की संस्थानिक संवृत्त(इंगित किया जाता है: ) और संस्थानिक आंतर (इंगित किया जाता है: ) इस प्रकार परिभाषित होते हैं:.

क्रमिक समापन in का समुच्चय है

आवश्यकता के अनुसार स्पष्टता के लिए, इस समुच्चय को या भी लिखा जा सकता है।:

यह एक नकारात्मक समुच्चय है जो संयोजन संगणक के रूप में प्राप्त होता है, यह अनुक्रमिक संवृत्तसंचालक को निर्धारित करता है। की पावर समुच्चय पर यह एक नकारात्मक अभिकल्पना है। आवश्यकता के अनुसार स्पष्टता के लिए, इस समुच्चय को यहां भी लिखा जा सकता है या । हमेशा सत्य होता है कि लेकिन उल्टा हो सकता है।

का अनुक्रमिक आंतरिक भाग में समुच्चय है जिसे निम्न रूप में परिभाषित किया जाता है:

(यदि आवश्यक हो तो संस्थानिक स्पेस को फिर से एक सबस्क्रिप्ट के साथ दर्शाया गया है)


अनुक्रमिक समापन और इंटीरियर संस्थानिक क्लोजर और इंटीरियर के कई अच्छे गुणों को संतुष्ट करते हैं: सभी उपसमूहों के लिए

निम्नलिखित सत्यापन किए जा सकते हैं।

और

. और ;

. ;

. ; और

.

इसका अर्थ है, अनुक्रमिक संवृत्त एक पूर्व-संवृत्त संचालक है। संस्थानिक संवृत्त के विपरीत, अनुक्रमिक संवृत्त स्वतंत्र नहीं होता है: अंतिम समावेशन सम्बंध अधिक सख्त हो सकता है। इस प्रकार, अनुक्रमिक संवृत्त संवृत्त संचालक नहीं होता है।

क्रमिक रूप से संवृत्त और विवृत्त समुच्चय

एक समुच्चय को क्रमशः संवृत्त कहा जाता है यदि हो; समकक्षता के अनुसार, हर और के लिए जहां हो, तो होना चाहिए।[note 1]

    एक समुच्चय को क्रमशः विवृत्त कहा जाता है यदि उसका समपूरक क्रमशः संवृत्त होता है। समकक्षताएँ निम्नलिखित हैं:

एक समुच्चय को निम्न शर्तों के अनुसार क्रमशः विवृत्तकहा जाता है:

  • सभी और के लिए जहां होता है, अंततः में होता है (यानी, कुछ संख्या ऐसी होती है जिस पर पूरा होता है।
  • एक समुच्चय को बिंदु का क्रमशः प्रतिवैस कहा जाता है यदि यह अपने क्रमशः आंतरिकता में को सम्मिलित करता है; क्रमशः प्रतिवैसो को क्रमशः विवृत्त होने की आवश्यकता नहीं होती एक महत्वपूर्ण बात है कि के एक उपसमुच्चय क्रमशः विवृत्त होने के बाद भी वह विवृत्त नहीं हो सकता। उसी तरह, एक क्रमशः संवृत्त उपसमुच्चय संवृत्त होने के बाद भी नहीं हो सकता है

    अनुक्रमिक रिक्त स्थान और कोरफ्लेक्शन

    जैसा कि ऊपर चर्चा की गई है, अनुक्रमिक समापन सामान्य रूप से निष्क्रिय नहीं है, और इसलिए सांस्थिति का समापन संचालक नहीं है। कोई व्यक्ति ट्रांसफिनिट पुनरावृत्ति के माध्यम से एक निष्क्रिय अनुक्रमिक समापन प्राप्त कर सकता है: एक उत्तराधिकारी क्रम के लिए परिभाषित करें (हमेशा की तरह)

