पॉइसन प्रतिगमन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 94: Line 94:




'''मॉडल बनाता है,अस्तित्व विश्लेषण का एक  वर्ग: कॉक्स आनुपातिक खतरों के मॉषण का एक  वर्ग: कॉक्स आनुपातिक खतरों के मॉडल देखें'''
'''मॉडल बनाता है,अस्तित्व वि का एक  वर्ग: कॉक्स आनुपातिक खतरों के मॉडल देखें'''


==यह भी देखें                                                    ==
==यह भी देखें                                                    ==

Revision as of 09:08, 12 July 2023

आंकड़ों में पॉइसन प्रतिगमन प्रतिगमन विश्लेषण का एक सामान्यीकृत रैखिक मॉडल रूप है जिसका उपयोग गणना डेटा और आकस्मिक तालिकाओं को मॉडल करने के लिए किया जाता है। पॉइसन प्रतिगमन मानता है कि प्रतिक्रिया चर Y में पॉइसन वितरण है, और मानता है कि इसके अपेक्षित मूल्य के लघुगणक को अज्ञात मापदंडों के रैखिक संयोजन द्वारा मॉडल किया जा सकता है। एक पॉइसन प्रतिगमन मॉडल को कभी-कभी लॉग-रैखिक मॉडल के रूप में जाना जाता है, विशेष रूप से जब आकस्मिक तालिकाओं को मॉडल करने के लिए उपयोग किया जाता है।

नकारात्मक द्विपद प्रतिगमन पॉइसन प्रतिगमन का एक लोकप्रिय सामान्यीकरण है क्योंकि यह अत्यधिक प्रतिबंधात्मक धारणा को शिथिल करता है कि विचरण पॉइसन मॉडल द्वारा बनाए गए माध्य के समान है। पारंपरिक नकारात्मक द्विपद प्रतिगमन मॉडल पॉइसन-गामा मिश्रण वितरण पर आधारित है। यह मॉडल लोकप्रिय है क्योंकि यह गामा वितरण के साथ पॉइसन विषमता का मॉडल तैयार करता है।

पॉइसन प्रतिगमन मॉडल (कैनोनिकल) लिंक फलन के रूप में लघुगणक के साथ सामान्यीकृत रैखिक मॉडल हैं, और प्रतिक्रिया की अनुमानित संभाव्यता वितरण के रूप में पॉइसन वितरण फलन है।

प्रतिगमन मॉडल

यदि स्वतंत्र चरों का एक सदिश है, तो मॉडल रूप लेता है

जहाँ और . कभी-कभी इसे अधिक संक्षिप्त रूप में लिखा जाता है

जहाँ अब एक (n+1)-आयामी सदिश है जिसमें नंबर एक से जुड़े n स्वतंत्र चर सम्मिलित हैं। यहाँ सादा है से संबद्ध .


इस प्रकार, जब एक पॉइसन प्रतिगमन मॉडल और एक इनपुट सदिश दिया जाता है, तो संबंधित पॉइसन वितरण का अनुमानित माध्य इस प्रकार दिया जाता है

यदि भविष्यवक्ता चर के संगत मान के साथ स्वतंत्र अवलोकन हैं, तो का अनुमान अधिकतम संभावना से लगाया जा सकता है। अधिकतम-संभावना अनुमानों में बंद-रूप अभिव्यक्ति का अभाव है और इसे संख्यात्मक विधि से पाया जाना चाहिए। अधिकतम-संभावना पॉइसन प्रतिगमन के लिए संभाव्यता सतह सदैव अवतल होती है, जिससे न्यूटन-रेफसन या अन्य ग्रेडिएंट-आधारित विधियाँ उपयुक्त अनुमान तकनीक बन जाती हैं।

अधिकतम संभावना-आधारित पैरामीटर अनुमान

मापदंडों के एक सेट और एक इनपुट सदिश x को देखते हुए, जैसा कि ऊपर बताया गया है, अनुमानित पॉइसन वितरण का माध्य इस प्रकार दिया गया है

और इस प्रकार, पॉइसन वितरण की संभाव्यता द्रव्यमान फलन द्वारा दी गई है

अब मान लीजिए कि हमें एक डेटा सेट दिया गया है जिसमें m सदिश के साथ-साथ m मान का एक सेट भी सम्मिलित है। फिर, मापदंडों के दिए गए सेट के लिए θ, डेटा के इस विशेष सेट को प्राप्त करने की संभावना इस प्रकार दी गई है

अधिकतम संभावना की विधि से, हम पैरामीटर θ का सेट खोजना चाहते हैं जो इस संभावना को यथासंभव बड़ा बनाता है। ऐसा करने के लिए, समीकरण को पहले θ के संदर्भ में एक संभावना फलन के रूप में फिर से लिखा जाता है:

ध्यान दें कि समीकरण की भुजाओं का व्यंजक वास्तव में नहीं बदला है। इस रूप में किसी सूत्र के साथ काम करना सामान्यतः कठिन होता है; इसके अतिरिक्त कोई लॉग-संभावना का उपयोग करता है:

ध्यान दें कि पैरामीटर θ केवल योग में प्रत्येक पद के पहले दो पदों में दिखाई देते हैं। इसलिए, यह देखते हुए कि हम केवल θ के लिए सर्वोत्तम मूल्य खोजने में रुचि रखते हैं, हम yi! को छोड़ सकते हैं! और बस लिखो

अधिकतम ज्ञात करने के लिए, हमें एक समीकरण को हल करना होगा जिसका कोई बंद-रूप समाधान नहीं है। चूँकि नकारात्मक लॉग-संभावना, , एक उत्तल फलन है, और इसलिए ग्रेडिएंट डिसेंट जैसी मानक उत्तल अनुकूलन तकनीकों को θ का इष्टतम मान खोजने के लिए प्रयुक्त किया जा सकता है।

व्यवहार में पॉइसन प्रतिगमन

पॉइसन प्रतिगमन उपयुक्त हो सकता है जब आश्रित चर एक गिनती है, उदाहरण के लिए पॉइसन वितरण#घटना जैसे कॉल सेंटर पर टेलीफोन कॉल का आगमन।[1] घटनाएँ इस अर्थ में स्वतंत्र होनी चाहिए कि एक कॉल के आने से दूसरी कॉल की संभावना कम या ज्यादा नहीं होगी, किंतु घटनाओं की प्रति इकाई समय की संभावना को दिन के समय जैसे सहसंयोजकों से संबंधित माना जाता है।

एक्सपोज़र और ऑफसेट

पॉइसन प्रतिगमन दर डेटा के लिए भी उपयुक्त हो सकता है, जहां दर उस इकाई के एक्सपोज़र (अवलोकन की एक विशेष इकाई) के कुछ माप से विभाजित घटनाओं की गिनती है। उदाहरण के लिए, जीवविज्ञानी किसी जंगल में वृक्ष प्रजातियों की संख्या की गणना कर सकते हैं: घटनाएँ वृक्ष अवलोकन होंगी, एक्सपोज़र इकाई क्षेत्र होगा, और दर प्रति इकाई क्षेत्र में प्रजातियों की संख्या होगी। जनसांख्यिकी विशेषज्ञ भौगोलिक क्षेत्रों में मृत्यु दर को व्यक्ति-वर्ष से विभाजित मौतों की संख्या के रूप में मॉडल कर सकते हैं। अधिक सामान्यतः, घटना दरों की गणना प्रति इकाई समय की घटनाओं के रूप में की जा सकती है, जो प्रत्येक इकाई के लिए अवलोकन विंडो को अलग-अलग करने की अनुमति देती है। इन उदाहरणों में, एक्सपोज़र क्रमशः इकाई क्षेत्र, व्यक्ति-वर्ष और इकाई समय है। पॉइसन प्रतिगमन में इसे 'ऑफ़सेट' के रूप में संभाला जाता है। यदि दर गणना/एक्सपोज़र है, तो समीकरण के दोनों पक्षों को एक्सपोज़र से गुणा करने पर यह समीकरण के दाईं ओर चला जाता है। जब समीकरण के दोनों पक्षों को लॉग किया जाता है, तो अंतिम मॉडल में एक शब्द के रूप में लॉग (एक्सपोज़र) होता है जो प्रतिगमन गुणांक में जोड़ा जाता है। इस लॉग वेरिएबल, लॉग (एक्सपोज़र) को ऑफसेट वेरिएबल कहा जाता है और समीकरण के दाईं ओर एक पैरामीटर अनुमान (लॉग (एक्सपोज़र) के लिए) 1 तक सीमित होता है।

जो ये दर्शाता हे

आर में जीएलएम के स्थिति में ऑफसेट को offset() फलन का उपयोग करके प्राप्त किया जा सकता है:

glm(y ~ offset(log(exposure)) + x, family=poisson(link=log) )


अति फैलाव और शून्य मुद्रास्फीति

पॉइसन वितरण की एक विशेषता यह है कि इसका माध्य इसके विचरण के समान है। कुछ परिस्थितियों में, यह पाया जाएगा कि देखा गया विचरण माध्य से अधिक है; इसे अति फैलाव के रूप में जाना जाता है और यह इंगित करता है कि मॉडल उपयुक्त नहीं है। एक सामान्य कारण प्रासंगिक व्याख्यात्मक चर, या आश्रित टिप्पणियों का चूक है। कुछ परिस्थितियों में, अति-विक्षेपण की समस्या को अर्ध-संभावना अनुमान या इसके अतिरिक्त नकारात्मक द्विपद वितरण का उपयोग करके हल किया जा सकता है।[2][3]

