क्वांटम चैनल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 51: Line 51:
== उदाहरण                                                                ==
== उदाहरण                                                                ==


=== स्तर ===
=== स्तर                                     ===


एक स्तर, जिसे अवलोकन योग्य वस्तुओं से उनके अपेक्षित मूल्यों के मानचित्रण के रूप में देखा जाता है, चैनल का तत्काल उदाहरण है।
एक स्तर, जिसे अवलोकन योग्य वस्तुओं से उनके अपेक्षित मूल्यों के मानचित्रण के रूप में देखा जाता है, चैनल का तत्काल उदाहरण है।
Line 57: Line 57:
=== समय विकास ===
=== समय विकास ===


विशुद्ध रूप से क्वांटम प्रणाली के लिए, समय विकास, निश्चित समय टी पर, द्वारा दिया जाता है
विशुद्ध रूप से क्वांटम प्रणाली के लिए, समय विकास पर, निश्चित समय t द्वारा दिया जाता है


:<math>\rho \rightarrow U \rho \;U^*,</math>
:<math>\rho \rightarrow U \rho \;U^*,</math>
कहाँ <math>U = e^{-iH t/\hbar}</math> और H [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] है और t समय है। स्पष्ट रूप से यह श्रोडिंगर चित्र में सीपीटीपी मानचित्र देता है और इसलिए यह चैनल है। हाइजेनबर्ग चित्र में दोहरा मानचित्र है
जहाँ  <math>U = e^{-iH t/\hbar}</math> और H [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] है और t समय है। स्पष्ट रूप से यह श्रोडिंगर चित्र में सीपीटीपी मानचित्र देता है और इसलिए यह चैनल है। हाइजेनबर्ग चित्र में दोहरा मानचित्र है


:<math>A \rightarrow U^* A U.</math>
:<math>A \rightarrow U^* A U.</math>


 
=== प्रतिबंध                                                       ===
=== प्रतिबंध ===


स्तर समिष्ट के साथ समग्र क्वांटम प्रणाली पर विचार करें <math>H_A \otimes H_B.</math> स्तर के लिए
स्तर समिष्ट के साथ समग्र क्वांटम प्रणाली पर विचार करें <math>H_A \otimes H_B.</math> स्तर के लिए


:<math>\rho \in H_A \otimes H_B,</math>
:<math>\rho \in H_A \otimes H_B,</math>
प्रणालीA, ρ पर ρ की कम अवस्था<sup>A</sup>, B प्रणाली के संबंध में ρ का [[आंशिक ट्रेस]] लेकर प्राप्त किया जाता है:
प्रणाली A, ρ<sup>A</sup> पर ρ की कम अवस्था, B प्रणाली के संबंध में ρ का [[आंशिक ट्रेस]] लेकर प्राप्त किया जाता है:                                                                      


:<math> \rho ^A = \operatorname{Tr}_B \; \rho.</math>
:<math> \rho ^A = \operatorname{Tr}_B \; \rho.</math>
आंशिक ट्रेस ऑपरेशन सीपीटीपी मानचित्र है, इसलिए श्रोडिंगर चित्र में क्वांटम चैनल है। हाइजेनबर्ग चित्र में इस चैनल का दोहरा मानचित्र है
आंशिक ट्रेस ऑपरेशन सीपीटीपी मानचित्र है, इसलिए श्रोडिंगर चित्र में क्वांटम चैनल है। हाइजेनबर्ग चित्र में इस चैनल का दोहरा मानचित्र है                                  


:<math> A \rightarrow A \otimes I_B,</math>
:<math> A \rightarrow A \otimes I_B,</math>
जहां ए प्रणालीए का अवलोकन योग्य है।
जहां A प्रणाली A का अवलोकन योग्य है।


=== अवलोकनीय ===
=== अवलोकनीय ===


एक अवलोकनीय संख्यात्मक मान को जोड़ता है <math>f_i \in \mathbb{C}</math> क्वांटम यांत्रिक प्रभाव के लिए <math>F_i</math>. <math>F_i</math>को उपयुक्त स्तर समिष्ट पर कार्य करने वाले धनात्मक संचालक माना जाता है <math display="inline">\sum_i F_i = I</math>. (ऐसे संग्रह को [[ POVM |POVM]] कहा जाता है।) हाइजेनबर्ग चित्र में, संबंधित अवलोकन योग्य मानचित्र <math>\Psi</math> मौलिक अवलोकन योग्य मानचित्र
एक अवलोकनीय संख्यात्मक मान <math>f_i \in \mathbb{C}</math> को जोड़ता है  क्वांटम यांत्रिक प्रभाव <math>F_i</math> से जोड़ता है  <math>F_i</math>को उपयुक्त स्तर समिष्ट पर कार्य करने वाले धनात्मक संचालक माना जाता है तथा  <math display="inline">\sum_i F_i = I</math>. (ऐसे संग्रह को [[ POVM |पीओवीएम]] कहा जाता है।) हाइजेनबर्ग चित्र में, संबंधित अवलोकन योग्य मानचित्र <math>\Psi</math> मौलिक अवलोकन योग्य मानचित्र                      


:<math>f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} \in C(X)</math>
:<math>f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix} \in C(X)</math>                                    
क्वांटम मैकेनिकल के लिए
क्वांटम मैकेनिकल के लिए    


:<math>\; \Psi (f) = \sum_i f_i F_i.</math>
:<math>\; \Psi (f) = \sum_i f_i F_i.</math>
दूसरे शब्दों में, क्वांटम मैकेनिकल अवलोकन योग्य प्राप्त करने के लिए नैमार्क का फैलाव प्रमेय। इसे आसानी से चेक किया जा सकता है <math>\Psi</math> सीपी और यूनिटल है.
दूसरे शब्दों में, क्वांटम मैकेनिकल अवलोकन योग्य प्राप्त करने के लिए नैमार्क का फैलाव प्रमेय होता है । इसे आसानी से चेक किया जा सकता है <math>\Psi</math> सीपी और यूनिटल है.


संबंधित श्रोडिंगर मानचित्र <math>\Psi^*</math> घनत्व आव्युह को मौलिक अवस्थाओं में ले जाता है:
संबंधित श्रोडिंगर मानचित्र <math>\Psi^*</math> घनत्व आव्युह को मौलिक अवस्थाओं में ले जाता है:
Line 93: Line 92:
\Psi (\rho) = \begin{bmatrix} \langle F_1, \rho  \rangle \\ \vdots \\ \langle F_n, \rho \rangle \end{bmatrix},  
\Psi (\rho) = \begin{bmatrix} \langle F_1, \rho  \rangle \\ \vdots \\ \langle F_n, \rho \rangle \end{bmatrix},  
</math>
</math>
जहां आंतरिक उत्पाद हिल्बर्ट-श्मिट आंतरिक उत्पाद है। इसके अतिरिक्त, राज्यों को सामान्यीकृत घनत्व आव्युह#C*-राज्यों के बीजगणितीय सूत्रीकरण के रूप में देखना, और [[रिज़्ज़ प्रतिनिधित्व प्रमेय]] को प्रयुक्त करना, हम डाल सकते हैं
जहां आंतरिक उत्पाद हिल्बर्ट-श्मिट आंतरिक उत्पाद है। इसके अतिरिक्त, राज्यों को सामान्यीकृत घनत्व आव्युह या  C*-राज्यों के बीजगणितीय सूत्रीकरण के रूप में देखना, और [[रिज़्ज़ प्रतिनिधित्व प्रमेय]] को प्रयुक्त करना, हम डाल सकते हैं


:<math>
:<math>
Line 102: Line 101:
=== साधन ===
=== साधन ===


श्रोडिंगर चित्र में अवलोकन योग्य मानचित्र में पूरी तरह से मौलिक आउटपुट बीजगणित है और इसलिए केवल माप आंकड़ों का वर्णन किया गया है। स्थिति परिवर्तन को भी ध्यान में रखते हुए, हम परिभाषित करते हैं कि क्वांटम उपकरण क्या कहलाता है। होने देना <math>\{ F_1, \dots, F_n \}</math> किसी अवलोकनीय से जुड़े प्रभाव (पीओवीएम) हों। श्रोडिंगर चित्र में, उपकरण मानचित्र है <math>\Phi</math> शुद्ध क्वांटम इनपुट के साथ <math>\rho \in L(H)</math> और आउटपुट स्पेस के साथ <math>C(X) \otimes L(H)</math>:
श्रोडिंगर चित्र में अवलोकन योग्य मानचित्र में पूरी तरह से मौलिक आउटपुट बीजगणित है और इसलिए केवल माप आंकड़ों का वर्णन किया गया है। स्थिति परिवर्तन को भी ध्यान में रखते हुए, हम परिभाषित करते हैं कि क्वांटम उपकरण क्या कहलाता है। होने देना <math>\{ F_1, \dots, F_n \}</math> किसी अवलोकनीय से जुड़े प्रभाव (पीओवीएम) हों। श्रोडिंगर चित्र में, उपकरण मानचित्र <math>\Phi</math> है जिसे  शुद्ध क्वांटम इनपुट के साथ <math>\rho \in L(H)</math> और आउटपुट स्पेस के साथ <math>C(X) \otimes L(H)</math> रखा जाता है :  


