महलो कार्डिनल: Difference between revisions
No edit summary |
No edit summary |
||
Line 25: | Line 25: | ||
== उदाहरण: यह दर्शाता है कि महलो कार्डिनल्स κ-दुर्गम (अति-दुर्गम) हैं == | == उदाहरण: यह दर्शाता है कि महलो कार्डिनल्स κ-दुर्गम (अति-दुर्गम) हैं == | ||
अति दुर्गम शब्द अस्पष्ट है। इस खंड में, एक कार्डिनल κ को अति-दुर्गम कहा जाता है यदि यह κ-दुर्गम | अति दुर्गम शब्द अस्पष्ट है। इस खंड में, एक कार्डिनल κ को अति-दुर्गम कहा जाता है यदि यह κ-दुर्गम (1-दुर्गम के अधिक सामान्य अर्थ के विपरीत) है। | ||
मान लीजिए κ महलो है। हम यह दिखाने के लिए α पर ट्रांसफ़िनिट इंडक्शन द्वारा आगे बढ़ते हैं कि κ किसी भी α ≤ κ के लिए α-दुर्गम है। चूँकि κ महलो है, κ अप्राप्य है; और इस प्रकार 0-दुर्गम, जो एक ही बात है। | मान लीजिए κ महलो है। हम यह दिखाने के लिए α पर ट्रांसफ़िनिट इंडक्शन द्वारा आगे बढ़ते हैं कि κ किसी भी α ≤ κ के लिए α-दुर्गम है। चूँकि κ महलो है, κ अप्राप्य है; और इस प्रकार 0-दुर्गम, जो एक ही बात है। | ||
यदि κ α-दुर्गम है, तो β-दुर्गम (β < α के लिए) | यदि κ α-दुर्गम है, तो β-दुर्गम (β < α के लिए) स्वैच्छिक विधि से κ के निकट हैं। ऐसे β-दुर्गम की एक साथ सीमाओं के सेट पर विचार करें जो कुछ सीमा से बड़ा है लेकिन κ से कम है। यह κ (कल्पना करें कि β <α ω-बार के लिए β-दुर्गम के माध्यम से घूमते हुए हर बार एक बड़ा कार्डिनल चुनें, फिर वह सीमा लें जो नियमितता (यदि α ≥ κ तो यही विफल रहता है) से κ से कम है) में असीमित है। यह बंद है, इसलिए यह κ में क्लब है। तो, κ के महलो-नेस द्वारा, इसमें एक दुर्गम शामिल है। वह दुर्गम वास्तव में एक α-दुर्गम है। तो κ α+1-पहुंच योग्य नहीं है। | ||
यदि λ ≤ κ एक सीमा क्रमसूचक है और κ सभी α < λ के लिए α-दुर्गम है, तो प्रत्येक β < λ कुछ α < λ के लिए α से भी कम है। इसलिए यह | यदि λ ≤ κ एक सीमा क्रमसूचक है और κ सभी α < λ के लिए α-दुर्गम है, तो प्रत्येक β < λ कुछ α < λ के लिए α से भी कम है। इसलिए यह स्थिति साधारण है। विशेष रूप से, κ κ-दुर्गम है और इस प्रकार अति-दुर्गम है। | ||
यह दिखाने के लिए कि κ अति-दुर्गम की एक सीमा है और इस प्रकार 1-अति-दुर्गम है, हमें यह दिखाने की आवश्यकता है कि कार्डिनल्स μ < κ का विकर्ण सेट जो प्रत्येक α < μ के लिए α-दुर्गम है, κ में क्लब है। | यह दिखाने के लिए कि κ अति-दुर्गम की एक सीमा है और इस प्रकार 1-अति-दुर्गम है, हमें यह दिखाने की आवश्यकता है कि कार्डिनल्स μ < κ का विकर्ण सेट जो प्रत्येक α < μ के लिए α-दुर्गम है, κ में क्लब है। दहलीज के ऊपर 0-दुर्गम चुनें, इसे α<sub>0</sub> कहें। फिर एक α<sub>0</sub>-दुर्गम चुनें, इसे α<sub>1</sub> कहें। इसे दोहराते रहें और सीमा पर सीमाएं लेते रहें जब तक कि आप एक निश्चित बिंदु तक नहीं पहुंच जाते, इसे μ कहते हैं। फिर μ के पास आवश्यक गुण (सभी α < μ के लिए α-दुर्गम की एक साथ सीमा होने के नाते) है और नियमितता से κ से कम है। ऐसे कार्डिनल्स की सीमाओं में भी संपत्ति होती है, इसलिए उनका सेट κ में क्लब है। κ के महलो-नेस द्वारा, इस सेट में एक दुर्गम है और यह अति-दुर्गम है। तो κ 1-अति-दुर्गम है। हम κ से कम हाइपर-एक्सेसिबल्स का एक स्थिर सेट प्राप्त करने के लिए इसी क्लब सेट को κ से कम स्थिर सेट के साथ प्रतिच्छेद कर सकते हैं। | ||
