ऑल-पास फ़िल्टर: Difference between revisions
No edit summary |
No edit summary |
||
(26 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Signal processing filter}} | {{short description|Signal processing filter}} | ||
{{More citations needed|date=March 2009}} | {{More citations needed|date=March 2009}} | ||
'''ऑल-पास फ़िल्टर''' एक संकेत प्रसंस्करण है जो कि सभी आवृत्ति को समान रूप से लाभ प्रदान करता है, लेकिन विभिन्न [[ आवृत्ति |आवृत्तियो]] के बीच के संबंध को बदलता है। इनमें से अधिकांश आवृत्तियों के मान को उस पर लागू होने वाले संकेत के आयाम को भी कम करते हैं, जबकि ऑल-पास फ़िल्टर सभी आवृत्तियों के स्तर में बदलाव किए बिना ही अनुमति दे देता है। | |||
== सामान्य अनुप्रयोग == | == सामान्य अनुप्रयोग == | ||
[[ इलेक्ट्रॉनिक संगीत ]] उत्पादन में | [[ इलेक्ट्रॉनिक संगीत ]]उत्पादन में सामान्य अनुप्रयोग नये प्रकार से डिजाइन की गई एक इकाई में होती है जिसे [[ फेजर (प्रभाव) | "प्रभाव]]" नाम से जाना जाता है, जहां ऑल-पास फ़िल्टर कई अनुक्रम में जुड़े होते हैं और आउटपुट संकेत के साथ मिश्रित होते है। | ||
यह आवृत्ति | यह आवृत्ति एक कार्य के रूप में अपने चरणो को बदलकर इस तरह प्रदर्शित करती है। सामान्यतः, फ़िल्टर का वर्णन उस आवृत्ति द्वारा किया जाता है जिस पर [[ चरण स्थानांतरण ]] 90 डिग्री की सीमा को पार कर जाए, जब इनपुट और आउटपुट संकेत [[ चतुर्भुज चरण ]] में जाते हैं तब उनके बीच की दूरी एक चौथाई [[ तरंग दैर्ध्य ]] होती है।<ref>Op Amps for Everyone, Ron Mancini, Newnes 780750677011</ref> | ||
वे | वे सामान्यतः प्रणाली में उत्पन्न होने वाले अन्य अवांछित चरण बदलावों के लिए क्षतिपूर्ति करने के लिए उपयोग किए जाते हैं, या एक नॉच कॉम्ब फ़िल्टर को लागू करने के लिए अपरिवर्तित संस्करण के साथ मिश्रण करने के लिए उपयोग किया जाते है। | ||
उनका उपयोग | उनका उपयोग मिश्रित चरण फ़िल्टर को एक समान परिमाण प्रतिक्रिया के साथ न्यूनतम चरण फ़िल्टर में या एक स्थिर फ़िल्टर को एक समान परिमाण प्रतिक्रिया के साथ स्थिर फ़िल्टर में परिवर्तित करने के लिए भी किया जा सकता है। | ||
== सक्रिय | == सक्रिय समधर्मी कार्यान्वयन == | ||
=== लो-पास फ़िल्टर का उपयोग करके कार्यान्वयन === | |||
[[File:Schem All-Pass Filter Producing Lag.png|thumb|एक लो-पास फ़िल्टर को सम्मिलित करने वाला एक ऑप-एम्प बेस समस्त पारक फ़िल्टर।]] | |||
आसन्न आकृति में दिखाया गया है कि[[ ऑपरेशनल एंप्लीफायर | संक्रियात्मक प्रवर्धक]] परिपथ की ध्रुवी निष्क्रियता के लिए ऑल-पास फ़िल्टर को लागू करता है जिसमें संक्रियातमक प्रवर्धक के अप्रतिलोम इनपुट पर एक [[ लो पास फिल्टर | लो-पास आवृत्ति]] होती है। फ़िल्टर का स्थानांतरण कार्य निम्नपारक द्वारा दिया जाता है: | |||
=== | |||
[[File:Schem All-Pass Filter Producing Lag.png|thumb|एक | |||
आसन्न आकृति में दिखाया गया [[ ऑपरेशनल एंप्लीफायर ]] परिपथ | |||
:<math>H(s) = - \frac{ s - \frac{1}{RC} }{ s + \frac{1}{RC} } = \frac {1-sRC} {1+sRC}, \,</math> | :<math>H(s) = - \frac{ s - \frac{1}{RC} }{ s + \frac{1}{RC} } = \frac {1-sRC} {1+sRC}, \,</math> | ||
जिसका एक ध्रुव -1/आरसी पर और एक ध्रुव शून्य 1/आरसी है वे [[ जटिल विमान |जटिल तल]] के [[ काल्पनिक संख्या |काल्पनिक]] अक्ष पर एक दूसरे के प्रतिबिंब हैं। कुछ[[ कोणीय आवृत्ति ]]ω के लिए H(iω) का परिमाण और चरण होता है। | |||