:<math>
:<math>
Line 117: Line 116:
\Psi (f \otimes A) =  \begin{bmatrix} f_1 \Psi_1(A) \\ \vdots \\ f_n \Psi_n(A)\end{bmatrix}
\Psi (f \otimes A) =  \begin{bmatrix} f_1 \Psi_1(A) \\ \vdots \\ f_n \Psi_n(A)\end{bmatrix}
</math>
</math>
कहाँ <math>\Psi_i</math> निम्नलिखित प्रकार से परिभाषित किया गया है: कारक <math>F_i = M_i ^2</math> (यह सदैव किया जा सकता है क्योंकि POVM के तत्व धनात्मक होते हैं) तब <math>\; \Psi_i (A) = M_i A M_i</math>.
जहाँ  <math>\Psi_i</math> निम्नलिखित प्रकार से परिभाषित किया गया है: कारक <math>F_i = M_i ^2</math> (यह सदैव किया जा सकता है क्योंकि पीओवीएम के तत्व धनात्मक होते हैं) तब <math>\; \Psi_i (A) = M_i A M_i</math>. हमने देखा कि <math>\Psi</math> सीपी और यूनिटल है.
हमने देखा कि <math>\Psi</math> सीपी और यूनिटल है.


नोटिस जो <math>\Psi (f \otimes I)</math> स्पष्ट  रूप से देखने योग्य मानचित्र देता है। वो नक्शा
नोटिस जो <math>\Psi (f \otimes I)</math> स्पष्ट  रूप से देखने योग्य मानचित्र देता है। वो नक्शा
Line 125: Line 123:
समग्र स्थिति परिवर्तन का वर्णन करता है।
समग्र स्थिति परिवर्तन का वर्णन करता है।


=== चैनल मापें और तैयार करें ===
=== चैनल को मापें और तैयार करें                                                                                                                                                                                     ===


मान लीजिए कि दो पक्ष और बी निम्नलिखित तरीके से संवाद करना चाहते हैं: अवलोकन योग्य माप करता है और माप परिणाम को मौलिक रूप से बी को बताता है। प्राप्त संदेश के अनुसार, बी विशिष्ट स्थिति में अपना (क्वांटम) प्रणालीतैयार करता है। श्रोडिंगर चित्र में, चैनल का पहला भाग <math> \Phi</math><sub>1</sub> बस इसमें A माप लेना सम्मिलित है, अर्थात यह देखने योग्य मानचित्र है:
मान लीजिए कि दो पक्ष A और B निम्नलिखित तरीके से संवाद करना चाहते हैं: तब A अवलोकन योग्य माप करता है और माप परिणाम को मौलिक रूप से B को बताता है। जिससे प्राप्त संदेश के अनुसार, B विशिष्ट स्थिति में अपना (क्वांटम) प्रणाली तैयार करता है। श्रोडिंगर चित्र में, चैनल का पहला भाग <math> \Phi</math><sub>1</sub> बस इसमें A माप लेना सम्मिलित है, अर्थात यह देखने योग्य मानचित्र है:


:<math>\; \Phi_1 (\rho) = \begin{bmatrix} \rho(F_1) \\ \vdots \\ \rho(F_n)\end{bmatrix}.</math>
:<math>\; \Phi_1 (\rho) = \begin{bmatrix} \rho(F_1) \\ \vdots \\ \rho(F_n)\end{bmatrix}.</math>
यदि, i-वें माप परिणाम की स्थिति में, B स्तर R में अपना प्रणालीतैयार करता है<sub>i</sub>, चैनल का दूसरा भाग <math> \Phi</math><sub>2</sub> उपरोक्त मौलिक अवस्था को घनत्व आव्युह में ले जाता है
यदि, i-वें माप परिणाम की स्थिति में, B स्तर में अपना प्रणाली R<sub>i</sub> तैयार करता है, तब चैनल <math> \Phi</math><sub>2</sub> का दूसरा भाग उपरोक्त मौलिक अवस्था को घनत्व आव्युह में ले जाता है


:<math>
:<math>
\Phi_2 \left(\begin{bmatrix} \rho(F_1) \\ \vdots \\ \rho(F_n)\end{bmatrix}\right) = \sum _i \rho (F_i) R_i.
\Phi_2 \left(\begin{bmatrix} \rho(F_1) \\ \vdots \\ \rho(F_n)\end{bmatrix}\right) = \sum _i \rho (F_i) R_i.
</math>
</math>                                                              
कुल संक्रिया ही रचना है
कुल संक्रिया ही रचना है


Line 140: Line 138:
इस रूप के चैनलों को माप-और-तैयार या [[अलेक्जेंडर होलेवो]] रूप में कहा जाता है।
इस रूप के चैनलों को माप-और-तैयार या [[अलेक्जेंडर होलेवो]] रूप में कहा जाता है।


हाइजेनबर्ग चित्र में, दोहरा मानचित्र <math>\Phi^* = \Phi_1^* \circ \Phi_2 ^*</math> द्वारा परिभाषित किया गया है
जहाँ हाइजेनबर्ग चित्र में, दोहरा मानचित्र <math>\Phi^* = \Phi_1^* \circ \Phi_2 ^*</math> द्वारा परिभाषित किया गया है


:<math>\; \Phi^* (A) = \sum_i R_i(A) F_i.</math>
:<math>\; \Phi^* (A) = \sum_i R_i(A) F_i.</math>
माप-और-तैयार चैनल पहचान मानचित्र नहीं हो सकता। यह बिल्कुल [[कोई टेलीपोर्टेशन प्रमेय नहीं]] का कथन है, जो कहता है कि मौलिक टेलीपोर्टेशन ([[क्वांटम टेलीपोर्टेशन]] के साथ भ्रमित नहीं होना चाहिए। उलझाव-सहायता टेलीपोर्टेशन) असंभव है। दूसरे शब्दों में, क्वांटम स्थिति को विश्वसनीय रूप से नहीं मापा जा सकता है।
माप-और-तैयार चैनल की पहचान मानचित्र नहीं हो सकती। यह बिल्कुल [[कोई टेलीपोर्टेशन प्रमेय नहीं]] का कथन है, जो कहता है कि मौलिक टेलीपोर्टेशन ([[क्वांटम टेलीपोर्टेशन]] के साथ भ्रमित नहीं होना चाहिए। उलझाव-सहायता टेलीपोर्टेशन) असंभव है। दूसरे शब्दों में, क्वांटम स्थिति को विश्वसनीय रूप से नहीं मापा जा सकता है।


चैनल-स्टेट द्वंद्व में, चैनल को मापना और तैयार करना है यदि और केवल तभी जब संबंधित स्थिति भिन्न करने योग्य स्थिति हो। मुख्य रूप से, माप-और-तैयार चैनल की आंशिक कार्रवाई के परिणामस्वरूप उत्पन्न होने वाली सभी स्थितियां भिन्न-भिन्न होती हैं, और इस कारण से माप-और-तैयार चैनल को उलझाव-तोड़ने वाले चैनल के रूप में भी जाना जाता है।
चैनल-स्टेट द्वंद्व में, चैनल को मापना और तैयार करना है यदि और केवल तभी जब संबंधित स्थिति भिन्न करने योग्य स्थिति हो। मुख्य रूप से, माप-और-तैयार चैनल की आंशिक कार्रवाई के परिणामस्वरूप उत्पन्न होने वाली सभी स्थितियां भिन्न-भिन्न होती हैं, और इस कारण से माप-और-तैयार चैनल को उलझाव-तोड़ने वाले चैनल के रूप में भी जाना जाता है।


=== शुद्ध चैनल ===
=== शुद्ध चैनल                                                             ===


विशुद्ध रूप से क्वांटम चैनल के स्थितिपर विचार करें <math>\Psi</math> हाइजेनबर्ग चित्र में. इस धारणा के साथ कि सब कुछ परिमित-आयामी है, <math>\Psi</math> आव्युह के रिक्त समिष्ट के मध्य यूनिटल सीपी मानचित्र है
विशुद्ध रूप से क्वांटम चैनल <math>\Psi</math> के स्थिति पर विचार करें | हाइजेनबर्ग चित्र में. इस धारणा के साथ कि सब कुछ परिमित-आयामी है, <math>\Psi</math> आव्युह के रिक्त समिष्ट के मध्य यूनिटल सीपी मानचित्र है


:<math>\Psi : \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{m \times m}.</math>
:<math>\Psi : \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{m \times m}.</math>
पूरी तरह से धनात्मक मानचित्रों पर चोई के प्रमेय के अनुसार, <math>\Psi</math> फॉर्म लेना होगा
पूरी तरह से धनात्मक मानचित्रों पर चोई के प्रमेय के अनुसार, <math>\Psi</math> रूप  लेना होगा


