चरघातांकी आनमन: Difference between revisions
(→लाभ) |
(→लाभ) |
||
Line 130: | Line 130: | ||
===अस्वीकृति प्रतिदर्श=== | ===अस्वीकृति प्रतिदर्श=== | ||
आनत वितरण | प्रस्ताव के रूप में आनत वितरण <math>\mathbb{P}_{\theta}</math> का उपयोग करते हुए, अस्वीकृति प्रतिदर्श कलन विधि <math>f_\theta(x)</math> से प्रतिदर्श लेने और प्रायिकता | ||
:<math>\frac{1}{c} \exp(-\theta x + \kappa(\theta)),</math> | :<math>\frac{1}{c} \exp(-\theta x + \kappa(\theta)),</math> के साथ स्वीकार करने को निर्धारित करता है जहां | ||
:<math>c = \sup\limits_{x\in X}\frac{d\mathbb{P}}{d\mathbb{P}_{\theta}}(x).</math> | :<math>c = \sup\limits_{x\in X}\frac{d\mathbb{P}}{d\mathbb{P}_{\theta}}(x).</math> दिया गया है। | ||
अर्थात् एक समान रूप से वितरित यादृच्छिक चर <math>p \sim \mbox{Unif}(0,1)</math> उत्पन्न होता है, और | अर्थात् एक समान रूप से वितरित यादृच्छिक चर <math>p \sim \mbox{Unif}(0,1)</math> उत्पन्न होता है, और <math>f_\theta(x)</math> से प्रतिदर्श स्वीकार किया जाता है यदि | ||
:<math>p \leq \frac{1}{c} \exp(-\theta x + \kappa(\theta)).</math> | :<math>p \leq \frac{1}{c} \exp(-\theta x + \kappa(\theta)).</math>दिया गया हो। | ||
===महत्व प्रतिदर्श=== | |||
घातीय रूप से आनत वितरण को महत्व वितरण के रूप में लागू करने से समीकरण | |||
:<math>\mathbb{E}(h(X)) = \mathbb{E}_{\theta}[\ell(X)h(X)]</math> प्राप्त होता है, | |||
जहां | |||
:<math>\ell(X) = \frac{d\mathbb{P}}{d\mathbb{P}_{\theta}}</math> | :<math>\ell(X) = \frac{d\mathbb{P}}{d\mathbb{P}_{\theta}}</math> | ||
संभाव्यता फलन | संभाव्यता फलन है। तो, महत्व वितरण <math>\mathbb{P}(dX)</math> के तहत प्रायिकता का अनुमान लगाने के लिए <math>f_{\theta}</math> से एक प्रतिदर्श लें और फिर इसे संभावना अनुपात से गुणा करें। इसके अलावा, हमारे पास | ||
:<math>\mbox{Var}(X) = \mathbb{E}[(\ell(X)h(X)^2]</math> | :<math>\mbox{Var}(X) = \mathbb{E}[(\ell(X)h(X)^2]</math> द्वारा दिया गया विचरण है। | ||
====उदाहरण==== | ====उदाहरण==== | ||
स्वतंत्र और समान रूप से वितरित | स्वतंत्र और समान रूप से वितरित <math>\{X_i\}</math> मान लें कि <math>\kappa(\theta) < \infty</math> होगा। <math>\mathbb{P}(X_1 + \cdots + X_n > c)</math> का अनुमान लगाने के लिए, हम | ||
:<math>h(X) = \mathbb{I}(\sum_{i = 1}^n X_i > c)</math> | :<math>h(X) = \mathbb{I}(\sum_{i = 1}^n X_i > c)</math> लेकर महत्व प्रतिदर्श का उपयोग कर सकते हैं। | ||
स्थिरांक <math>c</math> को <math>na</math> या किसी अन्य स्थिरांक <math>a</math>. तब, | |||
:<math>\mathbb{P}(\sum_{i = 1}^n X_i > na) = \mathbb{E}_{\theta_a} \left[\exp\{-\theta_a\sum_{i = 1}^n X_i + n\kappa(\theta_a)\}\mathbb{I}(\sum_{i = 1}^n X_i > na) \right]</math>, | :<math>\mathbb{P}(\sum_{i = 1}^n X_i > na) = \mathbb{E}_{\theta_a} \left[\exp\{-\theta_a\sum_{i = 1}^n X_i + n\kappa(\theta_a)\}\mathbb{I}(\sum_{i = 1}^n X_i > na) \right]</math>, | ||