शेष प्रमाण कि κ α-अति-दुर्गम है, इस प्रमाण की नकल करता है कि यह α-दुर्गम है। तो κ अति-अति-दुर्गम, आदि है। | शेष प्रमाण कि κ α-अति-दुर्गम है, इस प्रमाण की नकल करता है कि यह α-दुर्गम है। तो κ अति-अति-दुर्गम, आदि है। | ||
Line 68: | Line 68: | ||
एक्सिओम एफ का कथन है कि ऑर्डिनल्स पर प्रत्येक सामान्य फ़ंक्शन का एक नियमित निश्चित बिंदु होता है। (यह प्रथम-क्रम का स्वयंसिद्ध नहीं है क्योंकि यह सभी सामान्य कार्यों की मात्रा निर्धारित करता है, इसलिए इसे या तो दूसरे-क्रम के स्वयंसिद्ध के रूप में या एक स्वयंसिद्ध योजना के रूप में माना जा सकता है।) | एक्सिओम एफ का कथन है कि ऑर्डिनल्स पर प्रत्येक सामान्य फ़ंक्शन का एक नियमित निश्चित बिंदु होता है। (यह प्रथम-क्रम का स्वयंसिद्ध नहीं है क्योंकि यह सभी सामान्य कार्यों की मात्रा निर्धारित करता है, इसलिए इसे या तो दूसरे-क्रम के स्वयंसिद्ध के रूप में या एक स्वयंसिद्ध योजना के रूप में माना जा सकता है।) | ||
एक कार्डिनल को महलो कहा जाता है यदि उस पर प्रत्येक सामान्य कार्य का एक नियमित निश्चित बिंदु होता है{{citation needed|date=December 2022}}, इसलिए स्वयंसिद्ध F कुछ अर्थों में कह रहा है कि सभी क्रमसूचकों का वर्ग महलो है।{{citation needed|date=July 2023}} एक कार्डिनल κ महलो है यदि और केवल यदि स्वयंसिद्ध F का दूसरा क्रम रूप V में है<sub>κ</sub>.{{citation needed|date=July 2023}} अभिगृहीत एफ बदले में इस कथन के समतुल्य है कि मापदंडों के साथ किसी भी सूत्र φ के लिए | एक कार्डिनल को महलो कहा जाता है यदि उस पर प्रत्येक सामान्य कार्य का एक नियमित निश्चित बिंदु होता है{{citation needed|date=December 2022}}, इसलिए स्वयंसिद्ध F कुछ अर्थों में कह रहा है कि सभी क्रमसूचकों का वर्ग महलो है।{{citation needed|date=July 2023}} एक कार्डिनल κ महलो है यदि और केवल यदि स्वयंसिद्ध F का दूसरा क्रम रूप V में है<sub>κ</sub>.{{citation needed|date=July 2023}} अभिगृहीत एफ बदले में इस कथन के समतुल्य है कि मापदंडों के साथ किसी भी सूत्र φ के लिए स्वैच्छिक विधि से बड़े दुर्गम क्रमसूचक α हैं जैसे कि वी<sub>α</sub> φ को प्रतिबिंबित करता है (दूसरे शब्दों में φ को V में रखा जाता है<sub>α</sub> यदि और केवल यदि यह पूरे ब्रह्मांड में व्याप्त है) {{harv|Drake|1974|loc=chapter 4}}. | ||
==बोरेल विकर्णीकरण में उपस्थिति== | ==बोरेल विकर्णीकरण में उपस्थिति== |
Revision as of 20:34, 15 July 2023