:<math>\Psi (A) = \sum_{i = 1}^N K_i A K_i^*</math>
:<math>\Psi (A) = \sum_{i = 1}^N K_i A K_i^*</math>
जहां एन एनएम. मैट्रिसेस के<sub>''i''</sub> के क्रूस संचालक कहलाते हैं <math>\Psi</math> (जर्मन भौतिक विज्ञानी [[कार्ल क्रॉस (भौतिक विज्ञानी)]] के बाद, जिन्होंने उन्हें प्रस्तुत किया)। क्रॉस ऑपरेटरों की न्यूनतम संख्या को क्रॉस रैंक कहा जाता है <math>\Psi</math>. क्रॉस रैंक 1 वाले चैनल को शुद्ध कहा जाता है। समय विकास शुद्ध चैनल का उदाहरण है। यह शब्दावली पुनः चैनल-स्तर द्वैत से आती है। चैनल तभी शुद्ध होता है जब उसकी दोहरी अवस्था शुद्ध अवस्था हो।
जहां N nm. आव्युह ''k<sub>i</sub>'' को <math>\Psi</math> का क्रॉस संचालक कहलाते हैं  (जर्मन भौतिक विज्ञानी [[कार्ल क्रॉस (भौतिक विज्ञानी)]] के बाद, जिन्होंने उन्हें प्रस्तुत किया)। क्रॉस ऑपरेटरों की न्यूनतम संख्या को क्रॉस रैंक <math>\Psi</math> कहा जाता है . क्रॉस रैंक 1 वाले चैनल को शुद्ध कहा जाता है। समय विकास शुद्ध चैनल का उदाहरण है। यह शब्दावली पुनः चैनल-स्तर द्वैत से आती है। चैनल तभी शुद्ध होता है जब उसकी दोहरी अवस्था शुद्ध अवस्था हो।


=== टेलीपोर्टेशन ===
=== टेलीपोर्टेशन                                                                                                   ===


क्वांटम टेलीपोर्टेशन में, प्रेषक कण की मनमानी क्वांटम स्थिति को संभवतः दूर के रिसीवर तक पहुंचाना चाहता है। परिणाम स्वरुप , टेलीपोर्टेशन प्रक्रिया क्वांटम चैनल है। प्रक्रिया के लिए उपकरण को रिसीवर तक उलझे हुए स्तर के कण के संचरण के लिए क्वांटम चैनल की आवश्यकता होती है। टेलीपोर्टेशन भेजे गए कण और शेष उलझे हुए कण के संयुक्त माप से होता है। इस माप के परिणामस्वरूप मौलिक जानकारी प्राप्त होती है जिसे टेलीपोर्टेशन पूरा करने के लिए रिसीवर को भेजा जाना चाहिए। महत्वपूर्ण बात यह है कि क्वांटम चैनल का अस्तित्व समाप्त होने के बाद मौलिक जानकारी भेजी जा सकती है।
क्वांटम टेलीपोर्टेशन में, प्रेषक कण की इच्छा से क्वांटम स्थिति को संभवतः दूर के रिसीवर तक पहुंचाना चाहता है। परिणाम स्वरुप , टेलीपोर्टेशन प्रक्रिया क्वांटम चैनल है। प्रक्रिया के लिए उपकरण को रिसीवर तक अस्पष्ट हुए उस स्तर के कण के संचरण के लिए क्वांटम चैनल की आवश्यकता होती है। टेलीपोर्टेशन भेजे गए कण और शेष अस्पष्ट हुए कण के संयुक्त माप से होता है। इस माप के परिणामस्वरूप मौलिक जानकारी प्राप्त होती है जिसे टेलीपोर्टेशन पूरा करने के लिए रिसीवर को भेजा जाना चाहिए। तथा महत्वपूर्ण बात यह है कि क्वांटम चैनल का अस्तित्व समाप्त होने के बाद मौलिक जानकारी भेजी जा सकती है।


== प्रायोगिक सेटिंग में ==
== प्रायोगिक सेटिंग में                                                                           ==


प्रयोगात्मक रूप से, क्वांटम चैनल का सरल कार्यान्वयन एकल फोटॉन का [[फाइबर ऑप्टिक]] (या उस स्थितिके लिए मुक्त-समिष्ट) संचरण है। हानि हावी होने से पहले एकल फोटॉन को मानक फाइबर ऑप्टिक्स में 100 किमी तक प्रसारित किया जा सकता है। [[क्वांटम क्रिप्टोग्राफी]] जैसे उद्देश्यों के लिए क्वांटम जानकारी को एनकोड करने के लिए फोटॉन के आगमन के समय (टाइम-बिन उलझाव) या ध्रुवीकरण (तरंगों) का उपयोग आधार के रूप में किया जाता है। चैनल न केवल आधार स्थितियों (जैसे |0>, |1>) को प्रसारित करने में सक्षम है, किंतु उनके सुपरपोजिशन (जैसे |0>+|1>) को भी प्रसारित करने में सक्षम है। चैनल के माध्यम से संचरण के समयराज्य की [[क्वांटम सुसंगतता]] बनाए रखी जाती है। इसकी तुलना तारों (एक मौलिक चैनल) के माध्यम से विद्युत दालों के संचरण से करें, जहां केवल मौलिक जानकारी (जैसे 0s और 1s) भेजी जा सकती है।
प्रयोगात्मक रूप से, क्वांटम चैनल का सरल कार्यान्वयन एकल फोटॉन का [[फाइबर ऑप्टिक]] (या उस स्थितिके लिए मुक्त-समिष्ट) संचरण है। हानि हावी होने से पहले एकल फोटॉन को मानक फाइबर को ऑप्टिक्स में 100 किमी तक प्रसारित किया जा सकता है। [[क्वांटम क्रिप्टोग्राफी]] जैसे उद्देश्यों के लिए क्वांटम जानकारी को एनकोड करने के लिए फोटॉन के आगमन के समय (टाइम-बिन उलझाव) या ध्रुवीकरण (तरंगों) का उपयोग आधार के रूप में किया जाता है। चैनल न केवल आधार स्थितियों (जैसे |0>, |1>) को प्रसारित करने में सक्षम है, किंतु उनके सुपरपोजिशन (जैसे |0>+|1>) को भी प्रसारित करने में सक्षम है। और चैनल के माध्यम से संचरण के समय स्तर  की [[क्वांटम सुसंगतता]] बनाए रखी जाती है। इसकी तुलना तारों (एक मौलिक चैनल) के माध्यम से विद्युत दालों के संचरण से करें, जहां केवल मौलिक जानकारी (जैसे 0s और 1s) भेजी जा सकती है।


== चैनल क्षमता ==
== चैनल क्षमता                                                                       ==


=== एक चैनल का सीबी-मानदंड ===
=== एक चैनल का सीबी-मानदंड ===


चैनल क्षमता की परिभाषा देने से पहले, किसी चैनल की पूर्ण सीमा या सीबी-मानदंड के मानदंड की प्रारंभिक धारणा पर चर्चा की जानी चाहिए। किसी चैनल की क्षमता पर विचार करते समय <math>\Phi</math>, हमें इसकी तुलना आदर्श चैनल से करने की आवश्यकता है <math>\Lambda</math> . उदाहरण के लिए, जब इनपुट और आउटपुट बीजगणित समान हों, तब हम चुन सकते हैं <math>\Lambda</math> पहचान मानचित्र होना. ऐसी तुलना के लिए चैनलों के मध्य [[मीट्रिक (गणित)]] की आवश्यकता होती है।
चैनल क्षमता की परिभाषा देने से पहले, किसी चैनल की पूर्ण सीमा या सीबी-मानदंड के मानदंड की प्रारंभिक धारणा पर चर्चा की जानी चाहिए। किसी चैनल <math>\Phi</math> की क्षमता पर विचार करते समय , हमें इसकी तुलना आदर्श चैनल <math>\Lambda</math> से करने की आवश्यकता है उदाहरण के लिए, जब इनपुट और आउटपुट बीजगणित समान हों, तब <math>\Lambda</math> को हम चुन सकते हैं  पहचान मानचित्र होना. ऐसी तुलना के लिए चैनलों के मध्य [[मीट्रिक (गणित)]] की आवश्यकता होती है। चूँकि चैनल को रैखिक ऑपरेटर के रूप में देखा जा सकता है, इसलिए प्राकृतिक [[ऑपरेटर मानदंड]] का उपयोग करना आकर्षक है। दूसरे शब्दों में, <math>\Phi</math> की आदर्श चैनल के लिए <math>\Lambda</math> से  निकटता को परिभाषित किया जा सकता है
चूँकि चैनल को रैखिक ऑपरेटर के रूप में देखा जा सकता है, इसलिए प्राकृतिक [[ऑपरेटर मानदंड]] का उपयोग करना आकर्षक है। दूसरे शब्दों में, की निकटता <math>\Phi</math> आदर्श चैनल के लिए <math>\Lambda</math> द्वारा परिभाषित किया जा सकता है