:<math>|H(i\omega)|=1 \quad \text{and} \quad \angle H(i\omega) = - 2\arctan( \omega RC ). \,</math> | :<math>|H(i\omega)|=1 \quad \text{and} \quad \angle H(i\omega) = - 2\arctan( \omega RC ). \,</math> | ||
फ़िल्टर के लिए सभी इकाई लब्धि परिमाण है। फ़िल्टर प्रत्येकआवृत्ति पर एक अलग विलंब का परिचय देता है और इनपुट-टू-आउटपुट क्वाडरेचर = 1/RC पर पहुंचता है (अर्थात, फेज़ शिफ्ट 90° होता है)।[2] | |||
यह कार्यान्वयन चरण | |||
* उच्च आवृत्ति पर, [[ संधारित्र ]] एक [[ शार्ट सर्किट | शार्ट परिपथ]] | यह कार्यान्वयन चरण बदलाव और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए अप्रतिलोम इनपुट पर फ़िल्टर का उपयोग करता है। | ||
* कम आवृत्तियों और [[ डीसी ऑफसेट ]] पर | * उच्च आवृत्ति पर, [[ संधारित्र |संधारित्र]] एक [[ शार्ट सर्किट |शार्ट परिपथ]] है, जो एक क्रियाशील प्रवर्धक अनुप्रयोगों का निर्माण करता है एकता लाभ के साथ प्रवर्धक (यानी, 180 ° चरण शिफ्ट) को बनाता है। | ||
* | * कम आवृत्तियों और [[ डीसी ऑफसेट |डीसी]] पर संधारित्र एक खुला परिपथ, होता है, जो क्रियाशील प्रवर्धक अनुप्रयोगों का निर्माण वोल्टेज अनुयायी द्वारा किया जाता है। | ||
वास्तव में, ऑल-पास | * लो-पास आवृत्ति के कोण ω = 1 / आरसी पर (यानी, जब इनपुट आवृत्ति 1/(2πRC) है, परिपथ 90 डिग्री स्थानान्तरित करता है, इनपुट से एक चौथाई आवृत्ति द्वारा विलंबित होने के लिए, आउटपुट के साथ इनपुट मे चतुर्भुज; द्वारा प्रकट होता है | ||
वास्तव में, ऑल-पास फ़िल्टर की स्थिति को स्थानान्तरित करके अपने अप्रतिलोम इनपुट पर [[ लो पास फिल्टर |लो-पास]] आवृत्ति को दोगुना करता है। | |||
==== एक शुद्ध देरी के लिए एक पद सन्निकटन के रूप में व्याख्या ==== | ==== एक शुद्ध देरी के लिए एक पद सन्निकटन के रूप में व्याख्या ==== | ||
शुद्ध विलंब का लाप्लास रूपांतरण किसके द्वारा दिया जाता है | शुद्ध विलंब का लाप्लास रूपांतरण किसके द्वारा दिया जाता है | ||
:<math> e^{-sT},</math> | :<math> e^{-sT},</math> | ||
जहां पे <math>T</math> विलंब (सेकंड में) है और <math>s\in\mathbb{C}</math> जटिल आवृत्ति है। यह एक Padé निकटता का उपयोग करके अनुमानित किया जा सकता है, जो इस प्रकार है: | |||
:<math> e^{-sT} =\frac{ e^{-sT/2}}{e^{sT/2} } \approx \frac{1-sT/2}{1+sT/2} ,</math> | :<math> e^{-sT} =\frac{ e^{-sT/2}}{e^{sT/2} } \approx \frac{1-sT/2}{1+sT/2} ,</math> | ||
जहां अंतिम चरण अंश और हर | जहां अंतिम चरण अंश और हर एक क्रम मे [[ टेलर श्रृंखला |टेलर श्रृंखला]] के विस्तार के माध्यम से प्राप्त किया गया था। <math>RC = T/2</math> व्यवस्थित करके <math>H(s)</math>ऊपर से ठीक हो जाते हैं। | ||
=== उच्च | === उच्च पारक फ़िल्टर का उपयोग करके कार्यान्वयन === | ||
[[Image:Active Allpass Filter.svg|thumb|एक उच्च-पास | [[Image:Active Allpass Filter.svg|thumb|एक उच्च-पास फ़िल्टर को सम्मिलित करते हुए एक ऑप-एम्प बेस समस्त पारक फ़िल्टर।]] | ||
आसन्न आकृति में दिखाया गया | आसन्न आकृति में दिखाया गया क्रियाशील प्रवर्धक परिपथ एक एकध्रुवी निष्क्रियता ऑल-पास फ़िल्टर को लागू करता है, जिसमें संक्रियातमक प्रवर्धक के अप्रतिलोम इनपुट पर एक [[ उच्च पास फिल्टर |उच्च पारक आवृत्ति]] होती है। फ़िल्टर का स्थानांतरण फ़ंक्शन निम्न द्वारा दिया जाता है: | ||
