ग्राम-चार्लियर एजवर्थ श्रृंखला जॉर्जेन पेडर्सन ग्राम और कार्ल चार्लीयर के सम्मान में नामित हैं, और एडगेवर्थ श्रृंखला को फ्रांसिस य्सिड्रो एडगेवर्थ के सम्मान में नामित किया गया हैं, यह एक गणितीय श्रृंखला हैं, जो इसके संचयकों के संदर्भ में संभाव्यता वितरण का अनुमान लगाती हैं।[1] यह शृंखला वही है, अपितु इसके पदों की व्यवस्था और इस प्रकार श्रृंखला को काटने की सटीकता भिन्न होती है।[2] इन विस्तारों का मुख्य विचार वितरण के विशेषता फलन के अनुसार संभावना सिद्धांत को लिखना है, जिसका संभाव्यता घनत्व कार्य f करता है, जिसको ज्ञात करना और उपयुक्त गुणों के साथ वितरण के विशिष्ट कार्य के संदर्भ में अनुमानित किया जाना है, और इसके साथ ही f को पुनर्प्राप्त करना है, इस प्रकार इसका व्युत्क्रम फूरियर रूपांतरण के माध्यम से प्राप्त किया जाता हैं।
हम सतत यादृच्छिक चर (वैरियेबल) की जांच करते हैं। इस प्रकार द्वारा इसके वितरण का अभिलक्षणिक फलन होता हैं जिसका घनत्व f फलन होता है, और इसके संचयक को प्रदर्शित करता हैं। इस प्रकार हम संभाव्यता घनत्व फलन के साथ ज्ञात वितरण के संदर्भ ψ में विस्तार करते हैं, इसकी विशेषता फलन , और संचयी मान, घनत्व ψ को सामान्यतः सामान्य वितरण के रूप में चुना जाता है, अपितु अन्य विकल्प भी संभव होता हैं। इस प्रकार संचयकों की परिभाषा के अनुसार, हमारे पास वालेस को1958 के अनुसार देख सकते हैं।[3]
और
जो निम्नलिखित औपचारिक पहचान देता है:
फूरियर रूपांतरण के गुणों से, का फूरियर रूपांतरण है, जहाँ D के संबंध में विभेदक संचालिका x है, इस प्रकार इसके परिवर्तन के पश्चात के साथ समीकरण के दोनों पक्षों पर हम f औपचारिक विस्तार से पाते हैं।
इस प्रकार यदि ψ को सामान्य घनत्व के रूप में चुना जाता है,
माध्य और विवैरियेबलण के साथ जैसा कि f द्वारा दिया गया है, इस प्रकार का मान गलत है, और विवैरियेबलण की ओर विस्तारित हो जाता है
तब से सभी के लिए r > 2 का मान प्राप्त होता हैं, क्योंकि सामान्य वितरण के उच्च संचयी 0 हैं। इसके लिए घातांक का विस्तार करके और डेरिवेटिव के क्रम के अनुसार शर्तों को एकत्रित करके, हम ग्राम-चार्लियर ए श्रृंखला पर पहुंचते हैं। इस प्रकार के विस्तार को बेल बहुपद के रूप में संक्षिप्त रूप से लिखा जा सकता है-
गाऊसी फलन के n-वें व्युत्पन्न के बाद से हर्माइट बहुपद के रूप में दिया गया है-
यह हमें ग्राम-चार्लियर ए श्रृंखला की अंतिम अभिव्यक्ति देता है।
श्रृंखला को एकीकृत करने से हमें संचयी वितरण फलन प्राप्त होता है
जहाँ सामान्य वितरण का सीडीएफ है।
यदि हम सामान्य वितरण में केवल पहले दो सुधार शब्दों को सम्मिलित करते हैं, तो हमें यह मान प्राप्त होता है।
इसके साथ और मान प्राप्त होता हैं।