:<math>\| \Phi - \Lambda \| = \sup \{ \| (\Phi - \Lambda)(A)\|  \;|\;  \|A\| \leq 1 \}.</math>
:<math>\| \Phi - \Lambda \| = \sup \{ \| (\Phi - \Lambda)(A)\|  \;|\;  \|A\| \leq 1 \}.</math>
चूँकि, जब हम टेंसर करते हैं तब ऑपरेटर मानदंड बढ़ सकता है <math>\Phi</math> कुछ एंसीला पर पहचान मानचित्र के साथ।
चूँकि, जब हम कुछ एंसीला पर पहचान मानचित्र के साथ <math>\Phi</math> टेंसर करते हैं तब ऑपरेटर मानदंड बढ़ सकता है


ऑपरेटर मानदंड को और भी अधिक अवांछनीय उम्मीदवार बनाने के लिए, मात्रा
ऑपरेटर मानदंड को और भी अधिक अवांछनीय उम्मीदवार बनाने के लिए, मात्रा  


:<math>\| \Phi \otimes I_n \|</math>
:<math>\| \Phi \otimes I_n \|</math>
बिना किसी सीमा के बढ़ सकता है <math>n \rightarrow \infty.</math> इसका समाधान किसी भी रेखीय मानचित्र के लिए परिचय देना है <math>\Phi</math> C*-बीजगणित के मध्य, सीबी-मानदंड
<math>n \rightarrow \infty.</math>के रूप में बिना किसी सीमा के बढ़ सकता है  इसका समाधान C*-बीजगणित के मध्य, किसी भी रेखीय मानचित्र <math>\Phi</math> के लिए परिचय देना है  सीबी-मानदंड प्रस्तुत किया जाना चाहिए |                        
 
:<math>\| \Phi \|_{cb} = \sup _n \| \Phi \otimes I_n \|.</math>
 


<math>\| \Phi \|_{cb} = \sup _n \| \Phi \otimes I_n \|.</math>
=== [[चैनल क्षमता]] की परिभाषा ===
=== [[चैनल क्षमता]] की परिभाषा ===


यहां प्रयुक्त चैनल का गणितीय मॉडल चैनल क्षमता के समान है।
यहां प्रयुक्त चैनल का गणितीय मॉडल चैनल क्षमता के समान है।


होने देना <math>\Psi :\mathcal{B}_1 \rightarrow \mathcal{A}_1</math> हाइजेनबर्ग चित्र में चैनल बनें और <math>\Psi_{id} : \mathcal{B}_2 \rightarrow \mathcal{A}_2</math> चुना हुआ आदर्श चैनल बनें। तुलना को संभव बनाने के लिए, उपयुक्त उपकरणों के माध्यम से Φ को एनकोड और डीकोड करने की आवश्यकता है, अर्थात हम संरचना पर विचार करते हैं
अर्थात ये कुछ इस प्रकार है कि हाइजेनबर्ग चित्र में <math>\Psi :\mathcal{B}_1 \rightarrow \mathcal{A}_1</math>का चैनल बनें और <math>\Psi_{id} : \mathcal{B}_2 \rightarrow \mathcal{A}_2</math> चुना हुआ आदर्श चैनल बनें। तुलना को संभव बनाने के लिए, उपयुक्त उपकरणों के माध्यम से Φ को एनकोड और डीकोड करने की आवश्यकता है, अर्थात हम संरचना पर विचार करते हैं                                


:<math>{\hat \Psi} = D \circ \Phi \circ E : \mathcal{B}_2 \rightarrow \mathcal{A}_2 </math>
:<math>{\hat \Psi} = D \circ \Phi \circ E : \mathcal{B}_2 \rightarrow \mathcal{A}_2 </math>
जहां E एनकोडर है और D डिकोडर है। इस संदर्भ में, और डी उपयुक्त डोमेन वाले यूनिटल सीपी मानचित्र हैं। ब्याज की मात्रा सर्वोत्तम स्थिति है:
जहां E एनकोडर है और D डिकोडर है। इस संदर्भ में, E और D उपयुक्त डोमेन वाले यूनिटल सीपी मानचित्र हैं। ब्याज की मात्रा सर्वोत्तम स्थिति है:


:<math>\Delta ({\hat \Psi}, \Psi_{id}) = \inf_{E,D} \| {\hat \Psi} - \Psi_{id} \|_{cb}</math>
:<math>\Delta ({\hat \Psi}, \Psi_{id}) = \inf_{E,D} \| {\hat \Psi} - \Psi_{id} \|_{cb}</math>
सभी संभावित एन्कोडर्स और डिकोडर्स पर न्यूनतम नियंत्रण के साथ।
सभी संभावित एन्कोडर्स और डिकोडर्स पर न्यूनतम नियंत्रण के साथ है।


लंबाई n के शब्दों को प्रसारित करने के लिए, आदर्श चैनल को n बार प्रयुक्त किया जाना है, इसलिए हम टेंसर शक्ति पर विचार करते हैं
लंबाई n के शब्दों को प्रसारित करने के लिए, आदर्श चैनल को n बार प्रयुक्त किया जाना है, इसलिए हम टेंसर शक्ति पर विचार करते हैं
Line 199: Line 194:
:<math>\Psi_{id}^{\otimes n} = \Psi_{id} \otimes \cdots \otimes \Psi_{id}.</math>
:<math>\Psi_{id}^{\otimes n} = \Psi_{id} \otimes \cdots \otimes \Psi_{id}.</math>


  <math>\otimes</math> h> ऑपरेशन ऑपरेशन से गुजरने वाले n इनपुट का वर्णन करता है <math>\Psi_{id}</math> स्वतंत्र रूप से और संघनन का क्वांटम यांत्रिक प्रतिरूप है। इसी प्रकार, चैनल का m मंगलाचरण मेल खाता है <math>{\hat \Psi} ^{\otimes m}</math>.
  <math>\otimes</math> h> ऑपरेशन ऑपरेशन से गुजरने वाले n इनपुट का वर्णन करता है <math>\Psi_{id}</math> स्वतंत्र रूप से और संघनन का क्वांटम यांत्रिक प्रतिरूप है। इसी प्रकार, चैनल का m मंगलाचरण मेल खाता है <math>{\hat \Psi} ^{\otimes m}</math>.                  


मात्रा
मात्रा
Line 208: Line 203:
इससे निम्नलिखित परिभाषा प्राप्त होती है:
इससे निम्नलिखित परिभाषा प्राप्त होती है:


:एक गैर-ऋणात्मक वास्तविक संख्या r 'प्राप्त करने योग्य दर' है <math>\Psi</math> इसके संबंध में <math>\Psi_{id}</math>यदि
:एक गैर-ऋणात्मक वास्तविक संख्या r '<math>\Psi_{id}</math> के संबंध में <math>\Psi</math> प्राप्त करने योग्य दर' है  इसके यदि
 
:
:सभी अनुक्रमों के लिए <math>\{ n_{\alpha} \}, \{ m_{\alpha} \} \subset \mathbb{N}</math> कहाँ <math>m_{\alpha}\rightarrow \infty</math> और <math>\lim \sup _{\alpha} (n_{\alpha}/m_{\alpha}) < r</math>, अपने पास
:सभी अनुक्रमों के लिए <math>\{ n_{\alpha} \}, \{ m_{\alpha} \} \subset \mathbb{N}</math> जहाँ  <math>m_{\alpha}\rightarrow \infty</math> और <math>\lim \sup _{\alpha} (n_{\alpha}/m_{\alpha}) < r</math>, अपने पास  


:<math>\lim_{\alpha} \Delta ( {\hat \Psi}^{\otimes m_{\alpha}}, \Psi_{id}^{\otimes n_{\alpha}} ) = 0.</math>
:<math>\lim_{\alpha} \Delta ( {\hat \Psi}^{\otimes m_{\alpha}}, \Psi_{id}^{\otimes n_{\alpha}} ) = 0.</math>
एक क्रम <math>\{ n_{\alpha} \}</math> संभवतः अनंत शब्दों से युक्त संदेश का प्रतिनिधित्व करने के रूप में देखा जा सकता है। परिभाषा में सीमा सर्वोच्च स्थिति कहती है कि, सीमा में, किसी शब्द की लंबाई के r गुना से अधिक चैनल का आह्वान करके वफादार प्रसारण प्राप्त किया जा सकता है। कोई यह भी कह सकता है कि r चैनल के प्रति मंगलाचरण में अक्षरों की संख्या है जिन्हें बिना किसी त्रुटि के भेजा जा सकता है।
एक क्रम <math>\{ n_{\alpha} \}</math> संभवतः अनंत शब्दों से युक्त संदेश का प्रतिनिधित्व करने के रूप में देखा जा सकता है। परिभाषा में सीमा सर्वोच्च स्थिति कहती है कि, सीमा में, किसी शब्द की लंबाई के r गुना से अधिक चैनल का आह्वान करके वफादार प्रसारण प्राप्त किया जा सकता है। कोई यह भी कह सकता है कि r चैनल के प्रति मंगलाचरण में अक्षरों की संख्या है जिन्हें बिना किसी त्रुटि के भेजा जा सकता है।