:<math>H(s) = \frac{ s - \frac{1}{RC} }{ s + \frac{1}{RC} }, \,</math><ref>Williams, A.B.; Taylor, F.J., Electronic Filter Design Handbook'', McGraw-Hill, 1995 {{ISBN|0070704414}}, p. 10.7.</ref> | :<math>H(s) = \frac{ s - \frac{1}{RC} }{ s + \frac{1}{RC} }, \,</math><ref>Williams, A.B.; Taylor, F.J., Electronic Filter Design Handbook'', McGraw-Hill, 1995 {{ISBN|0070704414}}, p. 10.7.</ref> | ||
जिसका एक ध्रुव -1/आरसी पर और एक शून्य 1/आरसी पर है (अर्थात, वे जटिल तल के काल्पनिक अक्ष पर एक दूसरे के प्रतिबिंब हैं)। कुछ कोणीय आवृत्ति के लिए H(iω) का परिमाण और चरण होता हैं | |||
:<math>|H(i\omega)|=1 \quad \text{and} \quad \angle H(i\omega) = \pi - 2\arctan( \omega RC ). \,</math> | :<math>|H(i\omega)|=1 \quad \text{and} \quad \angle H(i\omega) = \pi - 2\arctan( \omega RC ). \,</math> | ||
फ़िल्टर में सभी के लिए लाभ परिमाण होते है। फ़िल्टर प्रत्येक आवृत्ति पर अलग विलंब का परिचय देता है और = 1/RC पर इनपुट-टू-आउटपुट क्वाडरेचर तक पहुंचता है (यानी, चरण लीड 90 डिग्री है)। | |||
यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए | यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए क्रियाशील प्रवर्धक परिपथ संकेत पद्धति द्वारा गैर-इनवर्टिंग इनपुट पर उच्च-पारक फ़िल्टर का उपयोग करता है। | ||
* उच्च आवृत्ति पर, | * उच्च आवृत्ति पर, संधारित्र एक अल्प परिपथ होता है, जिससे क्रियाशील प्रवर्धक अनुप्रयोग विद्युत संचालन शक्ति का निर्माण होता है। | ||
* कम आवृत्तियों और डीसी | * कम आवृत्तियों और डीसी पर, संधारित्र एक खुला परिपथ है और परिपथ एक क्रियाशील प्रवर्धक अनुप्रयोग है जो लाभ के साथ प्रवर्धक (यानी, 180 डिग्री चरण लीड) को बदलना। | ||
* | * उच्च पारक के कोण आवृत्ति ω=1/RC पर (अर्थात, जब इनपुट आवृत्ति 1/(2πRC) होती है), परिपथ 90° फेज लीड का परिचय देता है (अर्थात, आउटपुट इनपुट के साथ चतुर्भुज में होता है; आउटपुट इनपुट से एक चौथाई आवृत्ति द्वारा उन्नत प्रतीत होता है)। | ||
वास्तव में, ऑल-पास | वास्तव में, ऑल-पास फ़िल्टर का फेज विस्थापन अपने अप्रतिलोम इनपुट पर उच्च पारक आवृत्ति के फेज शिफ्ट से दोगुना होता है। | ||
=== वोल्टेज नियंत्रित कार्यान्वयन === | === वोल्टेज नियंत्रित कार्यान्वयन === | ||
वोल्टेज-नियंत्रित चरण शिफ्टर को लागू करने के लिए प्रतिरोधी को अपने ओमिक मोड में क्षेत्र-प्रभाव ट्रांजिस्टर से बदला जा सकता है; गेट पर वोल्टेज चरण बदलाव को समायोजित करता है। इलेक्ट्रॉनिक संगीत में, | वोल्टेज-नियंत्रित चरण शिफ्टर को लागू करने के लिए प्रतिरोधी को अपने ओमिक मोड में क्षेत्र-प्रभाव ट्रांजिस्टर से बदला जा सकता है; गेट पर वोल्टेज चरण बदलाव को समायोजित करता है। इलेक्ट्रॉनिक संगीत में, इसके प्रभाव में सामान्यतः दो, चार या छह चरण-स्थानांतरण खंड होते हैं जो अग्रानुक्रम में जुड़े होते हैं और मूल के साथ अभिव्यक्त होते हैं। एक कम-आवृत्ति करने वाले दोलन विशेषता इस प्रकार की ध्वनि उत्पन्न करने के लिए नियंत्रण वोल्टेज को रैंप करता है। | ||
== निष्क्रिय अनुरूप कार्यान्वयन == | == निष्क्रिय अनुरूप कार्यान्वयन == | ||