    और, एक सीमा क्रमसूचक के लिए परिभाषित करना
    यह प्रक्रिया समुच्चयों का क्रमिक-अनुक्रमित बढ़ता क्रम देती है; जैसा कि यह पता चला है, वह अनुक्रम हमेशा सूचकांक द्वारा स्थिर होता है (पहला बेशुमार क्रमसूचक)। इसके विपरीत, का अनुक्रमिक क्रम किसी भी विकल्प के लिए न्यूनतम क्रमसूचक है उपरोक्त क्रम स्थिर हो जाएगा.[2] का अनंत अनुक्रमिक समापन उपरोक्त अनुक्रम में टर्मिनल समुच्चय है: परिचालक निष्क्रिय है और इस प्रकार एक संवृत्त संचालक है। विशेष रूप से, यह एक सांस्थिति , अनुक्रमिक कोरफ्लेक्शन को परिभाषित करता है। अनुक्रमिक कोरफ्लेक्शन में, प्रत्येक क्रमिक रूप से संवृत्त समुच्चय संवृत्त होता है (और प्रत्येक क्रमिक रूप से विवृत्तसमुच्चय विवृत्तहोता है)।[3]

    अनुक्रमिक रिक्त स्थान

    एक सांस्थितिक स्पेस अनुक्रमिक है यदि यह निम्नलिखित समकक्ष शर्तों में से किसी को संतुष्ट करता है:

      <ली> इसका अपना अनुक्रमिक कोरफ्लेक्शन है।[4]
    • प्रत्येक क्रमिक रूप से विवृत्तउपसमुच्चय विवृत्तहै.
    • प्रत्येक क्रमिक रूप से संवृत्त उपसमूह संवृत्त है.
    • किसी भी उपसमुच्चय के लिए वह है not संवृत्त किया वहाँ कुछ मौजूद है[note 2] और एक क्रम जो कि एकत्रित हो जाता है [5]
    • (सार्वभौमिक संपत्ति) प्रत्येक सांस्थितिक स्पेस के लिए नक्षा सतत कार्य (सांस्थिति ) है यदि और केवल यदि यह अनुक्रमिक निरंतरता (यदि) है तब ).[6]
    • <ली> प्रथम-गणनीय स्थान का भागफल है। <ली> एक मीट्रिक स्थान का भागफल है।

    ले कर और पहचान मानचित्र पर होना सार्वभौमिक संपत्ति में, यह इस प्रकार है कि अनुक्रमिक रिक्त स्थान के वर्ग में सटीक रूप से वे स्थान शामिल होते हैं जिनकी सांस्थितिक संरचना अभिसरण अनुक्रमों द्वारा निर्धारित होती है। यदि दो सांस्थिति अभिसरण अनुक्रमों पर सहमत हैं, तो उनके पास आवश्यक रूप से समान अनुक्रमिक कोरफ्लेक्शन होता है। इसके अलावा, से एक समारोह क्रमिक रूप से निरंतर है यदि और केवल यदि यह अनुक्रमिक कोरफ्लेक्शन पर निरंतर है (अर्थात्, जब पूर्व-निर्मित हो) ).

    T- और N-अनुक्रमिक रिक्त स्थान

    T-अनुक्रमिक स्थान अनुक्रमिक क्रम 1 वाला एक सांस्थितिक स्थान है, जो निम्नलिखित में से किसी भी स्थिति के बराबर है:[1]
    • प्रत्येक उपसमुच्चय का अनुक्रमिक समापन (या आंतरिक भाग)। क्रमिक रूप से संवृत्त है (resp. open).
    • <ली> या नपुंसक हैं. <वह> या
    • कोई अनुक्रमिक पड़ोस अनुक्रमिक रूप से विवृत्त समुच्चय में सिकुड़ा जा सकता है जिसमें शामिल है ; औपचारिक रूप से, क्रमिक रूप से विवृत्त पड़ोस अनुक्रमिक पड़ोस के लिए पड़ोस का आधार हैं।
    • किसी के लिए और कोई अनुक्रमिक पड़ोस का वहां एक अनुक्रमिक पड़ोस मौजूद है का ऐसा कि, हर किसी के लिए समुच्चय का अनुक्रमिक पड़ोस है

    होने के नाते T-अनुक्रमिक स्थान अनुक्रमिक स्थान होने के साथ अतुलनीय है; ऐसे अनुक्रमिक स्थान हैं जो नहीं हैं T-अनुक्रमिक और इसके विपरीत। हालाँकि, एक सांस्थितिक स्पेस ए कहा जाता है-अनुक्रमिक (या पड़ोस-अनुक्रमिक) यदि यह अनुक्रमिक और दोनों है T-अनुक्रमिक. एक समान शर्त यह है कि प्रत्येक अनुक्रमिक पड़ोस में एक विवृत्त(शास्त्रीय) पड़ोस होता है।[1] प्रत्येक प्रथम-गणनीय स्थान (और इस प्रकार प्रत्येक मापनीय स्थान) है -क्रमिक. वहाँ सांस्थितिक वेक्टर रिक्त स्थान मौजूद हैं जो अनुक्रमिक हैं लेकिन not -अनुक्रमिक (और इस प्रकार नहीं T-अनुक्रमिक).[1]