'की चैनल क्षमता <math>\Psi</math> इसके संबंध में <math>\Psi_{id}</math>, द्वारा चिह्नित <math>\;C(\Psi, \Psi_{id})</math> सभी प्राप्य दरों में सर्वोच्च है।
<math>\Psi_{id}</math> के संबंध में , <math>\Psi</math> 'की चैनल क्षमता  <math>\;C(\Psi, \Psi_{id})</math> द्वारा चिह्नित  सभी प्राप्य दरों में सर्वोच्च है।


परिभाषा के अनुसार, यह बिल्कुल सत्य है कि 0 किसी भी चैनल के लिए प्राप्त करने योग्य दर है।
परिभाषा के अनुसार, यह बिल्कुल सत्य है कि 0 किसी भी चैनल के लिए प्राप्त करने योग्य दर है।
Line 221: Line 216:
=== महत्वपूर्ण उदाहरण ===
=== महत्वपूर्ण उदाहरण ===


जैसा कि पहले कहा गया है, अवलोकन योग्य बीजगणित वाली प्रणाली के लिए <math>\mathcal{B}</math>, आदर्श चैनल <math>\Psi_{id}</math> परिभाषा के अनुसार पहचान मानचित्र है <math>I_{\mathcal{B}}</math>. इस प्रकार विशुद्ध रूप से एन आयामी क्वांटम प्रणाली के लिए, आदर्श चैनल एन × एन आव्युह के समिष्ट पर पहचान मानचित्र है <math>\mathbb{C}^{n \times n}</math>. संकेतन के थोड़े दुरुपयोग के रूप में, इस आदर्श क्वांटम चैनल को भी निरूपित किया जाएगा <math>\mathbb{C}^{n \times n}</math>. इसी प्रकार, आउटपुट बीजगणित के साथ मौलिक प्रणाली <math>\mathbb{C}^m</math> ही प्रतीक द्वारा दर्शाया गया आदर्श चैनल होगा। अभी हम कुछ मूलभूत चैनल क्षमताएं बता सकते हैं।
जैसा कि पहले कहा गया है, अवलोकन योग्य बीजगणित वाली प्रणाली के लिए <math>\mathcal{B}</math>, आदर्श चैनल <math>\Psi_{id}</math> परिभाषा के अनुसार पहचान मानचित्र है <math>I_{\mathcal{B}}</math>. इस प्रकार विशुद्ध रूप से एन आयामी क्वांटम प्रणाली के लिए, आदर्श चैनल ''n × n'' आव्युह <math>\mathbb{C}^{n \times n}</math> के समिष्ट पर पहचान मानचित्र है  संकेतन के थोड़े दुरुपयोग के रूप में, इस आदर्श क्वांटम चैनल को <math>\mathbb{C}^{n \times n}</math> भी निरूपित किया जाएगा .इसी प्रकार, आउटपुट बीजगणित के साथ मौलिक प्रणाली <math>\mathbb{C}^m</math> ही प्रतीक द्वारा दर्शाया गया आदर्श चैनल होगा। अभी हम कुछ मूलभूत चैनल क्षमताएं बता सकते हैं।


मौलिक आदर्श चैनल की चैनल क्षमता <math>\mathbb{C}^m</math> क्वांटम आदर्श चैनल के संबंध में <math>\mathbb{C}^{n \times n}</math> है
मौलिक आदर्श चैनल की चैनल क्षमता <math>\mathbb{C}^m</math> क्वांटम आदर्श चैनल के संबंध में <math>\mathbb{C}^{n \times n}</math> है
Line 234: Line 229:
= C( \mathbb{C}^{m \times m}, \mathbb{C}^{n} ) = \frac{\log n}{\log m}.
= C( \mathbb{C}^{m \times m}, \mathbb{C}^{n} ) = \frac{\log n}{\log m}.
</math>
</math>
उदाहरण के लिए, ऊपर कहा गया है, आदर्श क्वांटम चैनल आदर्श मौलिक चैनल की तुलना में मौलिक जानकारी प्रसारित करने में अधिक कुशल नहीं है। जब n = m, तब सबसे अच्छा व्यक्ति बिट प्रति क्यूबिट प्राप्त कर सकता है।
उदाहरण के लिए, ऊपर कहा गया है, कि आदर्श क्वांटम चैनल आदर्श मौलिक चैनल की तुलना में मौलिक जानकारी प्रसारित करने में अधिक कुशल नहीं है। जब n = m, तब सबसे अच्छा व्यक्ति बिट प्रति क्यूबिट प्राप्त कर सकता है।


यहां यह नोट करना प्रासंगिक है कि क्षमताओं पर उपरोक्त दोनों सीमाएं क्वांटम उलझाव की सहायता से तोड़ी जा सकती हैं। क्वांटम टेलीपोर्टेशन|एंटेंगलमेंट-असिस्टेड टेलीपोर्टेशन योजना किसी को मौलिक चैनल का उपयोग करके क्वांटम जानकारी प्रसारित करने की अनुमति देती है। [[सुपरडेंस कोडिंग]]. प्रति क्वाइट दो बिट प्राप्त करता है। यह परिणाम क्वांटम संचार में उलझाव द्वारा निभाई गई महत्वपूर्ण भूमिका का संकेत देते हैं।
यहां यह नोट करना प्रासंगिक है कि क्षमताओं पर उपरोक्त दोनों सीमाएं क्वांटम उलझाव की सहायता से तोड़ी जा सकती हैं। क्वांटम टेलीपोर्टेशन|एंटेंगलमेंट-असिस्टेड टेलीपोर्टेशन योजना किसी को मौलिक चैनल का उपयोग करके क्वांटम जानकारी प्रसारित करने की अनुमति देती है। [[सुपरडेंस कोडिंग]]. प्रति क्वाइट दो बिट प्राप्त करता है। यह परिणाम क्वांटम संचार में उलझाव द्वारा निभाई गई महत्वपूर्ण भूमिका का संकेत भी देते हैं।


=== मौलिक और क्वांटम चैनल क्षमता ===
=== मौलिक और क्वांटम चैनल क्षमता ===
Line 243: Line 238:


:<math>C(\Psi, \mathbb{C}^2),</math>
:<math>C(\Psi, \mathbb{C}^2),</math>
अर्थात्, यह मौलिक वन-बिट प्रणालीपर आदर्श चैनल के संबंध में Ψ की क्षमता है <math>\mathbb{C}^2</math>.
अर्थात्, यह मौलिक वन-बिट प्रणाली <math>\mathbb{C}^2</math> पर आदर्श चैनल के संबंध में Ψ की क्षमता है .


इसी प्रकार Ψ की क्वांटम क्षमता है
इसी प्रकार Ψ की क्वांटम क्षमता है


:<math>C(\Psi, \mathbb{C}^{2 \times 2}),</math>
:<math>C(\Psi, \mathbb{C}^{2 \times 2}),</math>
जहां संदर्भ प्रणाली अभी वन क्विट प्रणाली है <math>\mathbb{C}^{2 \times 2}</math>.
जहां संदर्भ प्रणाली <math>\mathbb{C}^{2 \times 2}</math>अभी वन क्विट प्रणाली है .


== चैनल निष्ठा ==
== चैनल निष्ठा ==
{{Expand section|date=June 2008}}
एक क्वांटम चैनल सूचना को कितनी अच्छी तरह संरक्षित करता है इसका और माप चैनल निष्ठा कहा जाता है, और यह क्वांटम राज्यों की निष्ठा से उत्पन्न होता है।
एक क्वांटम चैनल सूचना को कितनी अच्छी तरह संरक्षित करता है इसका और माप चैनल निष्ठा कहा जाता है, और यह क्वांटम राज्यों की निष्ठा से उत्पन्न होता है।


== बिस्टोकैस्टिक क्वांटम चैनल ==
== बिस्टोकैस्टिक क्वांटम चैनल ==
एक बिस्टोकैस्टिक क्वांटम चैनल क्वांटम चैनल है <math>\Phi(\rho)</math> जो इकाई मानचित्र है,<ref>John A. Holbrook, David W. Kribs, and Raymond Laflamme. "Noiseless Subsystems and the Structure of the Commutant in Quantum Error Correction." ''Quantum Information Processing''. Volume 2, Number 5, p. 381-419.  Oct 2003.</ref> अर्थात। <math>\Phi(I) = I</math>.
एक बिस्टोकैस्टिक क्वांटम चैनल क्वांटम चैनल <math>\Phi(\rho)</math> है जो इकाई मानचित्र है,<ref>John A. Holbrook, David W. Kribs, and Raymond Laflamme. "Noiseless Subsystems and the Structure of the Commutant in Quantum Error Correction." ''Quantum Information Processing''. Volume 2, Number 5, p. 381-419.  Oct 2003.</ref> अर्थात। <math>\Phi(I) = I</math> है |