[[ परिचालन एम्पलीफायरों ]] की तरह | [[ परिचालन एम्पलीफायरों | परिचालन प्रवर्धक]] की तरह निष्क्रियता के साथ ऑल-पास फ़िल्टर को लागू करने का लाभ यह है कि उन्हें [[ प्रारंभ करनेवाला | प्रारंभ करनेवाले]] की आवश्यकता नहीं होती है, जो एकीकृत परिपथ डिजाइन में भारी और महंगे होते हैं। अन्य अनुप्रयोगों में जहां प्रेरक आसानी से उपलब्ध होते हैं,ऑल-पास फ़िल्टर पूरी तरह से सक्रिय घटकों के बिना लागू किए जा सकते हैं। इसके लिए कई परिपथ [[ टोपोलॉजी (इलेक्ट्रॉनिक्स) |संस्थितिविज्ञान इलेक्ट्रॉनिक्स]] का उपयोग किया जा सकता है। निम्नलिखित सबसे अधिक उपयोग किए जाने वाले परिपथ हैं। | ||
ऑल-पास | |||
=== जाली | === जाली आवृत्ति === | ||
[[Image:Lattice filter, low end correction.svg|thumb|200px|जाली | [[Image:Lattice filter, low end correction.svg|thumb|200px|जाली सांस्थिति का उपयोग कर एक समस्त पारक फ़िल्टर]] | ||
{{main| | {{main|जाली के चरण के तुल्यकारक}} | ||
जाली चरण तुल्यकारक, या | जाली चरण तुल्यकारक, या फ़िल्टर, या एक्स-सेक्शन से बना एक फ़िल्टर है। एकल तत्व शाखाओं के साथ यह 180 ° तक एक चरण बदलाव का उत्पादन कर सकता है, और गुंजयमान शाखाओं के साथ यह 360 ° तक चरण बदलाव कर सकता है। फ़िल्टर एक स्थिर-प्रतिरोध नेटवर्क का एक उदाहरण है (अर्थात, इसकी [[ छवि प्रतिबाधा ]] सभी आवृत्तियों पर स्थिर है)। | ||
=== टी-सेक्शन | === टी-सेक्शन फ़िल्टर === | ||
टी | टी सांस्थिति पर आधारित फेज इक्वलाइजर जाली आवृत्ति के असंतुलित समतुल्य है और इसकी फेज प्रतिक्रिया समान है। जबकि परिपथ आरेख दिख सकता है एक लो-पास आवृत्ति की तरह यह अलग है कि दो प्रारंभ करनेवाला शाखाएं परस्पर युग्मित होती हैं। इसके परिणामस्वरूप दो प्रेरक के बीच ट्रांसफॉर्मर कार्रवाई होती है और उच्च आवृत्ति पर भी एक समस्त पारक प्रतिक्रिया होती है। | ||
एक | |||
=== ब्रिज टी-सेक्शन | === ब्रिज टी-सेक्शन फ़िल्टर === | ||
{{main| | {{main|ब्रिजेड टी में विलंब होने के कारण तुल्यकारक}} | ||
ब्रिज | ब्रिज टी सांस्थिति का उपयोग विलंब समानता के लिए किया जाता है, विशेष रूप से [[ स्टीरियोफोनिक ध्वनि ]] प्रसारण के लिए उपयोग किए जा रहे दो [[ लैंडलाइन ]] के बीच अंतर विलंब होता है । इस अनुप्रयोग के लिए आवश्यक है कि फ़िल्टर में व्यापक बैंडविड्थ पर आवृत्ति अर्ताथ निरंतर [[ समूह विलंब |समूह विलंब]] के साथ एक [[ रैखिक चरण ]] प्रतिक्रिया और इस सांस्थिति को चुनने का कारण होते है । | ||
== डिजिटल कार्यान्वयन == | == डिजिटल कार्यान्वयन == | ||
एक जटिल ध्रुव के साथ एक | एक जटिल ध्रुव के साथ एक समस्त पारक फ़िल्टर का एक [[ जेड को बदलने |जेड को बदलने]] के लिए कार्यान्वयन <math>z_0</math> है | ||
:<math>H(z) = \frac{z^{-1}-\overline{z_0}}{1-z_0z^{-1}} \ </math> | :<math>H(z) = \frac{z^{-1}-\overline{z_0}}{1-z_0z^{-1}} \ </math> | ||
जिसका शून्य है <math>1/\overline{z_0}</math>, कहाँ पे <math>\overline{z}</math> जटिल संयुग्म को दर्शाता है। ध्रुव और शून्य एक ही कोण पर बैठते हैं लेकिन पारस्परिक परिमाण होते हैं (अर्थात, वे जटिल समतल इकाई वृत्त की सीमा के आर-पार एक दूसरे के प्रतिबिंब होते हैं)। किसी दिए गए के लिए इस ध्रुव-शून्य जोड़ी की नियुक्ति <math>z_0</math> जटिल विमान में किसी भी कोण से घुमाया जा सकता है और इसकी सभी-पास परिमाण विशेषता को बनाए रखा जा सकता है। ऑल-पास | जिसका शून्य है <math>1/\overline{z_0}</math>, कहाँ पे <math>\overline{z}</math> जटिल संयुग्म को दर्शाता है। ध्रुव और शून्य एक ही कोण पर बैठते हैं लेकिन पारस्परिक परिमाण होते हैं (अर्थात, वे जटिल समतल इकाई वृत्त की सीमा के आर-पार एक दूसरे के प्रतिबिंब होते हैं)। किसी दिए गए के लिए इस ध्रुव-शून्य जोड़ी की नियुक्ति <math>z_0</math> जटिल विमान में किसी भी कोण से घुमाया जा सकता है और इसकी सभी-पास परिमाण विशेषता को बनाए रखा जा सकता है। ऑल-पास फ़िल्टर में जटिल पोल-शून्य जोड़े उस आवृत्ति को नियंत्रित करने में मदद करते हैं जहां चरण बदलाव होते हैं। | ||