    फ़्रेचेट-उरीसोहन रिक्त स्थान

    एक सांस्थितिक स्पेस इसे फ़्रेचेट-उरीसोहन स्थान कहा जाता है|फ़्रेचेट-उरीसोहन यदि यह निम्नलिखित समकक्ष शर्तों में से किसी को संतुष्ट करता है:
      <ली> वंशानुगत रूप से अनुक्रमिक है; अर्थात्, प्रत्येक सांस्थितिक उपस्थान अनुक्रमिक है।
    • प्रत्येक उपसमुच्चय के लिए
    • किसी भी उपसमुच्चय के लिए वह संवृत्त नहीं है और हर इसमें एक क्रम मौजूद है जो कि एकत्रित हो जाता है

    फ़्रेचेट-उरीसोहन रिक्त स्थान को कभी-कभी फ़्रेचेट भी कहा जाता है, लेकिन कार्यात्मक विश्लेषण में न तो फ़्रेचेट रिक्त स्थान और न ही टी1 स्पेस|टी के साथ भ्रमित होना चाहिए।1 स्थिति।

    उदाहरण और पर्याप्त शर्तें

    प्रत्येक सीडब्ल्यू-कॉम्प्लेक्स अनुक्रमिक है, क्योंकि इसे मीट्रिक स्थान के भागफल के रूप में माना जा सकता है।

    ज़ारिस्की सांस्थिति के साथ एक कम्यूटेटिव नोथेरियन अंगूठी का प्राइम स्पेक्ट्रम अनुक्रमिक है।

    असली लाइन लो और कोटिएंट स्पेस (सांस्थिति ) समुच्चय एक बिंदु तक पूर्णांकों का. मीट्रिक स्थान के भागफल के रूप में, परिणाम अनुक्रमिक है, लेकिन यह पहले गणनीय नहीं है।

    प्रत्येक प्रथम-गणनीय स्थान फ़्रेचेट-उरीसोहन है और प्रत्येक फ़्रेचेट-उरीसोहन स्थान अनुक्रमिक है। इस प्रकार प्रत्येक मेट्रिज़ेबल या स्यूडोमेट्रिज़ेबल स्थान स्पेस - विशेष रूप से, प्रत्येक सेकंड-गणनीय स्पेस, मीट्रिक स्पेस, या असतत स्पेस - अनुक्रमिक है।

    होने देना फ़्रेचेट-उरीसोहन स्थान से मानचित्रों का एक समुच्चय बनें|फ़्रेचेट-उरीसोहन स्थान से लेकर फिर अंतिम सांस्थिति वह प्रेरित करता है अनुक्रमिक है.

    हॉसडॉर्फ़ सांस्थितिक वेक्टर स्पेस अनुक्रमिक है यदि और केवल तभी यदि समान अभिसरण अनुक्रमों के साथ कोई सख्ती से बेहतर सांस्थिति मौजूद नहीं है।[7][8]


    ===वे स्थान जो अनुक्रमिक हैं लेकिन फ़्रेचेट-उरीसोहन=== नहीं हैं श्वार्ट्ज स्थान और स्थान सुचारू कार्य, जैसा कि वितरण (गणित)गणित) पर लेख में चर्चा की गई है, दोनों व्यापक रूप से उपयोग किए जाने वाले अनुक्रमिक स्थान हैं, लेकिन फ़्रेचेट-उरीसोहन स्पेस नहीं हैं|फ़्रेचेट-उरीसोहन। वास्तव में इन दोनों स्थानों के मजबूत दोहरे स्थान फ़्रेचेट-उरीसोहन स्थान नहीं हैं|फ़्रेचेट-उरीसोहन भी नहीं हैं।[9][10] अधिक आम तौर पर, प्रत्येक अनंत-आयामी मॉन्टेल स्पेस डीएफ-स्पेस अनुक्रमिक है, लेकिन फ़्रेचेट-उरीसोहन स्पेस नहीं|फ़्रेचेट-उरीसोहन।