==यह भी देखें==
==यह भी देखें==

Revision as of 10:22, 17 July 2023

क्वांटम सूचना सिद्धांत में, क्वांटम चैनल संचार चैनल है जो क्वांटम सूचना देता है साथ ही मौलिक जानकारी प्रसारित कर सकता है। क्वांटम सूचना का उदाहरण कुबिट की स्थिति है। मौलिक जानकारी का उदाहरण इंटरनेट पर प्रसारित टेक्स्ट दस्तावेज़ है।

अधिक औपचारिक रूप से क्वांटम चैनल ऑपरेटरों के स्थानों के मध्य पूरी तरह से धनात्मक (सीपी) ट्रेस-संरक्षित मानचित्र हैं। दूसरे शब्दों में क्वांटम चैनल केवल एक क्वांटम ऑपरेशन है जिसे न केवल प्रणाली की कम गतिशीलता के रूप में देखा जाता है जब कि क्वांटम जानकारी ले जाने के लिए पाइपलाइन के रूप में भी देखा जाता है। (कुछ लेखक क्वांटम ऑपरेशन शब्द का उपयोग सख्ती से ट्रेस-संरक्षित मानचित्रों के लिए क्वांटम चैनल को आरक्षित करते समय ट्रेस-घटते मानचित्रों को भी सम्मिलित करने के लिए करते हैं।[1]

स्मृतिहीन क्वांटम चैनल

वर्तमान में हम यह मान लेंगे कि मानी जाने वाली प्रणालियों के सभी स्तर समिष्ट, मौलिक या क्वांटम, परिमित-आयामी हैं।

अनुभाग शीर्षक में मेमोरीलेस का वही अर्थ है जो मौलिक सूचना सिद्धांत में है: किसी दिए गए समय में चैनल का आउटपुट केवल संबंधित इनपुट पर निर्भर करता है, न कि किसी पिछले इनपुट पर निर्भर करता है ।

श्रोडिंगर चित्र

क्वांटम चैनलों पर विचार करें जो केवल क्वांटम सूचना प्रसारित करते हैं। यह वास्तव में क्वांटम ऑपरेशन है, जिसके गुणों का अभी हम सारांश प्रस्तुत करते हैं।

मान लीजिए और चैनल के क्रमशः भेजने और प्राप्त करने वाले सिरों के स्तर समिष्ट (परिमित-आयामी हिल्बर्ट समिष्ट) बनें। श्रोडिंगर चित्र में पर संचालकों के परिवार को निरूपित करेगा | तथा विशुद्ध क्वांटम चैनल निम्नलिखित गुणों के साथ और पर कार्य करना वाले घनत्व आव्युह के मध्य मानचित्र है

  1. जैसा कि क्वांटम यांत्रिकी के अभिधारणाओं द्वारा आवश्यक है, रैखिक होने की आवश्यकता है.
  2. चूंकि घनत्व आव्युह धनात्मक हैं, धनात्मक तत्वों के शंकु (रैखिक बीजगणित) को संरक्षित करना चाहिए। और दूसरे शब्दों में, की पूरी तरह से धनात्मक मानचित्रों पर चोई का प्रमेय है।
  3. यदि इच्छानुसार परिमित आयाम n का एंसीला (क्वांटम कंप्यूटिंग) प्रणाली से जुड़ा है तब प्रेरित मानचित्र जहां In एंसीला पर पहचान मानचित्र है, वह भी धनात्मक होना चाहिए। अतः यह आवश्यक है सभी n के लिए धनात्मक है। ऐसे मानचित्र पूर्णतः धनात्मक कहे जाते हैं।
  4. घनत्व आव्युह को ट्रेस 1 के लिए निर्दिष्ट किया गया है, इसलिए निशान को सुरक्षित रखना है.

मानचित्र का वर्णन करने के लिए उपयोग किए जाने वाले विशेषण पूरी तरह से धनात्मक और ट्रेस संरक्षण को कभी-कभी संक्षिप्त रूप में सीपीटीपी कहा जाता है। साहित्य में, कभी-कभी चौथी संपत्ति को अशक्त कर दिया जाता है केवल ट्रेस-बढ़ाने की आवश्यकता नहीं है। इस आलेख में, यह माना जाएगा कि सभी चैनल सीपीटीपी हैं।

हाइजेनबर्ग चित्र

HA पर कार्य करने वाले घनत्व आव्युह केवल HA पर ऑपरेटरों का उचित उपसमूह बनता है और प्रणाली B के लिए भी यही कहा जा सकता है। चूँकि, बार घनत्व आव्युह के मध्य रेखीय मानचित्र निर्दिष्ट उपयोग किया गया है, मानक रैखिकता तर्क, परिमित-आयामी धारणा के साथ, हमें विस्तार करने की अनुमति देता है तथा ऑपरेटरों के पूर्ण समिष्ट के लिए विशिष्ट रूप से दर्शाया जाता है । तथा यह निकटवर्ती मानचित्र की ओर ले जाता है , जो की हाइजेनबर्ग चित्र में क्रिया का वर्णन करता है :

ऑपरेटरों L(HA) और L(HB) के समिष्ट हिल्बर्ट-श्मिट आंतरिक उत्पाद के साथ हिल्बर्ट समिष्ट हैं। इसलिए, को हिल्बर्ट समिष्ट के बीच एक मानचित्र के रूप में देखने पर, हम इसका सहायक प्राप्त करते हैं जो कि दिया गया है

जबकि A पर स्थित राज्यों को B पर स्थित राज्यों पर ले जाता है, प्रणाली B पर अवलोकन योग्य वस्तुओं को A पर अवलोकन योग्य वस्तुओं से मानचित्र करता है। यह संबंध गतिशीलता के श्रोडिंगर और हाइजेनबर्ग विवरणों के मध्य के समान है। माप के आँकड़े अपरिवर्तित रहते हैं चाहे राज्यों के संचालन के समयअवलोकन योग्य वस्तुओं को स्थिर माना जाए या इसके विपरीत।

इसे सीधे चेक किया जा सकता है कि क्या को ट्रेस संरक्षण करने वाला माना जाता है कि यह यूनिटल मानचित्र है, अर्थात,. भौतिक रूप से कहें तब, इसका कारण यह है कि, हाइजेनबर्ग चित्र में, चैनल प्रयुक्त करने के बाद देखने योग्य तुच्छ वस्तु तुच्छ ही रहती है।

मौलिक जानकारी

अभी तक हमने केवल क्वांटम चैनल को परिभाषित किया है जो कि केवल क्वांटम सूचना प्रसारित करता है। जैसा कि परिचय में कहा गया है, किसी चैनल के इनपुट और आउटपुट में मौलिक जानकारी भी सम्मिलित हो सकती है। इसका वर्णन करने के लिए अभी तक दिए गए सूत्रीकरण को कुछ बाद तक सामान्यीकृत करने की आवश्यकता है। तथा हाइजेनबर्ग चित्र में विशुद्ध क्वांटम चैनल, ऑपरेटरों के स्थानों के मध्य रैखिक मानचित्र Ψ है:

यह एकात्मक और पूरी तरह से धनात्मक (सीपी) है। और ऑपरेटर रिक्त समिष्ट को परिमित-आयामी C*-बीजगणित के रूप में देखा जा सकता है। इसलिए, हम कह सकते हैं कि चैनल C*-बीजगणित के मध्य इकाई सीपी मानचित्र है:

फिर इस सूत्रीकरण में मौलिक जानकारी को सम्मिलित किया जा सकता है। मौलिक प्रणाली के अवलोकनों को क्रमविनिमेय C*-बीजगणित माना जा सकता है, अर्थात किसी समुच्चय पर निरंतर कार्यों का समिष्ट होता है हम यह मानते है कि इसलिए सीमित है जिससे को n-डायमेंशनल यूक्लिडियन स्पेस से पहचाना जा सकता है तथा प्रविष्टि-वार गुणन के साथ ।

इसलिए, हाइजेनबर्ग चित्र में, यदि मौलिक जानकारी इनपुट का हिस्सा है, तब हम प्रासंगिक मौलिक अवलोकनों को सम्मिलित करने के लिए को परिभाषित करेंगे । इसका उदाहरण चैनल होगा

सूचना अभी भी C*-बीजगणित है। C*-बीजगणित का के तत्व को यदि धनात्मक कहा जाता है तब कुछ के लिए उपयोग किया जाता है . मानचित्र की सकारात्मकता तदनुसार परिभाषित की जाती है। यह लक्षण वर्णन सार्वभौमिक रूप से स्वीकृत नहीं है; क्वांटम उपकरण को कभी-कभी क्वांटम और मौलिक जानकारी दोनों को संप्रेषित करने के लिए सामान्यीकृत गणितीय ढांचे के रूप में दिया जाता है। क्वांटम यांत्रिकी के स्वयंसिद्धीकरण में, मौलिक जानकारी को फ्रोबेनियस बीजगणित या फ्रोबेनियस श्रेणी में ले जाया जाता है।