यहाँ पर ध्यान दें कि इस अभिव्यक्ति के धनात्मक होने की गारंटी नहीं है, और इसलिए यह वैध संभाव्यता वितरण नहीं है। इस कारण ग्राम-चार्लियर ए श्रृंखला रुचि के कई स्थितियों में भिन्न होती है, यह केवल तभी परिवर्तित होती है, जब से अधिक तेजी से गिरता है, और अनंत पर (क्रैमर 1957) हो। इस प्रकार जब यह अभिसरण नहीं होता है, तो श्रृंखला भी वास्तविक स्पर्शोन्मुख विस्तार नहीं है, क्योंकि विस्तार की त्रुटि का अनुमान लगाना संभव नहीं है। इस कारण से, एडगेवर्थ श्रृंखला (अगला भाग देखें) को सामान्यतः ग्राम-चार्लियर ए श्रृंखला की तुलना में पसंद किया जाता है।
एजवर्थ श्रृंखला
एडगेवर्थ ने केंद्रीय सीमा प्रमेय में सुधार के रूप में समान विस्तार विकसित किया हैं।[4] इस प्रकार एजवर्थ श्रृंखला का लाभ यह है कि त्रुटि को नियंत्रित किया जाता है, जिससे कि यह वास्तविक स्पर्शोन्मुख विस्तार हो।
इस प्रकार परिमित माध्य के साथ स्वतंत्र और समान रूप से वितरित यादृच्छिक वैरियेबल का अनुक्रम बनें रहते हैं। और विवैरियेबलण , और जाने उनके मानकीकृत योग बनते हैं:
इस प्रकार वैरियेबलों के संचयी वितरण फलनों को से निरूपित करते हैं। इसके पश्चात पुनः केंद्रीय सीमा प्रमेय द्वारा,
प्रत्येक के लिए का मान जब तक माध्य और विवैरियेबलण परिमित होता हैं।
जिसका मानकीकरण यह सुनिश्चित करता है कि पहले दो सहचालक हैं और हैं। इस कारण अब मान लीजिए कि, इसके अर्थ के अतिरिक्त और विवैरियेबलण , आई.आई.डी. यादृच्छिक वैरियेबल उच्च सहसंयोजक होते हैं। जिसके कारण क्यूमुलेंट्स की योगात्मकता और एकरूपता गुणों से के क्यूमुलेंट्स के संचयकों के संदर्भ में प्राप्त होता हैं। इसलिए मान प्राप्त होता है,
यदि हम विशेषता फलन की औपचारिक अभिव्यक्ति का विस्तार करते हैं, इस प्रकार का मानक सामान्य वितरण के संदर्भ में इस प्रकार हैं, अर्थात, यदि हम निर्धारित करते हैं
फिर विस्तार में संचयी अंतर हैं
इसके घनत्व फलन के लिए ग्राम-चार्लियर ए श्रृंखला हैं, इस प्रकार अब हमें उक्त समीकरण प्राप्त होता है।
एजवर्थ श्रृंखला को ग्राम-चार्लियर ए श्रृंखला के समान ही विकसित किया गया है, जो केवल अब शर्तों को शक्तियों के अनुसार एकत्र किया जाता है, इसके कारण . n-m/2 के गुणांक पद m के पूर्णांक विभाजनों के अनुरूप बेल बहुपदों के एकपदों को एकत्रित करके प्राप्त किया जा सकता है। इस प्रकार, हमारे पास विशिष्ट कार्य इस प्रकार है
जहाँ डिग्री का बहुपद है, जिसे पुनः व्युत्क्रम फूरियर रूपांतरण के पश्चात घनत्व फलन के द्वारा इंगित करते हैं, जो इस प्रकार है-
इसी प्रकार, श्रृंखला को एकीकृत करके, हम वितरण फलन प्राप्त करते हैं
हम स्पष्ट रूप से बहुपद द्वारा लिख सकते हैं, जैसा कि यहाँ पर हम देख सकते हैं-
जहां m के सभी पूर्णांक विभाजनों का योग इस प्रकार है, इस प्रकार और और मान प्राप्त होता हैं। उदाहरण के लिए, यदि m = 3, तो इस संख्या को विभाजित करने के तीन तरीके हैं: 1 + 1 + 1 = 2 + 1 = 3, इस प्रकार हमें तीन स्थितियों की जांच करने की आवश्यकता है:
1 + 1 + 1 = 1 · K1, तो हमारे पास k1 = 3, L1 = 3, और S = 9 है।
1 + 2 = 1 · K1 + 2 · K2, तो हमारे पास k1 = 1, k2 = 1, L1 = 3, L2 = 4, और S = 7 है।
3 = 3 · K3, तो हमारे पास k3 = 1, L3 = 5, और S = 5 है।