Line 173: | Line 171: | ||
किसी प्रक्रिया का अनुकरण करने के लिए आनमन भी उपयोगी हो सकता है <math>X(t)</math> एसडीई के अस्वीकृति नमूने के माध्यम से <math>dX(t) = \mu(X(t))dt+ dB(t)</math>. हम एसडीई पर ध्यान केंद्रित कर सकते हैं क्योंकि हम यह जानते हैं <math>X(t)</math> लिखा जा सकता है <math>\int\limits_0^t dX(t) + X(0)</math>. जैसा कि पहले कहा गया है, बहाव के साथ ब्राउनियन गति को बहाव के बिना ब्राउनियन गति में झुकाया जा सकता है। इसलिए, हम चुनते हैं <math>\mathbb{P}_{proposal}=\mathbb{P}_{\theta^*}</math>. संभाव्यता अनुपात <math>\frac{d\mathbb{P}_{\theta^*}}{d\mathbb{P}}(dX(s): 0 \leq s \leq t) =</math> | किसी प्रक्रिया का अनुकरण करने के लिए आनमन भी उपयोगी हो सकता है <math>X(t)</math> एसडीई के अस्वीकृति नमूने के माध्यम से <math>dX(t) = \mu(X(t))dt+ dB(t)</math>. हम एसडीई पर ध्यान केंद्रित कर सकते हैं क्योंकि हम यह जानते हैं <math>X(t)</math> लिखा जा सकता है <math>\int\limits_0^t dX(t) + X(0)</math>. जैसा कि पहले कहा गया है, बहाव के साथ ब्राउनियन गति को बहाव के बिना ब्राउनियन गति में झुकाया जा सकता है। इसलिए, हम चुनते हैं <math>\mathbb{P}_{proposal}=\mathbb{P}_{\theta^*}</math>. संभाव्यता अनुपात <math>\frac{d\mathbb{P}_{\theta^*}}{d\mathbb{P}}(dX(s): 0 \leq s \leq t) =</math> | ||
<math>\prod\limits_{\tau\geq t}\exp\{\mu(X(\tau))dX(\tau) - \frac{\mu(X(\tau))^2}{2}\}dt = \exp\{\int\limits_0^t\mu(X(\tau))dX(\tau) - \int\limits_0^t\frac{\mu(X(s))^2}{2}\}dt</math>. इस संभावना अनुपात को दर्शाया जाएगा <math>M(t)</math>. यह सुनिश्चित करने के लिए कि यह एक वास्तविक संभावना अनुपात है, इसे दिखाया जाना चाहिए <math>\mathbb{E}[M(t)] = 1</math>. यह स्थिति मानते हुए, यह दिखाया जा सकता है <math>f_{X(t)}(y) = f_{X(t)}^{\theta^*}(y)\mathbb{E}_{\theta ^*}[M(t)|X(t) = y]</math>. इसलिए, अस्वीकृति प्रतिदर्श निर्धारित करता है कि एक मानक ब्राउनियन गति से | <math>\prod\limits_{\tau\geq t}\exp\{\mu(X(\tau))dX(\tau) - \frac{\mu(X(\tau))^2}{2}\}dt = \exp\{\int\limits_0^t\mu(X(\tau))dX(\tau) - \int\limits_0^t\frac{\mu(X(s))^2}{2}\}dt</math>. इस संभावना अनुपात को दर्शाया जाएगा <math>M(t)</math>. यह सुनिश्चित करने के लिए कि यह एक वास्तविक संभावना अनुपात है, इसे दिखाया जाना चाहिए <math>\mathbb{E}[M(t)] = 1</math>. यह स्थिति मानते हुए, यह दिखाया जा सकता है <math>f_{X(t)}(y) = f_{X(t)}^{\theta^*}(y)\mathbb{E}_{\theta ^*}[M(t)|X(t) = y]</math>. इसलिए, अस्वीकृति प्रतिदर्श निर्धारित करता है कि एक मानक ब्राउनियन गति से प्रतिदर्श लें और संभाव्यता के साथ स्वीकार करें <math>\frac{f_{X(t)}(y)}{f_{X(t)}^{\theta ^*}(y)}\frac{1}{c} = \frac{1}{c}\mathbb{E}_{\theta ^*}[M(t)|X(t) = y]</math>. | ||