उदाहरण

स्तर

एक स्तर, जिसे अवलोकन योग्य वस्तुओं से उनके अपेक्षित मूल्यों के मानचित्रण के रूप में देखा जाता है, चैनल का तत्काल उदाहरण है।

समय विकास

विशुद्ध रूप से क्वांटम प्रणाली के लिए, समय विकास पर, निश्चित समय t द्वारा दिया जाता है

जहाँ और H हैमिल्टनियन (क्वांटम यांत्रिकी) है और t समय है। स्पष्ट रूप से यह श्रोडिंगर चित्र में सीपीटीपी मानचित्र देता है और इसलिए यह चैनल है। हाइजेनबर्ग चित्र में दोहरा मानचित्र है

प्रतिबंध

स्तर समिष्ट के साथ समग्र क्वांटम प्रणाली पर विचार करें स्तर के लिए

प्रणाली A, ρA पर ρ की कम अवस्था, B प्रणाली के संबंध में ρ का आंशिक ट्रेस लेकर प्राप्त किया जाता है:

आंशिक ट्रेस ऑपरेशन सीपीटीपी मानचित्र है, इसलिए श्रोडिंगर चित्र में क्वांटम चैनल है। हाइजेनबर्ग चित्र में इस चैनल का दोहरा मानचित्र है

जहां A प्रणाली A का अवलोकन योग्य है।

अवलोकनीय

एक अवलोकनीय संख्यात्मक मान को जोड़ता है क्वांटम यांत्रिक प्रभाव से जोड़ता है को उपयुक्त स्तर समिष्ट पर कार्य करने वाले धनात्मक संचालक माना जाता है तथा . (ऐसे संग्रह को पीओवीएम कहा जाता है।) हाइजेनबर्ग चित्र में, संबंधित अवलोकन योग्य मानचित्र मौलिक अवलोकन योग्य मानचित्र

क्वांटम मैकेनिकल के लिए

दूसरे शब्दों में, क्वांटम मैकेनिकल अवलोकन योग्य प्राप्त करने के लिए नैमार्क का फैलाव प्रमेय होता है । इसे आसानी से चेक किया जा सकता है सीपी और यूनिटल है.

संबंधित श्रोडिंगर मानचित्र घनत्व आव्युह को मौलिक अवस्थाओं में ले जाता है:

जहां आंतरिक उत्पाद हिल्बर्ट-श्मिट आंतरिक उत्पाद है। इसके अतिरिक्त, राज्यों को सामान्यीकृत घनत्व आव्युह या C*-राज्यों के बीजगणितीय सूत्रीकरण के रूप में देखना, और रिज़्ज़ प्रतिनिधित्व प्रमेय को प्रयुक्त करना, हम डाल सकते हैं


साधन

श्रोडिंगर चित्र में अवलोकन योग्य मानचित्र में पूरी तरह से मौलिक आउटपुट बीजगणित है और इसलिए केवल माप आंकड़ों का वर्णन किया गया है। स्थिति परिवर्तन को भी ध्यान में रखते हुए, हम परिभाषित करते हैं कि क्वांटम उपकरण क्या कहलाता है। होने देना किसी अवलोकनीय से जुड़े प्रभाव (पीओवीएम) हों। श्रोडिंगर चित्र में, उपकरण मानचित्र है जिसे शुद्ध क्वांटम इनपुट के साथ और आउटपुट स्पेस के साथ रखा जाता है :

होने देना

हाइजेनबर्ग चित्र में दोहरा मानचित्र है

जहाँ निम्नलिखित प्रकार से परिभाषित किया गया है: कारक (यह सदैव किया जा सकता है क्योंकि पीओवीएम के तत्व धनात्मक होते हैं) तब . हमने देखा कि सीपी और यूनिटल है.

नोटिस जो स्पष्ट रूप से देखने योग्य मानचित्र देता है। वो नक्शा

समग्र स्थिति परिवर्तन का वर्णन करता है।

चैनल को मापें और तैयार करें

मान लीजिए कि दो पक्ष A और B निम्नलिखित तरीके से संवाद करना चाहते हैं: तब A अवलोकन योग्य माप करता है और माप परिणाम को मौलिक रूप से B को बताता है। जिससे प्राप्त संदेश के अनुसार, B विशिष्ट स्थिति में अपना (क्वांटम) प्रणाली तैयार करता है। श्रोडिंगर चित्र में, चैनल का पहला भाग 1 बस इसमें A माप लेना सम्मिलित है, अर्थात यह देखने योग्य मानचित्र है:

यदि, i-वें माप परिणाम की स्थिति में, B स्तर में अपना प्रणाली Ri तैयार करता है, तब चैनल 2 का दूसरा भाग उपरोक्त मौलिक अवस्था को घनत्व आव्युह में ले जाता है

कुल संक्रिया ही रचना है

इस रूप के चैनलों को माप-और-तैयार या अलेक्जेंडर होलेवो रूप में कहा जाता है।

जहाँ हाइजेनबर्ग चित्र में, दोहरा मानचित्र द्वारा परिभाषित किया गया है

माप-और-तैयार चैनल की पहचान मानचित्र नहीं हो सकती। यह बिल्कुल कोई टेलीपोर्टेशन प्रमेय नहीं का कथन है, जो कहता है कि मौलिक टेलीपोर्टेशन (क्वांटम टेलीपोर्टेशन के साथ भ्रमित नहीं होना चाहिए। उलझाव-सहायता टेलीपोर्टेशन) असंभव है। दूसरे शब्दों में, क्वांटम स्थिति को विश्वसनीय रूप से नहीं मापा जा सकता है।

चैनल-स्टेट द्वंद्व में, चैनल को मापना और तैयार करना है यदि और केवल तभी जब संबंधित स्थिति भिन्न करने योग्य स्थिति हो। मुख्य रूप से, माप-और-तैयार चैनल की आंशिक कार्रवाई के परिणामस्वरूप उत्पन्न होने वाली सभी स्थितियां भिन्न-भिन्न होती हैं, और इस कारण से माप-और-तैयार चैनल को उलझाव-तोड़ने वाले चैनल के रूप में भी जाना जाता है।

शुद्ध चैनल

विशुद्ध रूप से क्वांटम चैनल के स्थिति पर विचार करें | हाइजेनबर्ग चित्र में. इस धारणा के साथ कि सब कुछ परिमित-आयामी है, आव्युह के रिक्त समिष्ट के मध्य यूनिटल सीपी मानचित्र है

पूरी तरह से धनात्मक मानचित्रों पर चोई के प्रमेय के अनुसार, रूप लेना होगा

जहां N ≤ nm. आव्युह ki को का क्रॉस संचालक कहलाते हैं (जर्मन भौतिक विज्ञानी कार्ल क्रॉस (भौतिक विज्ञानी) के बाद, जिन्होंने उन्हें प्रस्तुत किया)। क्रॉस ऑपरेटरों की न्यूनतम संख्या को क्रॉस रैंक कहा जाता है . क्रॉस रैंक 1 वाले चैनल को शुद्ध कहा जाता है। समय विकास शुद्ध चैनल का उदाहरण है। यह शब्दावली पुनः चैनल-स्तर द्वैत से आती है। चैनल तभी शुद्ध होता है जब उसकी दोहरी अवस्था शुद्ध अवस्था हो।

टेलीपोर्टेशन

क्वांटम टेलीपोर्टेशन में, प्रेषक कण की इच्छा से क्वांटम स्थिति को संभवतः दूर के रिसीवर तक पहुंचाना चाहता है। परिणाम स्वरुप , टेलीपोर्टेशन प्रक्रिया क्वांटम चैनल है। प्रक्रिया के लिए उपकरण को रिसीवर तक अस्पष्ट हुए उस स्तर के कण के संचरण के लिए क्वांटम चैनल की आवश्यकता होती है। टेलीपोर्टेशन भेजे गए कण और शेष अस्पष्ट हुए कण के संयुक्त माप से होता है। इस माप के परिणामस्वरूप मौलिक जानकारी प्राप्त होती है जिसे टेलीपोर्टेशन पूरा करने के लिए रिसीवर को भेजा जाना चाहिए। तथा महत्वपूर्ण बात यह है कि क्वांटम चैनल का अस्तित्व समाप्त होने के बाद मौलिक जानकारी भेजी जा सकती है।