वास्तविक गुणांक के साथ एक | वास्तविक गुणांक के साथ एक समस्त पारक कार्यान्वयन बनाने के लिए, जटिल समस्त पारक फ़िल्टर को एक समस्त पारक के साथ कैस्केड किया जा सकता है जो प्रतिस्थापित करता है <math>\overline{z_0}</math> के लिये <math>z_0</math>, जेड-ट्रांसफॉर्म कार्यान्वयन के लिए अग्रणी है<math>H(z) | ||
= | = | ||
\frac{z^{-1}-\overline{z_0}}{1-z_0z^{-1}} \times | \frac{z^{-1}-\overline{z_0}}{1-z_0z^{-1}} \times | ||
Line 85: | Line 80: | ||
= | = | ||
\frac {z^{-2}-2\Re(z_0)z^{-1}+\left|{z_0}\right|^2} {1-2\Re(z_0)z^{-1}+\left|z_0\right|^2z^{-2}}, \ </math> | \frac {z^{-2}-2\Re(z_0)z^{-1}+\left|{z_0}\right|^2} {1-2\Re(z_0)z^{-1}+\left|z_0\right|^2z^{-2}}, \ </math> | ||
जो [[ पुनरावृत्ति संबंध ]] के बराबर है | जो [[ पुनरावृत्ति संबंध ]] के बराबर है | ||
:<math> | :<math> | ||
y[k] - 2\Re(z_0) y[k-1] + \left|z_0\right|^2 y[k-2] = | y[k] - 2\Re(z_0) y[k-1] + \left|z_0\right|^2 y[k-2] = | ||
x[k-2] - 2\Re(z_0) x[k-1] + \left|z_0\right|^2 x[k], \,</math> | x[k-2] - 2\Re(z_0) x[k-1] + \left|z_0\right|^2 x[k], \,</math> | ||
जहां पे <math>y[k]</math> आउटपुट है और <math>x[k]</math> असतत समय चरण पर इनपुट है <math>k</math>. | |||
प्रणाली की परिमाण प्रतिक्रिया को बदले बिना एक स्थिर या न्यूनतम-चरण फ़िल्टर बनाने के लिए उपरोक्त जैसे फ़िल्टर को नियंत्रण सिद्धांत स्थिरता या मिश्रित-चरण फ़िल्टर के साथ कैस्केड किया जा सकता है। उदाहरण के लिए, <math>z_0</math>उचित चयन से , एक अस्थिर प्रणाली का एक ध्रुव जो यूनिट सर्कल के बाहर है, इसका पूर्ण रूप से अन्त किया जा सकता है और यह यूनिट सर्कल के अंदर परिलक्षित हो सकता है। | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 98: | Line 94: | ||
*न्यूनतम चरण | *न्यूनतम चरण | ||
* [[ हिल्बर्ट ट्रांसफॉर्म ]] | * [[ हिल्बर्ट ट्रांसफॉर्म ]] | ||
* उच्च पास | * उच्च पास आवृत्ति | ||
* लो पास | * लो-पास आवृत्ति | ||
* [[ बैंड-स्टॉप फ़िल्टर | बैंड-स्टॉप | * [[ बैंड-स्टॉप फ़िल्टर | बैंड-स्टॉप फ़िल्टर]] | ||
* [[ बंदपास छननी ]] | * [[ बंदपास छननी | बंदपास छननी]] | ||
* [[ जाली विलंब नेटवर्क ]] | * [[ जाली विलंब नेटवर्क ]] | ||
Line 107: | Line 103: | ||
{{Reflist}} | {{Reflist}} | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
Line 603: | Line 110: | ||
{{Electronic filters}} | {{Electronic filters}} | ||
[[Category:All articles needing additional references]] | |||
[[Category: | [[Category:Articles needing additional references from March 2009]] | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with short description]] | |||
[[Category:Collapse templates]] | |||
[[Category:Created On 05/09/2022]] | [[Category:Created On 05/09/2022]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] | |||