==आनमन पैरामीटर का विकल्प== | ==आनमन पैरामीटर का विकल्प== | ||
===सिगमंड का | ===सिगमंड का कलन विधि=== | ||
मान लीजिए आई.आई.डी. एक्स लाइट टेल्ड डिस्ट्रीब्यूशन के साथ और <math>\mathbb{E}[X] > 0</math>. अनुमान लगाने के लिए <math>\psi(c) = \mathbb{P}(\tau(c) < \infty)</math> कहाँ <math>\tau(c) = \inf\{t:\sum\limits_{i=1}^t X_i> c\}</math>, कब <math>c</math> बड़ा है और इसलिए <math>\psi(c)</math> छोटा, एल्गोरिथ्म महत्व वितरण प्राप्त करने के लिए घातीय आनमन का उपयोग करता है। | मान लीजिए आई.आई.डी. एक्स लाइट टेल्ड डिस्ट्रीब्यूशन के साथ और <math>\mathbb{E}[X] > 0</math>. अनुमान लगाने के लिए <math>\psi(c) = \mathbb{P}(\tau(c) < \infty)</math> कहाँ <math>\tau(c) = \inf\{t:\sum\limits_{i=1}^t X_i> c\}</math>, कब <math>c</math> बड़ा है और इसलिए <math>\psi(c)</math> छोटा, एल्गोरिथ्म महत्व वितरण प्राप्त करने के लिए घातीय आनमन का उपयोग करता है। कलन विधि का उपयोग कई पहलुओं में किया जाता है, जैसे अनुक्रमिक परीक्षण,<ref>D. Siegmund (1985) Sequential Analysis. Springer-Verlag</ref> जी/जी/1 कतार प्रतीक्षा समय, और <math>\psi</math> [[बर्बाद सिद्धांत]] में अंतिम बर्बादी की संभावना के रूप में उपयोग किया जाता है। इस संदर्भ में, यह सुनिश्चित करना तर्कसंगत है <math>\mathbb{P}_\theta(\tau(c) < \infty) = 1</math>. कसौटी <math>\theta > \theta_0</math>, कहाँ <math>\theta_0</math> एस.टी. है <math>\kappa'(\theta_0) = 0</math> इसे हासिल करता है. सिगमंड के कलन विधि का उपयोग करता है <math>\theta = \theta^*</math>, यदि यह उपस्थित है, तो कहां <math>\theta^*</math> निम्नलिखित प्रकार से परिभाषित किया गया है: | ||
<math>\kappa(\theta^*) = 0</math>. | <math>\kappa(\theta^*) = 0</math>. | ||
ऐसा दिखाया गया है <math>\theta^*</math> सीमित सापेक्ष त्रुटि उत्पन्न करने वाला एकमात्र आनमन पैरामीटर है (<math>\underset{x \rightarrow \infty}{\lim\sup}\frac{Var\mathbb{I}_{A(x)}}{\mathbb{P}A(x)^2} < \infty</math>).<ref>{{Cite book|last=Asmussen Soren & Glynn Peter|first=Peter|title=स्टोकेस्टिक सिमुलेशन|publisher=Springer|year=2007|isbn=978-0-387-30679-7|pages=164–167}}</ref> | ऐसा दिखाया गया है <math>\theta^*</math> सीमित सापेक्ष त्रुटि उत्पन्न करने वाला एकमात्र आनमन पैरामीटर है (<math>\underset{x \rightarrow \infty}{\lim\sup}\frac{Var\mathbb{I}_{A(x)}}{\mathbb{P}A(x)^2} < \infty</math>).<ref>{{Cite book|last=Asmussen Soren & Glynn Peter|first=Peter|title=स्टोकेस्टिक सिमुलेशन|publisher=Springer|year=2007|isbn=978-0-387-30679-7|pages=164–167}}</ref> | ||
===ब्लैक-बॉक्स | ===ब्लैक-बॉक्स कलन विधि=== | ||
हम ब्लैक बॉक्स की संरचना को जाने बिना केवल उसके इनपुट और आउटपुट को देख सकते हैं। | हम ब्लैक बॉक्स की संरचना को जाने बिना केवल उसके इनपुट और आउटपुट को देख सकते हैं। कलन विधि को इसकी संरचना पर केवल न्यूनतम जानकारी का उपयोग करना है। जब हम यादृच्छिक संख्याएँ उत्पन्न करते हैं, तो आउटपुट नहीं हो सकता है | ||