गणित में, महलो कार्डिनल एक निश्चित प्रकार की बड़ी कार्डिनल संख्या होती है। महलो कार्डिनल्स का वर्णन सबसे पहले पॉल महलो (1911, 1912, 1913) द्वारा किया गया था। सभी बड़े कार्डिनल्स की तरह महलो कार्डिनल्स की इन प्रकारों में से कोई भी जेडएफसी (यह मानते हुए कि जेडएफसी सुसंगत सिद्धांत है) द्वारा अस्तित्व में सिद्ध नहीं किया जा सकता है।
एक कार्डिनल संख्या को दृढ़ता से महलो कहा जाता है यदि अत्यधिक दुर्गम है और सेट (गणित) κ में स्थिर है।
एक कार्डिनल को कमजोर रूप से महलो कहा जाता है यदि कमजोर रूप से दुर्गम है और कमजोर रूप से दुर्गम कार्डिनल्स का सेट में स्थिर है।
शब्द महलो कार्डिनल का अर्थ अब सामान्यतः दृढ़ता से महलो कार्डिनल होता है, चूंकि मूल रूप से महलो द्वारा माने जाने वाले कार्डिनल कमजोर रूप से महलो कार्डिनल थे।
एक महलो कार्डिनल के लिए पर्याप्त न्यूनतम शर्त
- यदि κ एक सीमा क्रमसूचक है और κ से कम नियमित क्रमसूचकों का सेट κ में स्थिर है, तो κ कमजोर रूप से महलो है।
इसे सिद्ध करने में मुख्य कठिनाई यह दिखाना है कि κ नियमित है। हम मान लेंगे कि यह नियमित नहीं है और एक क्लब सेट का निर्माण करेंगे जो हमें μ इस प्रकार देगा:
- μ = cf(μ) < cf(κ) < μ < κ जो एक विरोधाभास है।
यदि κ नियमित नहीं था, तो cf(κ) < κ है। हम सख़्ती से बढ़ते और निरंतर cf(κ)-अनुक्रम को चुन सकते हैं जो cf(κ)+1 से प्रारंभ होता है और इसकी सीमा κ है। उस अनुक्रम की सीमा κ में क्लब होगी। तो उन सीमाओं के बीच एक नियमित μ होना चाहिए। तो μ cf(κ)-अनुक्रम के प्रारंभिक अनुवर्ती की एक सीमा है। इस प्रकार इसकी सह-अंतिमता κ की सह-अंतिमता से कम है और एक ही समय में इससे अधिक है; जो एक विरोधाभास है। इस प्रकार यह धारणा कि κ नियमित नहीं है, जो गलत होनी चाहिए, अर्थात κ नियमित है।
कोई भी स्थिर सेट आवश्यक गुण के साथ से नीचे उपस्थित नहीं हो सकता क्योंकि {2,3,4,...} ω में क्लब है किन्तु इसमें कोई नियमित क्रमसूचक नहीं है; इसलिए κ अगणनीय है। और यह नियमित कार्डिनल्स की एक नियमित सीमा है; इसलिए यह कमजोर रूप से पहुंच योग्य नहीं है। फिर कोई यह दिखाने के लिए क्लब सेट के रूप में κ के नीचे अगणनीय सीमा कार्डिनल्स के सेट का उपयोग करता है कि स्थिर सेट को कमजोर दुर्गम से युक्त माना जा सकता है।
- यदि κ कमजोर रूप से महलो है और एक शक्तिशाली सीमा भी है, तो κ महलो है।
κ कमजोर रूप से पहुंच योग्य नहीं है और एक शक्तिशाली सीमा है, इसलिए यह दृढ़ता से पहुंच योग्य नहीं है।
हम दिखाते हैं कि κ के नीचे अनगिनत शक्तिशाली सीमा कार्डिनल्स का सेट κ में क्लब है। मान लीजिए μ0 सीमा और ω1 का महलो होना है। प्रत्येक परिमित n के लिए, मान लीजिए μn+1 = 2μn जो κ से कम है क्योंकि यह एक शक्तिशाली सीमा कार्डिनल है। तब उनकी सीमा एक शक्तिशाली सीमा कार्डिनल है और इसकी नियमितता से κ से कम है। अगणनीय शक्तिशाली सीमा कार्डिनल्स की सीमाएँ भी अगणनीय शक्तिशाली सीमा कार्डिनल्स हैं। तो उनका सेट κ में क्लब है। κ से कम दृढ़ता से दुर्गम कार्डिनल्स का एक स्थिर सेट प्राप्त करने के लिए उस क्लब सेट को κ से कम कमजोर पहुंच वाले कार्डिनल्स के स्थिर सेट के साथ इंटरसेक्ट करें।