    एरेन्स का स्थान अनुक्रमिक है, लेकिन फ़्रेचेट-उरीसोहन नहीं।[11][12]


    गैर-उदाहरण (रिक्त स्थान जो अनुक्रमिक नहीं हैं)

    सबसे सरल स्थान जो अनुक्रमिक नहीं है वह बेशुमार समुच्चय पर सहगणनीय सांस्थिति है। ऐसे स्थान में प्रत्येक अभिसरण अनुक्रम अंततः स्थिर होता है; इसलिए प्रत्येक समुच्चय क्रमिक रूप से विवृत्तहै। लेकिन सहगणनीय सांस्थिति पृथक स्थान नहीं है। (कोई सांस्थिति को क्रमिक रूप से असतत कह सकता है।)[13] होने देना वितरण को निरूपित करें (गणित) वितरण (गणित)|-अपनी विहित सांस्थिति और लेट के साथ सुचारू परीक्षण कार्य करता है वितरण के स्थान, मजबूत दोहरे स्थान को निरूपित करें ; न तो अनुक्रमिक हैं (न ही स्थान सुनो भी)।[9][10] दूसरी ओर, दोनों और मोंटेल अंतरिक्ष स्थान हैं[14] और, किसी भी मॉन्टेल स्पेस के निरंतर दोहरे स्थान में, निरंतर रैखिक कार्यात्मकताओं का एक क्रम मजबूत दोहरे स्थान में परिवर्तित होता है यदि और केवल यदि यह कमजोर कमज़ोर* सांस्थिति में परिवर्तित होता है (अर्थात, बिंदुवार परिवर्तित होता है)।[9][15]

    परिणाम

    प्रत्येक अनुक्रमिक स्थान में गणनीय जकड़न होती है और यह कॉम्पैक्ट रूप से उत्पन्न स्थान होता है।

    यदि समुच्चय के बाद दो हॉसडॉर्फ अनुक्रमिक स्थानों के बीच एक निरंतर विवृत्तमानचित्र है अद्वितीय प्रीइमेज वाले बिंदुओं को संवृत्त कर दिया गया है। (निरंतरता से, इसकी पूर्वछवि भी वैसी ही है जिस पर सभी बिंदुओं का समुच्चय इंजेक्शन है.)

    यदि हॉसडॉर्फ़ अनुक्रमिक स्थान पर एक विशेषण मानचित्र (आवश्यक रूप से निरंतर नहीं) है और सांस्थिति के लिए आधार (सांस्थिति ) तब यदि और केवल यदि, प्रत्येक के लिए एक विवृत्तमानचित्र है बुनियादी पड़ोस का और क्रम में का एक क्रम है वह अंततः अंदर है


    श्रेणीबद्ध गुण

    सभी अनुक्रमिक रिक्त स्थान की पूर्ण उपश्रेणी Seq सांस्थितिक रिक्त स्थान की श्रेणी (गणित) शीर्ष में निम्नलिखित परिचालनों के तहत संवृत्त है:

  • Seq श्रेणी है not शीर्ष में निम्नलिखित परिचालनों के अंतर्गत संवृत्त किया गया:

    • Continuous images
    • Subspaces
    • Finite products

    चूँकि वे सांस्थितिक योगों और भागफलों के अंतर्गत संवृत्त होते हैं, अनुक्रमिक रिक्त स्थान सांस्थितिक रिक्त स्थान की श्रेणी का एक कोरफ्लेक्टिव उपश्रेणी बनाते हैं। वास्तव में, वे मेट्रिज़ेबल रिक्त स्थान (अर्थात्, योग और भागफल के अंतर्गत संवृत्त सांस्थितिक रिक्त स्थान का सबसे छोटा वर्ग और मेट्रिज़ेबल रिक्त स्थान युक्त) के कोरफ्लेक्टिव पतवार हैं।

    उपश्रेणी Seq अपने स्वयं के उत्पाद (शीर्ष के नहीं) के संबंध में एक कार्टेशियन संवृत्त श्रेणी है। घातीय वस्तुएं (अभिसरण अनुक्रम)-ओपन सांस्थिति से सुसज्जित हैं।

    पी.आई. बूथ और ए. टिलोटसन ने दिखाया है कि Seq टॉप की सबसे छोटी कार्टेशियन संवृत्त उपश्रेणी है जिसमें सभी मीट्रिक स्पेस, सीडब्ल्यू-कॉम्प्लेक्स और अलग-अलग मैनिफोल्ड्स के अंतर्निहित सांस्थितिक स्पेस शामिल हैं और यह कोलिमिट्स, भागफल और अन्य कुछ उचित पहचानों के तहत संवृत्त है जो नॉर्मन स्टीनरोड को सुविधाजनक बताया गया।[16].