समान सामान्य प्राचलिक वर्ग के भीतर, जैसे सामान्य या चरघातांकी वितरण। ईसीएम करने के लिए स्वचालित तरीके का उपयोग किया जा सकता है। होने देना <math>X_1, X_2,...</math>आई.आई.डी. हो वितरण के साथ आर.वी <math>G</math>; सरलता के लिए हम मान लेते हैं <math>X\geq 0</math>. परिभाषित करना <math> \mathfrak{F}_n = \sigma(X_1,...,X_n,U_1,..., U_n) </math>, कहाँ <math>U_1, U_2</math>, . . . स्वतंत्र (0, 1) वर्दी हैं। के लिए एक यादृच्छिक रुकने का समय <math>X_1, X_2</math>, . . . तब रुकने का समय w.r.t. है निस्पंदन <math> \{\mathfrak{F}_n\}</math>, . . . आगे चलो <math> \mathfrak{G}</math> वितरण का एक वर्ग बनें <math>G</math> पर <math> [0, \infty)</math> साथ <math> k_G = \int_0^\infty e^{\theta x}G(dx) < \infty</math> और परिभाषित करें <math>G_\theta</math> द्वारा <math>\frac{dG_\theta}{dG(x)} = e^{\theta x - k_G}</math>. हम दिए गए के लिए ईसीएम के लिए एक ब्लैक-बॉक्स | समान सामान्य प्राचलिक वर्ग के भीतर, जैसे सामान्य या चरघातांकी वितरण। ईसीएम करने के लिए स्वचालित तरीके का उपयोग किया जा सकता है। होने देना <math>X_1, X_2,...</math>आई.आई.डी. हो वितरण के साथ आर.वी <math>G</math>; सरलता के लिए हम मान लेते हैं <math>X\geq 0</math>. परिभाषित करना <math> \mathfrak{F}_n = \sigma(X_1,...,X_n,U_1,..., U_n) </math>, कहाँ <math>U_1, U_2</math>, . . . स्वतंत्र (0, 1) वर्दी हैं। के लिए एक यादृच्छिक रुकने का समय <math>X_1, X_2</math>, . . . तब रुकने का समय w.r.t. है निस्पंदन <math> \{\mathfrak{F}_n\}</math>, . . . आगे चलो <math> \mathfrak{G}</math> वितरण का एक वर्ग बनें <math>G</math> पर <math> [0, \infty)</math> साथ <math> k_G = \int_0^\infty e^{\theta x}G(dx) < \infty</math> और परिभाषित करें <math>G_\theta</math> द्वारा <math>\frac{dG_\theta}{dG(x)} = e^{\theta x - k_G}</math>. हम दिए गए के लिए ईसीएम के लिए एक ब्लैक-बॉक्स कलन विधि परिभाषित करते हैं <math>\theta</math> और दी गई कक्षा <math>\mathfrak{G}</math>यादृच्छिक रोक समय की एक जोड़ी के रूप में वितरण का <math>\tau</math> और एक <math> \mathfrak{F}_\tau- </math> मापने योग्य आर.वी. <math>Z </math> ऐसा है कि <math>Z </math> के अनुसार वितरित किया जाता है <math>G_\theta </math> किसी के लिए <math> G \in \mathfrak{G}</math>. औपचारिक रूप से, हम इसे इस प्रकार लिखते हैं <math> \mathbb{P}_G (Z<x) = G_\theta (x) </math> सभी के लिए <math>x </math>. दूसरे शब्दों में, गेम के नियम यह हैं कि कलन विधि का उपयोग किया जा सकता है | ||