[[Category:डिजिटल सिग्नल प्रोसेसिंग]] | |||
[[Category:फ़िल्टर आवृत्ति प्रतिक्रिया]] | |||
[[Category:रैखिक फ़िल्टर]] |
Latest revision as of 22:29, 4 November 2022
This article needs additional citations for verification. (March 2009) (Learn how and when to remove this template message) |
ऑल-पास फ़िल्टर एक संकेत प्रसंस्करण है जो कि सभी आवृत्ति को समान रूप से लाभ प्रदान करता है, लेकिन विभिन्न आवृत्तियो के बीच के संबंध को बदलता है। इनमें से अधिकांश आवृत्तियों के मान को उस पर लागू होने वाले संकेत के आयाम को भी कम करते हैं, जबकि ऑल-पास फ़िल्टर सभी आवृत्तियों के स्तर में बदलाव किए बिना ही अनुमति दे देता है।
सामान्य अनुप्रयोग
इलेक्ट्रॉनिक संगीत उत्पादन में सामान्य अनुप्रयोग नये प्रकार से डिजाइन की गई एक इकाई में होती है जिसे "प्रभाव" नाम से जाना जाता है, जहां ऑल-पास फ़िल्टर कई अनुक्रम में जुड़े होते हैं और आउटपुट संकेत के साथ मिश्रित होते है।
यह आवृत्ति एक कार्य के रूप में अपने चरणो को बदलकर इस तरह प्रदर्शित करती है। सामान्यतः, फ़िल्टर का वर्णन उस आवृत्ति द्वारा किया जाता है जिस पर चरण स्थानांतरण 90 डिग्री की सीमा को पार कर जाए, जब इनपुट और आउटपुट संकेत चतुर्भुज चरण में जाते हैं तब उनके बीच की दूरी एक चौथाई तरंग दैर्ध्य होती है।[1]
वे सामान्यतः प्रणाली में उत्पन्न होने वाले अन्य अवांछित चरण बदलावों के लिए क्षतिपूर्ति करने के लिए उपयोग किए जाते हैं, या एक नॉच कॉम्ब फ़िल्टर को लागू करने के लिए अपरिवर्तित संस्करण के साथ मिश्रण करने के लिए उपयोग किया जाते है।
उनका उपयोग मिश्रित चरण फ़िल्टर को एक समान परिमाण प्रतिक्रिया के साथ न्यूनतम चरण फ़िल्टर में या एक स्थिर फ़िल्टर को एक समान परिमाण प्रतिक्रिया के साथ स्थिर फ़िल्टर में परिवर्तित करने के लिए भी किया जा सकता है।
सक्रिय समधर्मी कार्यान्वयन
लो-पास फ़िल्टर का उपयोग करके कार्यान्वयन
आसन्न आकृति में दिखाया गया है कि संक्रियात्मक प्रवर्धक परिपथ की ध्रुवी निष्क्रियता के लिए ऑल-पास फ़िल्टर को लागू करता है जिसमें संक्रियातमक प्रवर्धक के अप्रतिलोम इनपुट पर एक लो-पास आवृत्ति होती है। फ़िल्टर का स्थानांतरण कार्य निम्नपारक द्वारा दिया जाता है:
जिसका एक ध्रुव -1/आरसी पर और एक ध्रुव शून्य 1/आरसी है वे जटिल तल के काल्पनिक अक्ष पर एक दूसरे के प्रतिबिंब हैं। कुछकोणीय आवृत्ति ω के लिए H(iω) का परिमाण और चरण होता है।
फ़िल्टर के लिए सभी इकाई लब्धि परिमाण है। फ़िल्टर प्रत्येकआवृत्ति पर एक अलग विलंब का परिचय देता है और इनपुट-टू-आउटपुट क्वाडरेचर = 1/RC पर पहुंचता है (अर्थात, फेज़ शिफ्ट 90° होता है)।[2]
यह कार्यान्वयन चरण बदलाव और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए अप्रतिलोम इनपुट पर फ़िल्टर का उपयोग करता है।
- उच्च आवृत्ति पर, संधारित्र एक शार्ट परिपथ है, जो एक क्रियाशील प्रवर्धक अनुप्रयोगों का निर्माण करता है एकता लाभ के साथ प्रवर्धक (यानी, 180 ° चरण शिफ्ट) को बनाता है।
- कम आवृत्तियों और डीसी पर संधारित्र एक खुला परिपथ, होता है, जो क्रियाशील प्रवर्धक अनुप्रयोगों का निर्माण वोल्टेज अनुयायी द्वारा किया जाता है।
- लो-पास आवृत्ति के कोण ω = 1 / आरसी पर (यानी, जब इनपुट आवृत्ति 1/(2πRC) है, परिपथ 90 डिग्री स्थानान्तरित करता है, इनपुट से एक चौथाई आवृत्ति द्वारा विलंबित होने के लिए, आउटपुट के साथ इनपुट मे चतुर्भुज; द्वारा प्रकट होता है