उदाहरण: यह दर्शाता है कि महलो कार्डिनल्स κ-दुर्गम (अति-दुर्गम) हैं
अति दुर्गम शब्द अस्पष्ट है। इस खंड में, एक कार्डिनल κ को अति-दुर्गम कहा जाता है यदि यह κ-दुर्गम (1-दुर्गम के अधिक सामान्य अर्थ के विपरीत) है।
मान लीजिए κ महलो है। हम यह दिखाने के लिए α पर ट्रांसफ़िनिट इंडक्शन द्वारा आगे बढ़ते हैं कि κ किसी भी α ≤ κ के लिए α-दुर्गम है। चूँकि κ महलो है, κ अप्राप्य है; और इस प्रकार 0-दुर्गम, जो एक ही बात है।
यदि κ α-दुर्गम है, तो β-दुर्गम (β < α के लिए) स्वैच्छिक विधि से κ के निकट हैं। ऐसे β-दुर्गम की एक साथ सीमाओं के सेट पर विचार करें जो कुछ सीमा से बड़ा है लेकिन κ से कम है। यह κ (कल्पना करें कि β <α ω-बार के लिए β-दुर्गम के माध्यम से घूमते हुए हर बार एक बड़ा कार्डिनल चुनें, फिर वह सीमा लें जो नियमितता (यदि α ≥ κ तो यही विफल रहता है) से κ से कम है) में असीमित है। यह बंद है, इसलिए यह κ में क्लब है। तो, κ के महलो-नेस द्वारा, इसमें एक दुर्गम शामिल है। वह दुर्गम वास्तव में एक α-दुर्गम है। तो κ α+1-पहुंच योग्य नहीं है।
यदि λ ≤ κ एक सीमा क्रमसूचक है और κ सभी α < λ के लिए α-दुर्गम है, तो प्रत्येक β < λ कुछ α < λ के लिए α से भी कम है। इसलिए यह स्थिति साधारण है। विशेष रूप से, κ κ-दुर्गम है और इस प्रकार अति-दुर्गम है।
यह दिखाने के लिए कि κ अति-दुर्गम की एक सीमा है और इस प्रकार 1-अति-दुर्गम है, हमें यह दिखाने की आवश्यकता है कि कार्डिनल्स μ < κ का विकर्ण सेट जो प्रत्येक α < μ के लिए α-दुर्गम है, κ में क्लब है। दहलीज के ऊपर 0-दुर्गम चुनें, इसे α0 कहें। फिर एक α0-दुर्गम चुनें, इसे α1 कहें। इसे दोहराते रहें और सीमा पर सीमाएं लेते रहें जब तक कि आप एक निश्चित बिंदु तक नहीं पहुंच जाते, इसे μ कहते हैं। फिर μ के पास आवश्यक गुण (सभी α < μ के लिए α-दुर्गम की एक साथ सीमा होने के नाते) है और नियमितता से κ से कम है। ऐसे कार्डिनल्स की सीमाओं में भी संपत्ति होती है, इसलिए उनका सेट κ में क्लब है। κ के महलो-नेस द्वारा, इस सेट में एक दुर्गम है और यह अति-दुर्गम है। तो κ 1-अति-दुर्गम है। हम κ से कम हाइपर-एक्सेसिबल्स का एक स्थिर सेट प्राप्त करने के लिए इसी क्लब सेट को κ से कम स्थिर सेट के साथ प्रतिच्छेद कर सकते हैं।
शेष प्रमाण कि κ α-अति-दुर्गम है, इस प्रमाण की नकल करता है कि यह α-दुर्गम है। तो κ अति-अति-दुर्गम, आदि है।
α-महलो, हाइपर-महलो और अत्यधिक महलो कार्डिनल्स
α-Mahlo शब्द अस्पष्ट है और विभिन्न लेखक असमान परिभाषाएँ देते हैं। एक परिभाषा यह है एक कार्डिनल κ को कुछ ऑर्डिनल α के लिए α-Mahlo कहा जाता है यदि κ दृढ़ता से पहुंच योग्य नहीं है और प्रत्येक ऑर्डिनल β<α के लिए, κ के नीचे β-Mahlo कार्डिनल्स का सेट κ में स्थिर है। हालाँकि स्थिति κ अत्यधिक दुर्गम है जिसे कभी-कभी अन्य स्थितियों द्वारा प्रतिस्थापित किया जाता है, जैसे कि κ नियमित है या κ कमजोर रूप से दुर्गम है या κ महलो है। हम हाइपर-महलो, α-हाइपर-महलो, हाइपर-हाइपर-महलो, कमजोर रूप से α-महलो, कमजोर रूप से हाइपर-महलो, कमजोर रूप से α-हाइपर-महलो, इत्यादि को दुर्गमों की परिभाषाओं के अनुरूप परिभाषित कर सकते हैं। उदाहरण के लिए एक कार्डिनल κ को हाइपर-महलो कहा जाता है यदि यह κ-महलो है।