से सिम्युलेटेड मान <math>G </math> और आर.वी. तैयार करने के लिए अतिरिक्त वर्दी। से <math>G_\theta </math>.<ref>Asmussen, Soren & Glynn, Peter (2007). Stochastic Simulation. Springer. pp. 416–420. {{ISBN|978-0-387-30679-7}}</ref> | से सिम्युलेटेड मान <math>G </math> और आर.वी. तैयार करने के लिए अतिरिक्त वर्दी। से <math>G_\theta </math>.<ref>Asmussen, Soren & Glynn, Peter (2007). Stochastic Simulation. Springer. pp. 416–420. {{ISBN|978-0-387-30679-7}}</ref> | ||
Revision as of 08:17, 18 July 2023
चरघातांकी आनमन (ET), चरघातांकी व्यावर्तन, या चरघातांकी माप का परिवर्तन (ECM) एक वितरण स्थानांतरण तकनीक है जिसका उपयोग गणित के कई हिस्सों में किया जाता है। एक यादृच्छिक चर के विभिन्न चरघातांकी आनमन को के प्राकृतिक घातीय समूह के रूप में जाना जाता है।
चरघातांकी आनमन का उपयोग मोंटे कार्लो अनुमान में दुर्लभ-घटना अनुकरण और विशेष रूप से अस्वीकृति और महत्व प्रतिदर्श के लिए किया जाता है। गणितीय वित्त में [1] चरघातांकी आनमन को एस्चेर आनमन (या एस्चर परिवर्तन) के रूप में भी जाना जाता है, और इसे प्रायः अप्रत्यक्ष एजवर्थ श्रृंखला के साथ जोड़ा जाता है और इसका उपयोग बीमा वायदा मूल्य निर्धारण जैसे संदर्भों में किया जाता है।[2]
चरघातांकी आनमन की प्रारंभिक औपचारिकता का श्रेय प्रायः एस्चेर को दिया जाता है[3] जबकि महत्व प्रतिदर्श में इसके उपयोग का श्रेय डेविड सिगमंड को दिया जाता है।[4]
अवलोकन
प्रायिकता वितरण , घनत्व , और आघुर्णजनक फलन (एमजीएफ) के साथ एक यादृच्छिक चर को देखते हुए, चरघातांकी रूप से आनत माप को इस प्रकार परिभाषित किया गया है,
जहां संचयी जनक फलन (सीजीएफ) है जिसे
- के रूप में परिभाषित किया गया है।
हम को -का आनत घनत्व कहते हैं। यह . को संतुष्ट करता है।
एक यादृच्छिक सदिश के घातीय आनमन की एक समान परिभाषा है,
जहां दिया गया है।
उदाहरण
कई स्थितियों में चरचरघातांकी रूप से आनत माप का प्राचलिक रूप के समान होता है। एक-आयामी उदाहरणों में सामान्य वितरण, घातीय वितरण, द्विपद वितरण और पॉइसन वितरण सम्मिलित हैं।
उदाहरण के लिए, सामान्य वितरण की स्थिति में, आनत घनत्व , घनत्व है। नीचे दी गई तालिका आनत घनत्व के अधिक उदाहरण प्रदान करती है।
मूल वितरण[5][6] | θ-आनत वितरण |
---|---|
हालाँकि, कुछ वितरणों के लिए, घातीय रूप से आनत वितरण के समान प्राचलिक समूह से संबंधित नहीं है। इसका एक उदाहरण पेरेटो वितरण है, जहां को के लिए अच्छी तरह से परिभाषित किया गया है लेकिन यह एक मानक वितरण नहीं है। ऐसे उदाहरणों में, यादृच्छिक परिवर्तनीय पीढ़ी हमेशा स्पष्ट नहीं हो सकती है।[7]
लाभ
कई स्थितियों में, आनत वितरण मूल के समान प्राचलिक समूह से संबंधित होता है। यह विशेष रूप से सच है कि एक मूल घनत्व वितरण घातीय समूह से संबंधित होता है। यह मोंटे-कार्लो अनुकरण के दौरान यादृच्छिक चर पीढ़ी को सरल बनाता है। यदि यह स्थिति नहीं है तो घातीय आनमन अभी भी उपयोगी हो सकता है, हालांकि सामान्यीकरण संभव होना चाहिए क्योकि अतिरिक्त प्रतिदर्श कलन विधि की आवश्यकता हो सकती है।
इसके अलावा, मूल और आनत सीएफजी,
- के बीच एक सरल संबंध उपस्थित है। इसका अवलोकन हम इस प्रकार कर सकते हैं,।
- इस प्रकार से,
- .