वास्तव में, ऑल-पास फ़िल्टर की स्थिति को स्थानान्तरित करके अपने अप्रतिलोम इनपुट पर लो-पास आवृत्ति को दोगुना करता है।
एक शुद्ध देरी के लिए एक पद सन्निकटन के रूप में व्याख्या
शुद्ध विलंब का लाप्लास रूपांतरण किसके द्वारा दिया जाता है
जहां पे विलंब (सेकंड में) है और जटिल आवृत्ति है। यह एक Padé निकटता का उपयोग करके अनुमानित किया जा सकता है, जो इस प्रकार है:
जहां अंतिम चरण अंश और हर एक क्रम मे टेलर श्रृंखला के विस्तार के माध्यम से प्राप्त किया गया था। व्यवस्थित करके ऊपर से ठीक हो जाते हैं।
उच्च पारक फ़िल्टर का उपयोग करके कार्यान्वयन
आसन्न आकृति में दिखाया गया क्रियाशील प्रवर्धक परिपथ एक एकध्रुवी निष्क्रियता ऑल-पास फ़िल्टर को लागू करता है, जिसमें संक्रियातमक प्रवर्धक के अप्रतिलोम इनपुट पर एक उच्च पारक आवृत्ति होती है। फ़िल्टर का स्थानांतरण फ़ंक्शन निम्न द्वारा दिया जाता है:
जिसका एक ध्रुव -1/आरसी पर और एक शून्य 1/आरसी पर है (अर्थात, वे जटिल तल के काल्पनिक अक्ष पर एक दूसरे के प्रतिबिंब हैं)। कुछ कोणीय आवृत्ति के लिए H(iω) का परिमाण और चरण होता हैं
फ़िल्टर में सभी के लिए लाभ परिमाण होते है। फ़िल्टर प्रत्येक आवृत्ति पर अलग विलंब का परिचय देता है और = 1/RC पर इनपुट-टू-आउटपुट क्वाडरेचर तक पहुंचता है (यानी, चरण लीड 90 डिग्री है)।
यह कार्यान्वयन चरण शिफ्ट और नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए क्रियाशील प्रवर्धक परिपथ संकेत पद्धति द्वारा गैर-इनवर्टिंग इनपुट पर उच्च-पारक फ़िल्टर का उपयोग करता है।
- उच्च आवृत्ति पर, संधारित्र एक अल्प परिपथ होता है, जिससे क्रियाशील प्रवर्धक अनुप्रयोग विद्युत संचालन शक्ति का निर्माण होता है।
- कम आवृत्तियों और डीसी पर, संधारित्र एक खुला परिपथ है और परिपथ एक क्रियाशील प्रवर्धक अनुप्रयोग है जो लाभ के साथ प्रवर्धक (यानी, 180 डिग्री चरण लीड) को बदलना।
- उच्च पारक के कोण आवृत्ति ω=1/RC पर (अर्थात, जब इनपुट आवृत्ति 1/(2πRC) होती है), परिपथ 90° फेज लीड का परिचय देता है (अर्थात, आउटपुट इनपुट के साथ चतुर्भुज में होता है; आउटपुट इनपुट से एक चौथाई आवृत्ति द्वारा उन्नत प्रतीत होता है)।
वास्तव में, ऑल-पास फ़िल्टर का फेज विस्थापन अपने अप्रतिलोम इनपुट पर उच्च पारक आवृत्ति के फेज शिफ्ट से दोगुना होता है।
वोल्टेज नियंत्रित कार्यान्वयन
वोल्टेज-नियंत्रित चरण शिफ्टर को लागू करने के लिए प्रतिरोधी को अपने ओमिक मोड में क्षेत्र-प्रभाव ट्रांजिस्टर से बदला जा सकता है; गेट पर वोल्टेज चरण बदलाव को समायोजित करता है। इलेक्ट्रॉनिक संगीत में, इसके प्रभाव में सामान्यतः दो, चार या छह चरण-स्थानांतरण खंड होते हैं जो अग्रानुक्रम में जुड़े होते हैं और मूल के साथ अभिव्यक्त होते हैं। एक कम-आवृत्ति करने वाले दोलन विशेषता इस प्रकार की ध्वनि उत्पन्न करने के लिए नियंत्रण वोल्टेज को रैंप करता है।
निष्क्रिय अनुरूप कार्यान्वयन
परिचालन प्रवर्धक की तरह निष्क्रियता के साथ ऑल-पास फ़िल्टर को लागू करने का लाभ यह है कि उन्हें प्रारंभ करनेवाले की आवश्यकता नहीं होती है, जो एकीकृत परिपथ डिजाइन में भारी और महंगे होते हैं। अन्य अनुप्रयोगों में जहां प्रेरक आसानी से उपलब्ध होते हैं,ऑल-पास फ़िल्टर पूरी तरह से सक्रिय घटकों के बिना लागू किए जा सकते हैं। इसके लिए कई परिपथ संस्थितिविज्ञान इलेक्ट्रॉनिक्स का उपयोग किया जा सकता है। निम्नलिखित सबसे अधिक उपयोग किए जाने वाले परिपथ हैं।