प्रायोगिक सेटिंग में

प्रयोगात्मक रूप से, क्वांटम चैनल का सरल कार्यान्वयन एकल फोटॉन का फाइबर ऑप्टिक (या उस स्थितिके लिए मुक्त-समिष्ट) संचरण है। हानि हावी होने से पहले एकल फोटॉन को मानक फाइबर को ऑप्टिक्स में 100 किमी तक प्रसारित किया जा सकता है। क्वांटम क्रिप्टोग्राफी जैसे उद्देश्यों के लिए क्वांटम जानकारी को एनकोड करने के लिए फोटॉन के आगमन के समय (टाइम-बिन उलझाव) या ध्रुवीकरण (तरंगों) का उपयोग आधार के रूप में किया जाता है। चैनल न केवल आधार स्थितियों (जैसे |0>, |1>) को प्रसारित करने में सक्षम है, किंतु उनके सुपरपोजिशन (जैसे |0>+|1>) को भी प्रसारित करने में सक्षम है। और चैनल के माध्यम से संचरण के समय स्तर की क्वांटम सुसंगतता बनाए रखी जाती है। इसकी तुलना तारों (एक मौलिक चैनल) के माध्यम से विद्युत दालों के संचरण से करें, जहां केवल मौलिक जानकारी (जैसे 0s और 1s) भेजी जा सकती है।

चैनल क्षमता

एक चैनल का सीबी-मानदंड

चैनल क्षमता की परिभाषा देने से पहले, किसी चैनल की पूर्ण सीमा या सीबी-मानदंड के मानदंड की प्रारंभिक धारणा पर चर्चा की जानी चाहिए। किसी चैनल की क्षमता पर विचार करते समय , हमें इसकी तुलना आदर्श चैनल से करने की आवश्यकता है उदाहरण के लिए, जब इनपुट और आउटपुट बीजगणित समान हों, तब को हम चुन सकते हैं पहचान मानचित्र होना. ऐसी तुलना के लिए चैनलों के मध्य मीट्रिक (गणित) की आवश्यकता होती है। चूँकि चैनल को रैखिक ऑपरेटर के रूप में देखा जा सकता है, इसलिए प्राकृतिक ऑपरेटर मानदंड का उपयोग करना आकर्षक है। दूसरे शब्दों में, की आदर्श चैनल के लिए से निकटता को परिभाषित किया जा सकता है

चूँकि, जब हम कुछ एंसीला पर पहचान मानचित्र के साथ टेंसर करते हैं तब ऑपरेटर मानदंड बढ़ सकता है ।

ऑपरेटर मानदंड को और भी अधिक अवांछनीय उम्मीदवार बनाने के लिए, मात्रा

के रूप में बिना किसी सीमा के बढ़ सकता है इसका समाधान C*-बीजगणित के मध्य, किसी भी रेखीय मानचित्र के लिए परिचय देना है सीबी-मानदंड प्रस्तुत किया जाना चाहिए |

चैनल क्षमता की परिभाषा

यहां प्रयुक्त चैनल का गणितीय मॉडल चैनल क्षमता के समान है।

अर्थात ये कुछ इस प्रकार है कि हाइजेनबर्ग चित्र में का चैनल बनें और चुना हुआ आदर्श चैनल बनें। तुलना को संभव बनाने के लिए, उपयुक्त उपकरणों के माध्यम से Φ को एनकोड और डीकोड करने की आवश्यकता है, अर्थात हम संरचना पर विचार करते हैं

जहां E एनकोडर है और D डिकोडर है। इस संदर्भ में, E और D उपयुक्त डोमेन वाले यूनिटल सीपी मानचित्र हैं। ब्याज की मात्रा सर्वोत्तम स्थिति है:

सभी संभावित एन्कोडर्स और डिकोडर्स पर न्यूनतम नियंत्रण के साथ है।

लंबाई n के शब्दों को प्रसारित करने के लिए, आदर्श चैनल को n बार प्रयुक्त किया जाना है, इसलिए हम टेंसर शक्ति पर विचार करते हैं

 h> ऑपरेशन ऑपरेशन से गुजरने वाले n इनपुट का वर्णन करता है  स्वतंत्र रूप से और संघनन का क्वांटम यांत्रिक प्रतिरूप है। इसी प्रकार, चैनल का m मंगलाचरण मेल खाता है .                    

मात्रा

इसलिए यह चैनल की लंबाई n के शब्दों को m बार बुलाए जाने पर ईमानदारी से प्रसारित करने की क्षमता का माप है।

इससे निम्नलिखित परिभाषा प्राप्त होती है:

एक गैर-ऋणात्मक वास्तविक संख्या r ' के संबंध में प्राप्त करने योग्य दर' है इसके यदि
सभी अनुक्रमों के लिए जहाँ और , अपने पास

एक क्रम संभवतः अनंत शब्दों से युक्त संदेश का प्रतिनिधित्व करने के रूप में देखा जा सकता है। परिभाषा में सीमा सर्वोच्च स्थिति कहती है कि, सीमा में, किसी शब्द की लंबाई के r गुना से अधिक चैनल का आह्वान करके वफादार प्रसारण प्राप्त किया जा सकता है। कोई यह भी कह सकता है कि r चैनल के प्रति मंगलाचरण में अक्षरों की संख्या है जिन्हें बिना किसी त्रुटि के भेजा जा सकता है।

के संबंध में , 'की चैनल क्षमता द्वारा चिह्नित सभी प्राप्य दरों में सर्वोच्च है।

परिभाषा के अनुसार, यह बिल्कुल सत्य है कि 0 किसी भी चैनल के लिए प्राप्त करने योग्य दर है।

महत्वपूर्ण उदाहरण

जैसा कि पहले कहा गया है, अवलोकन योग्य बीजगणित वाली प्रणाली के लिए , आदर्श चैनल परिभाषा के अनुसार पहचान मानचित्र है . इस प्रकार विशुद्ध रूप से एन आयामी क्वांटम प्रणाली के लिए, आदर्श चैनल n × n आव्युह के समिष्ट पर पहचान मानचित्र है संकेतन के थोड़े दुरुपयोग के रूप में, इस आदर्श क्वांटम चैनल को भी निरूपित किया जाएगा .इसी प्रकार, आउटपुट बीजगणित के साथ मौलिक प्रणाली ही प्रतीक द्वारा दर्शाया गया आदर्श चैनल होगा। अभी हम कुछ मूलभूत चैनल क्षमताएं बता सकते हैं।

मौलिक आदर्श चैनल की चैनल क्षमता क्वांटम आदर्श चैनल के संबंध में है

यह नो-टेलीपोर्टेशन प्रमेय के सामान्तर है: मौलिक चैनल के माध्यम से क्वांटम जानकारी प्रसारित करना असंभव है।

इसके अतिरिक्त, निम्नलिखित समानताएँ कायम हैं:

उदाहरण के लिए, ऊपर कहा गया है, कि आदर्श क्वांटम चैनल आदर्श मौलिक चैनल की तुलना में मौलिक जानकारी प्रसारित करने में अधिक कुशल नहीं है। जब n = m, तब सबसे अच्छा व्यक्ति बिट प्रति क्यूबिट प्राप्त कर सकता है।

यहां यह नोट करना प्रासंगिक है कि क्षमताओं पर उपरोक्त दोनों सीमाएं क्वांटम उलझाव की सहायता से तोड़ी जा सकती हैं। क्वांटम टेलीपोर्टेशन|एंटेंगलमेंट-असिस्टेड टेलीपोर्टेशन योजना किसी को मौलिक चैनल का उपयोग करके क्वांटम जानकारी प्रसारित करने की अनुमति देती है। सुपरडेंस कोडिंग. प्रति क्वाइट दो बिट प्राप्त करता है। यह परिणाम क्वांटम संचार में उलझाव द्वारा निभाई गई महत्वपूर्ण भूमिका का संकेत भी देते हैं।

मौलिक और क्वांटम चैनल क्षमता

पिछले उपधारा के समान संकेतन का उपयोग करते हुए, चैनल की मौलिक क्षमता Ψ है

अर्थात्, यह मौलिक वन-बिट प्रणाली पर आदर्श चैनल के संबंध में Ψ की क्षमता है .

इसी प्रकार Ψ की क्वांटम क्षमता है

जहां संदर्भ प्रणाली अभी वन क्विट प्रणाली है .

चैनल निष्ठा

एक क्वांटम चैनल सूचना को कितनी अच्छी तरह संरक्षित करता है इसका और माप चैनल निष्ठा कहा जाता है, और यह क्वांटम राज्यों की निष्ठा से उत्पन्न होता है।

बिस्टोकैस्टिक क्वांटम चैनल

एक बिस्टोकैस्टिक क्वांटम चैनल क्वांटम चैनल है जो इकाई मानचित्र है,[2] अर्थात। है |

यह भी देखें

संदर्भ

  1. Weedbrook, Christian; Pirandola, Stefano; García-Patrón, Raúl; Cerf, Nicolas J.; Ralph, Timothy C.; Shapiro, Jeffrey H.; Lloyd, Seth (2012). "गाऊसी क्वांटम जानकारी". Reviews of Modern Physics. 84 (2): 621–669. arXiv:1110.3234. Bibcode:2012RvMP...84..621W. doi:10.1103/RevModPhys.84.621. S2CID 119250535.
  2. John A. Holbrook, David W. Kribs, and Raymond Laflamme. "Noiseless Subsystems and the Structure of the Commutant in Quantum Error Correction." Quantum Information Processing. Volume 2, Number 5, p. 381-419. Oct 2003.