स्पष्ट रूप से, यह संबंध आनत वितरण के सीजीएफ और इस प्रकार वितरण क्षणों की आसान गणना की अनुमति देता है। इसके अलावा, इसका परिणाम संभावना अनुपात का एक सरल रूप है। विशेष रूप से,
- . सरल रूप है।
गुण
- यदि , का सीजीएफ है, तो आनत - का सीजीएफ
- है। इसका मतलब यह है कि आनत का -वाँ संचयी है। विशेष रूप से, आनत वितरण की अपेक्षा है।
- आनत वितरण का विचरण
- . है।
- पुनरावर्ती आनत योगात्मक है। अर्थात् पहले और फिर से आनत एक बार के आनत के समान है।
- यदि स्वतंत्र, लेकिन आवश्यक रूप से समान यादृच्छिक चर का योग नहीं है, तो का - आनत वितरण प्रत्येक - को व्यक्तिगत रूप से आनत का योग है।
- यदि , तो आनत वितरण और के मूल वितरण के बीच कुल्बैक-लीबलर विचलन है।
- इसी प्रकार, के बाद से, हमारे पास,
- के रूप में कुल्बैक-लीबलर विचलन है।
अनुप्रयोग
दुर्लभ-घटना अनुकरण
का घातीय आनमन, यह मानते हुए कि यह उपस्थित है, यह वितरण के एक समूह की आपूर्ति करता है जिसका उपयोग स्वीकृति-अस्वीकृति प्रतिदर्श के लिए प्रस्ताव वितरण या महत्व प्रतिदर्श के लिए महत्व वितरण के रूप में किया जा सकता है। एक सामान्य अनुप्रयोग प्रक्षेत्र के उप-क्षेत्र पर सशर्त वितरण से प्रतिदर्श, अर्थात लेना है। के उचित विकल्प के साथ, के प्रतिदर्श सार्थक रूप से प्रतिदर्श की आवश्यक मात्रा या अनुमानक के विचरण को कम कर सकता है।
सैडलबिंदु सन्निकटन
सैडलबिंदु सन्निकटन विधि एक घनत्व सन्निकटन पद्धति है जिसका उपयोग प्रायः स्वतंत्र, समान रूप से वितरित यादृच्छिक चर के योग और औसत के वितरण के लिए किया जाता है जो एडगेवर्थ श्रृंखला को नियोजित करता है, साथ ही जो चरम मूल्यों पर बेहतर प्रदर्शन करता है। प्राकृतिक घातीय समूह की परिभाषा से, निम्नवत निष्कर्ष निकलता है जोकि
- है।
के लिए एजवर्थ विस्तार लागू करने पर, हमा
- प्राप्त कर सकते है,
जहां ,
- का मानक सामान्य घनत्व है,
- ,
और हर्मिट बहुपद हैं।
वितरण के केंद्र से उत्तरोत्तर दूर के मूल्यों पर विचार करते समय, और पद अपरिबद्ध हो जाते हैं। हालाँकि, के प्रत्येक मान के लिए , हम को इस प्रकार चुन सकते हैं जैसे कि
- ।
के इस मान को सैडल-बिंदु के रूप में जाना जाता है, और उपरोक्त विस्तार का मूल्यांकन हमेशा आनत वितरण की अपेक्षा पर किया जाता है। का यह विकल्प
अस्वीकृति प्रतिदर्श
प्रस्ताव के रूप में आनत वितरण का उपयोग करते हुए, अस्वीकृति प्रतिदर्श कलन विधि से प्रतिदर्श लेने और प्रायिकता
- के साथ स्वीकार करने को निर्धारित करता है जहां
- दिया गया है।
अर्थात् एक समान रूप से वितरित यादृच्छिक चर उत्पन्न होता है, और से प्रतिदर्श स्वीकार किया जाता है यदि
- दिया गया हो।
महत्व प्रतिदर्श
घातीय रूप से आनत वितरण को महत्व वितरण के रूप में लागू करने से समीकरण
- प्राप्त होता है,
जहां
संभाव्यता फलन है। तो, महत्व वितरण के तहत प्रायिकता का अनुमान लगाने के लिए से एक प्रतिदर्श लें और फिर इसे संभावना अनुपात से गुणा करें। इसके अलावा, हमारे पास
- द्वारा दिया गया विचरण है।
उदाहरण
स्वतंत्र और समान रूप से वितरित मान लें कि होगा। का अनुमान लगाने के लिए, हम
- लेकर महत्व प्रतिदर्श का उपयोग कर सकते हैं।
स्थिरांक को या किसी अन्य स्थिरांक . तब,
- ,
कहाँ को दर्शाता है सैडल-बिंदु समीकरण द्वारा परिभाषित
- .