    प्रत्येक अनुक्रमिक स्थान कॉम्पैक्ट रूप से उत्पन्न स्थान है, और Seq में परिमित उत्पाद कॉम्पैक्ट रूप से उत्पन्न स्थानों के साथ मेल खाते हैं, क्योंकि कॉम्पैक्ट रूप से उत्पन्न स्थानों की श्रेणी में उत्पाद मीट्रिक रिक्त स्थान के भागफल को संरक्षित करते हैं।

    यह भी देखें

    टिप्पणियाँ

    1. तुलनात्मकता के अनुसार आप असंख्य बहुभुजों पर एक साथ इस "परीक्षण" का लागू नहीं कर सकते हैं (उदाहरण के लिए, आप कुछ भी चुनने के चयन का अभियान की तरह कुछ नहीं कर सकते हैं)। सभी क्रमशः बंद स्थान वाले अवकलन स्थान Fréchet-Urysohn नहीं होते हैं, लेकिन केवल उन स्थानों में हम किसी सेट के बंद में किसी सेट को देखने की आवश्यकता होती है।
    2. A Fréchet–Urysohn space is defined by the analogous condition for all such :

      For any subset that is not closed in for any there exists a sequence in that converges to


    उद्धरण

    1. 1.0 1.1 1.2 1.3 Snipes, Ray (1972). "टी-अनुक्रमिक टोपोलॉजिकल रिक्त स्थान" (PDF). Fundamenta Mathematicae (in English). 77 (2): 95–98. doi:10.4064/fm-77-2-95-98. ISSN 0016-2736.
    2. *Arhangel'skiĭ, A. V.; Franklin, S. P. (1968). "Ordinal invariants for topological spaces". Michigan Math. J. 15 (3): 313–320. doi:10.1307/mmj/1029000034.
    3. Baron, S. (October 1968). "अनुक्रमिक स्थानों की कोरफ्लेक्टिव उपश्रेणी". Canadian Mathematical Bulletin (in English). 11 (4): 603–604. doi:10.4153/CMB-1968-074-4. ISSN 0008-4395. S2CID 124685527.
    4. "Topology of sequentially open sets is sequential?". Mathematics Stack Exchange.
    5. Arkhangel'skii, A.V. and Pontryagin L.S.,  General Topology I, definition 9 p.12
    6. Baron, S.; Leader, Solomon (1966). "Solution to Problem #5299". The American Mathematical Monthly. 73 (6): 677–678. doi:10.2307/2314834. ISSN 0002-9890. JSTOR 2314834.
    7. Wilansky 2013, p. 224.
    8. Dudley, R. M., On sequential convergence - Transactions of the American Mathematical Society Vol 112, 1964, pp. 483-507
    9. 9.0 9.1 9.2 Gabrielyan, Saak (25 Feb 2017). "सख्त $(LF)$-स्पेस के टोपोलॉजिकल गुण और मोंटेल सख्त $(LF)$-स्पेस के मजबूत दोहरे". arXiv:1702.07867v1 [math.FA].
    10. 10.0 10.1 T. Shirai, Sur les Topologies des Espaces de L. Schwartz, Proc. Japan Acad. 35 (1959), 31-36.
    11. Engelking 1989, Example 1.6.19
    12. Ma, Dan (19 August 2010). "एरेन्स स्थान के बारे में एक नोट". Retrieved 1 August 2013.
    13. math; Sleziak, Martin (Dec 6, 2016). "समान अभिसरण अनुक्रमों के साथ विभिन्न टोपोलॉजी का उदाहरण". Mathematics Stack Exchange (in English). StackOverflow. Retrieved 2022-06-27.
    14. "टोपोलॉजिकल वेक्टर स्पेस". Encyclopedia of Mathematics. Encyclopedia of Mathematics. Retrieved September 6, 2020. It is a Montel space, hence paracompact, and so normal.
    15. Trèves 2006, pp. 351–359.
    16. Steenrod 1967


    संदर्भ