वेर होफ और बोवेंग ने अर्ध-पॉइसन (जिसे अर्ध-संभावना के साथ अति-फैलाव भी कहा जाता है) और नकारात्मक द्विपद (गामा-पॉइसन के समान) के बीच अंतर का वर्णन इस प्रकार किया: यदि E(Y) = μ, अर्ध-पॉइसन मॉडल varr(Y) = θμ मानता है जबकि गामा-पॉइसन var(Y) = μ(1+ κμ) मानता है, जहां θ अर्ध-पॉइसन अतिफैलाव पैरामीटर है, और κ नकारात्मक द्विपद वितरण का आकार पैरामीटर है। दोनों मॉडलों के लिए, मापदंडों का अनुमान पुनरावृत्तीय रूप से पुनः भारित न्यूनतम वर्गों का उपयोग करके लगाया जाता है। अर्ध-पॉइसन के लिए, भार μ/θ हैं। ऋणात्मक द्विपद के लिए, भार μ/(1 + κμ) हैं। बड़े μ और पर्याप्त अतिरिक्त-पॉइसन भिन्नता के साथ, नकारात्मक द्विपद भार 1/κ पर सीमित हैं। वेर होफ और बोवेंग ने एक उदाहरण पर चर्चा की जहां उन्होंने माध्य बनाम माध्य वर्ग अवशिष्टों को आलेखित करके दोनों के बीच चयन किया था।[4]

पॉइसन प्रतिगमन के साथ एक और समान्य समस्या अतिरिक्त शून्य है: यदि काम पर दो प्रक्रियाएं हैं, एक यह निर्धारित करती है कि शून्य घटनाएं हैं या कोई घटना है और एक पॉइसन प्रक्रिया यह निर्धारित करती है कि कितनी घटनाएं हैं, तो पॉइसन प्रतिगमन की तुलना में अधिक शून्य होंगे पूर्वानुमान करना है। एक उदाहरण उस समूह के सदस्यों द्वारा एक घंटे में पी गई सिगरेट का वितरण होगा जहां कुछ व्यक्ति धूम्रपान नहीं करते हैं।

अन्य सामान्यीकृत रैखिक मॉडल जैसे नकारात्मक द्विपद वितरण मॉडल या शून्य-फुलाया मॉडल इन स्थितियों में उत्तम कार्य कर सकते हैं।

इसके विपरीत, कम फैलाव पैरामीटर अनुमान के लिए एक समस्या उत्पन्न कर सकता है।[5]


उत्तरजीविता विश्लेषण में उपयोग

पॉइसन प्रतिगमन आनुपातिक खतरों के मॉडल बनाता है,अस्तित्व विश्लेषण का एक वर्ग: कॉक्स मॉडल के विवरण के लिए आनुपातिक खतरों के मॉडल देखें।

एक्सटेंशन

नियमित पॉइसन प्रतिगमन

पॉइसन प्रतिगमन के लिए मापदंडों का अनुमान लगाते समय कोई सामान्यतः θ के लिए मान खोजने का प्रयास करता है जो फॉर्म की अभिव्यक्ति की संभावना को अधिकतम करता है

जहां m डेटा सेट में उदाहरणों की संख्या है, और पॉइसन वितरण का संभाव्यता द्रव्यमान फलन है जिसका माध्य पर सेट है। इस अनुकूलन समस्या में अधिकतमीकरण के अतिरिक्त नियमितीकरण को जोड़ा जा सकता है[6]

कुछ सकारात्मक स्थिरांक के लिए . रिज प्रतिगमन के समान यह तकनीक, ओवरफिटिंग को कम कर सकती है।


मॉडल बनाता है,अस्तित्व वि का एक वर्ग: कॉक्स आनुपातिक खतरों के मॉडल देखें

यह भी देखें

संदर्भ

  1. Greene, William H. (2003). अर्थमितीय विश्लेषण (Fifth ed.). Prentice-Hall. pp. 740–752. ISBN 978-0130661890.
  2. Paternoster R, Brame R (1997). "Multiple routes to delinquency? A test of developmental and general theories of crime". Criminology. 35: 45–84. doi:10.1111/j.1745-9125.1997.tb00870.x.
  3. Berk R, MacDonald J (2008). "अति फैलाव और पॉइसन प्रतिगमन". Journal of Quantitative Criminology. 24 (3): 269–284. doi:10.1007/s10940-008-9048-4. S2CID 121273486.
  4. Ver Hoef, JAY M.; Boveng, Peter L. (2007-01-01). "Quasi-Poisson vs. Negative Binomial Regression: How should we model overdispersed count data?". Ecology. 88 (11): 2766–2772. doi:10.1890/07-0043.1. PMID 18051645. Retrieved 2016-09-01.
  5. Schwarzenegger, Rafael; Quigley, John; Walls, Lesley (23 November 2021). "Is eliciting dependency worth the effort? A study for the multivariate Poisson-Gamma probability model". Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability: 5. doi:10.1177/1748006X211059417.
  6. Perperoglou, Aris (2011-09-08). "दंडित पॉइसन प्रतिगमन के साथ उत्तरजीविता डेटा फ़िट करना". Statistical Methods & Applications. Springer Nature. 20 (4): 451–462. doi:10.1007/s10260-011-0172-1. ISSN 1618-2510. S2CID 10883925.


अग्रिम पठन