स्टोकेस्टिक प्रक्रियाएं
एक सामान्य आर.वी. के आनमन को देखते हुए, यह सहज है कि घातीय आनमन , बहाव के साथ एक एक प्रकार कि गति और विचरण , बहाव के साथ एक ब्राउनियन गति है और विचरण . इस प्रकार, बहाव के साथ कोई भी ब्राउनियन गति बिना किसी बहाव के ब्राउनियन गति के रूप में सोचा जा सकता है . इसे देखने के लिए प्रक्रिया पर विचार करें . . संभाव्यता अनुपात पद, , एक मार्टिंगेल (संभावना सिद्धांत) है और आमतौर पर निरूपित किया जाता है . इस प्रकार, बहाव प्रक्रिया के साथ एक ब्राउनियन गति (साथ ही ब्राउनियन निस्पंदन के लिए अनुकूलित कई अन्य निरंतर प्रक्रियाएं) एक है -मार्टिंगेल.[10][11]
स्टोकेस्टिक विभेदक समीकरण
उपरोक्त स्टोकेस्टिक विभेदक समीकरण के वैकल्पिक प्रतिनिधित्व की ओर ले जाता है : , कहाँ = . गिरसानोव का फॉर्मूला संभावना अनुपात बताता है . इसलिए, गिरसानोव के फॉर्मूला का उपयोग कुछ एसडीई के लिए महत्व के नमूने को लागू करने के लिए किया जा सकता है।
किसी प्रक्रिया का अनुकरण करने के लिए आनमन भी उपयोगी हो सकता है एसडीई के अस्वीकृति नमूने के माध्यम से . हम एसडीई पर ध्यान केंद्रित कर सकते हैं क्योंकि हम यह जानते हैं लिखा जा सकता है . जैसा कि पहले कहा गया है, बहाव के साथ ब्राउनियन गति को बहाव के बिना ब्राउनियन गति में झुकाया जा सकता है। इसलिए, हम चुनते हैं . संभाव्यता अनुपात . इस संभावना अनुपात को दर्शाया जाएगा . यह सुनिश्चित करने के लिए कि यह एक वास्तविक संभावना अनुपात है, इसे दिखाया जाना चाहिए . यह स्थिति मानते हुए, यह दिखाया जा सकता है . इसलिए, अस्वीकृति प्रतिदर्श निर्धारित करता है कि एक मानक ब्राउनियन गति से प्रतिदर्श लें और संभाव्यता के साथ स्वीकार करें .
आनमन पैरामीटर का विकल्प
सिगमंड का कलन विधि
मान लीजिए आई.आई.डी. एक्स लाइट टेल्ड डिस्ट्रीब्यूशन के साथ और . अनुमान लगाने के लिए कहाँ , कब बड़ा है और इसलिए छोटा, एल्गोरिथ्म महत्व वितरण प्राप्त करने के लिए घातीय आनमन का उपयोग करता है। कलन विधि का उपयोग कई पहलुओं में किया जाता है, जैसे अनुक्रमिक परीक्षण,[12] जी/जी/1 कतार प्रतीक्षा समय, और बर्बाद सिद्धांत में अंतिम बर्बादी की संभावना के रूप में उपयोग किया जाता है। इस संदर्भ में, यह सुनिश्चित करना तर्कसंगत है . कसौटी , कहाँ एस.टी. है इसे हासिल करता है. सिगमंड के कलन विधि का उपयोग करता है , यदि यह उपस्थित है, तो कहां निम्नलिखित प्रकार से परिभाषित किया गया है:
.