जाली आवृत्ति
जाली चरण तुल्यकारक, या फ़िल्टर, या एक्स-सेक्शन से बना एक फ़िल्टर है। एकल तत्व शाखाओं के साथ यह 180 ° तक एक चरण बदलाव का उत्पादन कर सकता है, और गुंजयमान शाखाओं के साथ यह 360 ° तक चरण बदलाव कर सकता है। फ़िल्टर एक स्थिर-प्रतिरोध नेटवर्क का एक उदाहरण है (अर्थात, इसकी छवि प्रतिबाधा सभी आवृत्तियों पर स्थिर है)।
टी-सेक्शन फ़िल्टर
टी सांस्थिति पर आधारित फेज इक्वलाइजर जाली आवृत्ति के असंतुलित समतुल्य है और इसकी फेज प्रतिक्रिया समान है। जबकि परिपथ आरेख दिख सकता है एक लो-पास आवृत्ति की तरह यह अलग है कि दो प्रारंभ करनेवाला शाखाएं परस्पर युग्मित होती हैं। इसके परिणामस्वरूप दो प्रेरक के बीच ट्रांसफॉर्मर कार्रवाई होती है और उच्च आवृत्ति पर भी एक समस्त पारक प्रतिक्रिया होती है।
ब्रिज टी-सेक्शन फ़िल्टर
ब्रिज टी सांस्थिति का उपयोग विलंब समानता के लिए किया जाता है, विशेष रूप से स्टीरियोफोनिक ध्वनि प्रसारण के लिए उपयोग किए जा रहे दो लैंडलाइन के बीच अंतर विलंब होता है । इस अनुप्रयोग के लिए आवश्यक है कि फ़िल्टर में व्यापक बैंडविड्थ पर आवृत्ति अर्ताथ निरंतर समूह विलंब के साथ एक रैखिक चरण प्रतिक्रिया और इस सांस्थिति को चुनने का कारण होते है ।
डिजिटल कार्यान्वयन
एक जटिल ध्रुव के साथ एक समस्त पारक फ़िल्टर का एक जेड को बदलने के लिए कार्यान्वयन है
जिसका शून्य है , कहाँ पे जटिल संयुग्म को दर्शाता है। ध्रुव और शून्य एक ही कोण पर बैठते हैं लेकिन पारस्परिक परिमाण होते हैं (अर्थात, वे जटिल समतल इकाई वृत्त की सीमा के आर-पार एक दूसरे के प्रतिबिंब होते हैं)। किसी दिए गए के लिए इस ध्रुव-शून्य जोड़ी की नियुक्ति जटिल विमान में किसी भी कोण से घुमाया जा सकता है और इसकी सभी-पास परिमाण विशेषता को बनाए रखा जा सकता है। ऑल-पास फ़िल्टर में जटिल पोल-शून्य जोड़े उस आवृत्ति को नियंत्रित करने में मदद करते हैं जहां चरण बदलाव होते हैं।
वास्तविक गुणांक के साथ एक समस्त पारक कार्यान्वयन बनाने के लिए, जटिल समस्त पारक फ़िल्टर को एक समस्त पारक के साथ कैस्केड किया जा सकता है जो प्रतिस्थापित करता है के लिये , जेड-ट्रांसफॉर्म कार्यान्वयन के लिए अग्रणी है
जो पुनरावृत्ति संबंध के बराबर है
जहां पे आउटपुट है और असतत समय चरण पर इनपुट है .
प्रणाली की परिमाण प्रतिक्रिया को बदले बिना एक स्थिर या न्यूनतम-चरण फ़िल्टर बनाने के लिए उपरोक्त जैसे फ़िल्टर को नियंत्रण सिद्धांत स्थिरता या मिश्रित-चरण फ़िल्टर के साथ कैस्केड किया जा सकता है। उदाहरण के लिए, उचित चयन से , एक अस्थिर प्रणाली का एक ध्रुव जो यूनिट सर्कल के बाहर है, इसका पूर्ण रूप से अन्त किया जा सकता है और यह यूनिट सर्कल के अंदर परिलक्षित हो सकता है।
यह भी देखें
- ब्रिजेड टी देरी तुल्यकारक
- जाली चरण तुल्यकारक
- न्यूनतम चरण
- हिल्बर्ट ट्रांसफॉर्म
- उच्च पास आवृत्ति
- लो-पास आवृत्ति
- बैंड-स्टॉप फ़िल्टर
- बंदपास छननी
- जाली विलंब नेटवर्क
संदर्भ
- ↑ Op Amps for Everyone, Ron Mancini, Newnes 780750677011
- ↑ Williams, A.B.; Taylor, F.J., Electronic Filter Design Handbook, McGraw-Hill, 1995 ISBN 0070704414, p. 10.7.
बाहरी संबंध
- JOS@Stanford on all-pass filters
- ECE 209 Phase-Shifter Circuit, analysis steps for a common analog phase-shifter circuit.
- filter-solutions.com: All-pass filters