एक कार्डिनल κ बहुत हद तक महलो या κ होता है+-महलो यदि और केवल यदि यह पहुंच योग्य नहीं है और κ के पावर सेट पर एक सामान्य (यानी गैर-तुच्छ और विकर्ण चौराहों के नीचे बंद) κ-पूर्ण फ़िल्टर (गणित) है जो महलो ऑपरेशन के तहत बंद है, जो ऑर्डिनल्स के सेट को S से {α तक मैप करता हैS: α में अनगिनत सह-अंतिमता है और S∩α α में स्थिर है}
यदि हम ब्रह्मांड को एक आंतरिक मॉडल से प्रतिस्थापित करते हैं, तो अप्राप्य, महलो, कमजोर रूप से महलो, α-महलो, बहुत महलो आदि के गुण संरक्षित रहते हैं।
प्रत्येक प्रतिबिंबित कार्डिनल के पास बहुत अधिक महलो की तुलना में सख्ती से अधिक स्थिरता शक्ति होती है, किन्तु दुर्गम प्रतिबिंबित कार्डिनल सामान्य महलो में नहीं होते हैं - https://mathoverflow.net/q/212597 देखें
महलो ऑपरेशन
यदि इस ऑपरेशन एम को 'महलो ऑपरेशन' कहा जाता है। इसका उपयोग महलो कार्डिनल्स को परिभाषित करने के लिए किया जा सकता है: उदाहरण के लिए, यदि एक्स नियमित कार्डिनल्स का वर्ग है, तो एम(एक्स) कमजोर महलो कार्डिनल्स का वर्ग है। यह शर्त कि α में अगणनीय सह-अंतिमता है, यह सुनिश्चित करती है कि α के बंद असंबद्ध उपसमुच्चय प्रतिच्छेदन के तहत बंद हैं और इस प्रकार एक फ़िल्टर बनाते हैं; व्यवहार में एक्स के तत्वों में अक्सर पहले से ही अगणनीय सह-अंतिमता होती है, ऐसी स्थिति में यह स्थिति बेमानी है। कुछ लेखक यह शर्त जोड़ते हैं कि α X में है, जो व्यवहार में सामान्यतः थोड़ा अंतर डालता है क्योंकि यह अक्सर स्वचालित रूप से संतुष्ट होता है।
एक निश्चित नियमित अगणनीय कार्डिनल κ के लिए, महलो ऑपरेशन गैर-स्थिर आदर्श κ मॉड्यूलो के सभी उपसमुच्चय के बूलियन बीजगणित पर एक ऑपरेशन को प्रेरित करता है।
महलो ऑपरेशन को इस प्रकार अनंत रूप से दोहराया जा सकता है:
- एम0(एक्स) = एक्स
- एमα+1(X) = M(Mα(X))
- यदि α एक सीमा क्रमसूचक है तो Mα(X) M का प्रतिच्छेदन हैβ(X) β<α के लिए
ये पुनरावृत्त महलो ऑपरेशन दृढ़ता से दुर्गम कार्डिनल्स के वर्ग से प्रारंभ होने वाले α-महलो कार्डिनल्स की कक्षाएं उत्पन्न करते हैं।
इस प्रक्रिया को परिभाषित करके विकर्ण बनाना भी संभव है
- एमΔ(X) ऑर्डिनल्स α का सेट है जो M में हैβ(X) β<α के लिए।
और निश्चित रूप से इस विकर्णीकरण प्रक्रिया को भी दोहराया जा सकता है। विकर्ण महलो ऑपरेशन हाइपर-महलो कार्डिनल्स इत्यादि का उत्पादन करता है।
महलो कार्डिनल्स और प्रतिबिंब सिद्धांत