ऐसा दिखाया गया है सीमित सापेक्ष त्रुटि उत्पन्न करने वाला एकमात्र आनमन पैरामीटर है ().[13]
ब्लैक-बॉक्स कलन विधि
हम ब्लैक बॉक्स की संरचना को जाने बिना केवल उसके इनपुट और आउटपुट को देख सकते हैं। कलन विधि को इसकी संरचना पर केवल न्यूनतम जानकारी का उपयोग करना है। जब हम यादृच्छिक संख्याएँ उत्पन्न करते हैं, तो आउटपुट नहीं हो सकता है समान सामान्य प्राचलिक वर्ग के भीतर, जैसे सामान्य या चरघातांकी वितरण। ईसीएम करने के लिए स्वचालित तरीके का उपयोग किया जा सकता है। होने देना आई.आई.डी. हो वितरण के साथ आर.वी ; सरलता के लिए हम मान लेते हैं . परिभाषित करना , कहाँ , . . . स्वतंत्र (0, 1) वर्दी हैं। के लिए एक यादृच्छिक रुकने का समय , . . . तब रुकने का समय w.r.t. है निस्पंदन , . . . आगे चलो वितरण का एक वर्ग बनें पर साथ और परिभाषित करें द्वारा . हम दिए गए के लिए ईसीएम के लिए एक ब्लैक-बॉक्स कलन विधि परिभाषित करते हैं और दी गई कक्षा यादृच्छिक रोक समय की एक जोड़ी के रूप में वितरण का और एक मापने योग्य आर.वी. ऐसा है कि के अनुसार वितरित किया जाता है किसी के लिए . औपचारिक रूप से, हम इसे इस प्रकार लिखते हैं सभी के लिए . दूसरे शब्दों में, गेम के नियम यह हैं कि कलन विधि का उपयोग किया जा सकता है से सिम्युलेटेड मान और आर.वी. तैयार करने के लिए अतिरिक्त वर्दी। से .[14]
यह भी देखें
- महत्व प्रतिदर्श
- अस्वीकृति प्रतिदर्श
- मोंटे कार्लो विधि
- घातीय समूह
- एस्चेर परिवर्तन
संदर्भ
- ↑ H.U. Gerber & E.S.W. Shiu (1994). "Esscher द्वारा विकल्प मूल्य निर्धारण परिवर्तन". Transactions of the Society of Actuaries. 46: 99–191.
- ↑ Cruz, Marcelo (2015). परिचालन जोखिम और बीमा विश्लेषण के मौलिक पहलू. Wiley. pp. 784–796. ISBN 978-1-118-11839-9.
- ↑ Butler, Ronald (2007). अनुप्रयोगों के साथ सैडल प्वाइंट सन्निकटन. Cambridge University Press. pp. 156. ISBN 9780521872508.
- ↑ Siegmund, D. (1976). "Importance Sampling in the Monte Carlo Study of Sequential Tests". The Annals of Statistics. 4 (4): 673–684. doi:10.1214/aos/1176343541.
- ↑ Asmussen Soren & Glynn Peter (2007). Stochastic Simulation. Springer. p. 130. ISBN 978-0-387-30679-7.
- ↑ Fuh, Cheng-Der; Teng, Huei-Wen; Wang, Ren-Her (2013). "Efficient Importance Sampling for Rare Event Simulation with Applications".
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Asmussen, Soren & Glynn, Peter (2007). Stochastic Simulation. Springer. pp. 164–167. ISBN 978-0-387-30679-7
- ↑ Butler, Ronald (2007). अनुप्रयोगों के साथ सैडल प्वाइंट सन्निकटन. Cambridge University Press. pp. 156–157. ISBN 9780521872508.
- ↑ Seeber, G.U.H. (1992). जीएलआईएम और सांख्यिकीय मॉडलिंग में प्रगति. Springer. pp. 195–200. ISBN 978-0-387-97873-4.
- ↑ Asmussen Soren & Glynn Peter (2007). स्टोकेस्टिक सिमुलेशन. Springer. p. 407. ISBN 978-0-387-30679-7.
- ↑ Steele, J. Michael (2001). स्टोकेस्टिक कैलकुलस और वित्तीय अनुप्रयोग. Springer. pp. 213–229. ISBN 978-1-4419-2862-7.
- ↑ D. Siegmund (1985) Sequential Analysis. Springer-Verlag
- ↑ Asmussen Soren & Glynn Peter, Peter (2007). स्टोकेस्टिक सिमुलेशन. Springer. pp. 164–167. ISBN 978-0-387-30679-7.
- ↑ Asmussen, Soren & Glynn, Peter (2007). Stochastic Simulation. Springer. pp. 416–420. ISBN 978-0-387-30679-7