एक्सिओम एफ का कथन है कि ऑर्डिनल्स पर प्रत्येक सामान्य फ़ंक्शन का एक नियमित निश्चित बिंदु होता है। (यह प्रथम-क्रम का स्वयंसिद्ध नहीं है क्योंकि यह सभी सामान्य कार्यों की मात्रा निर्धारित करता है, इसलिए इसे या तो दूसरे-क्रम के स्वयंसिद्ध के रूप में या एक स्वयंसिद्ध योजना के रूप में माना जा सकता है।) एक कार्डिनल को महलो कहा जाता है यदि उस पर प्रत्येक सामान्य कार्य का एक नियमित निश्चित बिंदु होता है[citation needed], इसलिए स्वयंसिद्ध F कुछ अर्थों में कह रहा है कि सभी क्रमसूचकों का वर्ग महलो है।[citation needed] एक कार्डिनल κ महलो है यदि और केवल यदि स्वयंसिद्ध F का दूसरा क्रम रूप V में हैκ.[citation needed] अभिगृहीत एफ बदले में इस कथन के समतुल्य है कि मापदंडों के साथ किसी भी सूत्र φ के लिए स्वैच्छिक विधि से बड़े दुर्गम क्रमसूचक α हैं जैसे कि वीα φ को प्रतिबिंबित करता है (दूसरे शब्दों में φ को V में रखा जाता हैα यदि और केवल यदि यह पूरे ब्रह्मांड में व्याप्त है) (Drake 1974, chapter 4).
बोरेल विकर्णीकरण में उपस्थिति
Harvey Friedman (1981) ने दिखाया है कि बंद इकाई अंतराल के उत्पादों पर बोरेल कार्यों के बारे में कुछ प्रमेयों को सिद्ध करने के लिए महलो कार्डिनल्स का अस्तित्व एक आवश्यक धारणा है।
होने देना होना , द - बंद इकाई अंतराल के पुनरावृत्त कार्टेशियन उत्पाद को अपने साथ मोड़ें। समूह के सभी क्रमपरिवर्तन के वह चाल केवल सीमित रूप से कई प्राकृतिक संख्याओं पर कार्य करते हुए देखी जा सकती है निर्देशांक को क्रमपरिवर्तित करके। समूह क्रिया किसी भी उत्पाद पर विकर्ण रूप से भी कार्य करता है , संकेतन के दुरुपयोग को परिभाषित करके . के लिए , होने देना अगर और इस विकर्ण क्रिया के तहत एक ही कक्षा में हैं।
होने देना किसी के लिए भी ऐसा बोरेल फ़ंक्शन बनें और , अगर तब . फिर एक क्रम है जैसे कि सूचकांकों के सभी अनुक्रमों के लिए , का पहला निर्देशांक है . यह प्रमेय सिद्ध करने योग्य है , किन्तु किसी सिद्धांत में नहीं कुछ के लिए तय किया गया .[1]
यह भी देखें
- दुर्गम कार्डिनल
- स्थिर सेट
- आंतरिक मॉडल
टिप्पणियाँ
- ↑ Friedman 1981, p. 253.
संदर्भ
- Drake, Frank R. (1974). Set Theory: An Introduction to Large Cardinals. Studies in Logic and the Foundations of Mathematics. Vol. 76. Elsevier Science Ltd. ISBN 0-444-10535-2. Zbl 0294.02034.
- Friedman, Harvey (1981). "On the necessary use of abstract set theory" (PDF). Advances in Mathematics. 41 (3): 209–280. doi:10.1016/0001-8708(81)90021-9. Retrieved 19 December 2022.
- Kanamori, Akihiro (2003). The Higher Infinite : Large Cardinals in Set Theory from Their Beginnings. Springer Monographs in Mathematics (2nd ed.). Springer-Verlag. ISBN 3-540-00384-3. Zbl 1022.03033.
- Mahlo, Paul (1911), "Über lineare transfinite Mengen", Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Klasse, 63: 187–225, JFM 42.0090.02
- Mahlo, Paul (1912), "Zur Theorie und Anwendung der ρ0-Zahlen", Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Klasse, 64: 108–112, JFM 43.0113.01
- Mahlo, Paul (1913), "Zur Theorie und Anwendung der ρ0-Zahlen II", Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Klasse, 65: 268–282, JFM 44.0092.02