सामान्य समुच्चय सिद्धांत: Difference between revisions
No edit summary |
(text) |
||
Line 6: | Line 6: | ||
==सूक्ति== | ==सूक्ति== | ||
नीचे दिए गए प्रतीकात्मक सिद्धांत बूलोस (1998:196) से हैं, और यह नियंत्रित करते हैं कि समुच्चय कैसे व्यवहार करते हैं और परस्पर क्रिया करते हैं। ज़र्मेलो समुच्चय सिद्धांत की तरह, जीएसटी के लिए पृष्ठभूमि तर्क [[पहचान (दर्शन)|अभिज्ञान (दर्शन)]] के साथ [[प्रथम क्रम तर्क]] है। वास्तव में, जीएसटी, संघ के स्वयंसिद्ध, शक्ति समुच्चय के स्वयंसिद्ध, प्राथमिक समुच्चय (अनिवार्य रूप से युग्मित स्वयंसिद्ध) और अनंत के स्वयंसिद्ध को छोड़कर और फिर Z, अनुबंधी के एक प्रमेय को एक स्वयंसिद्ध के रूप में लेने से प्राप्त जेड | नीचे दिए गए प्रतीकात्मक सिद्धांत बूलोस (1998:196) से हैं, और यह नियंत्रित करते हैं कि समुच्चय कैसे व्यवहार करते हैं और परस्पर क्रिया करते हैं। ज़र्मेलो समुच्चय सिद्धांत की तरह, जीएसटी के लिए पृष्ठभूमि तर्क [[पहचान (दर्शन)|अभिज्ञान (दर्शन)]] के साथ [[प्रथम क्रम तर्क]] है। वास्तव में, जीएसटी, संघ के स्वयंसिद्ध, शक्ति समुच्चय के स्वयंसिद्ध, प्राथमिक समुच्चय (अनिवार्य रूप से युग्मित स्वयंसिद्ध) और अनंत के स्वयंसिद्ध को छोड़कर और फिर Z, अनुबंधी के एक प्रमेय को एक स्वयंसिद्ध के रूप में लेने से प्राप्त जेड का खंड है। स्वयंसिद्धों के प्राकृतिक भाषा संस्करणों का उद्देश्य अंतर्ज्ञान की सहायता करना है। | ||
1) विस्तारशीलता का अभिगृहीत: समुच्चय x और y एक ही समुच्चय हैं यदि उनके सदस्य समान हों। | |||
:<math>\forall x \forall y [\forall z [z \in x \leftrightarrow z \in y] \rightarrow x = y] | :<math>\forall x \forall y [\forall z [z \in x \leftrightarrow z \in y] \rightarrow x = y]</math>। | ||
इस अभिगृहीत का व्युत्क्रम समानता के प्रतिस्थापन गुण से आता है। | इस अभिगृहीत का व्युत्क्रम समानता के प्रतिस्थापन गुण से आता है। | ||
2) विशिष्टता (या पृथक्करण या प्रतिबंधित समझ) की स्वयंसिद्ध | 2) विशिष्टता (या पृथक्करण या प्रतिबंधित समझ) की स्वयंसिद्ध रूपरेखा: यदि z एक समुच्चय है और <math>\phi</math> क्या कोई विशेषता है जो z के सभी, कुछ, या किसी भी तत्व से संतुष्ट हो सकती है, तो z का एक उपसमुच्चय y उपस्थित है जिसमें z में केवल वे तत्व x सम्मिलित हैं जो <math>\phi</math> विशेषता को संतुष्ट करते हैं। रसेल के विरोधाभास और इसके परिवर्ती से बचने के लिए z पर [[प्रतिबंध (गणित)]] आवश्यक है। अधिक औपचारिक रूप से, आइए <math>\phi(x)</math> जीएसटी की भाषा में कोई भी फॉर्मूला हो जिसमें x स्वतंत्र रूप से घटित हो सकता है और y नहीं हो सकता है। फिर निम्नलिखित रूपरेखा के सभी उदाहरण स्वयंसिद्ध हैं: | ||
:<math>\forall z \exists y \forall x [x \in y \leftrightarrow ( x \in z \land \phi(x))] | :<math>\forall z \exists y \forall x [x \in y \leftrightarrow ( x \in z \land \phi(x))]</math> | ||
3) संयोजन का अभिगृहीत: यदि x और y समुच्चय हैं, तो एक समुच्चय w | 3) संयोजन का अभिगृहीत: यदि x और y समुच्चय हैं, तो एक समुच्चय w उपस्थित है, जो x और y का संयोजक है, जिसके सदस्य सिर्फ y हैं और x के सदस्य हैं। <ref>''Adjunction'' is seldom mentioned in the literature. Exceptions are Burgess (2005) ''passim'', and QIII in Tarski and Givant (1987: 223).</ref> | ||
:<math>\forall x \forall y \exist w \forall z [ z \in w \leftrightarrow (z \in x \lor z=y)]</math>। | |||
:<math>\forall x \forall y \exist w \forall z [ z \in w \leftrightarrow (z \in x \lor z=y)] | अनुबंधी दो सम्मुच्चयों पर एक प्राथमिक संचालन को संदर्भित करता है, और गणित में अन्यत्र, [[सहायक संचालिका]] सहित, उस शब्द के उपयोग पर इसका कोई प्रभाव नहीं पड़ता है। | ||
अनुबंधी दो | |||
एसटी जीएसटी है जिसमें विनिर्देशन की स्वयंसिद्ध | एसटी जीएसटी है जिसमें विनिर्देशन की स्वयंसिद्ध रूपरेखा को रिक्त समुच्चय के स्वयंसिद्ध द्वारा प्रतिस्थापित किया गया है। | ||
==चर्चा== | ==चर्चा== | ||
===मेटामैथेमेटिक्स=== | ===मेटामैथेमेटिक्स=== | ||
ध्यान दें कि विशिष्टता एक स्वयंसिद्ध | ध्यान दें कि विशिष्टता एक स्वयंसिद्ध रूपरेखा है। इन स्वयंसिद्धों द्वारा दिया गया सिद्धांत स्वयंसिद्ध रूपरेखा नहीं है। मोंटेग्यू (1961) ने दिखाया कि जेडएफसी अंतिम रूप से स्वयंसिद्ध नहीं है, और उनका तर्क जीएसटी पर लागू होता है। इसलिए जीएसटी के किसी भी स्वयंसिद्धीकरण में कम से कम एक स्वयंसिद्ध रूपरेखा सम्मिलित होना चाहिए। अपने सरल सिद्धांतों के साथ, जीएसटी भोले समुच्चय सिद्धांत के तीन महान विरोधाभासों से भी प्रतिरक्षित है: रसेल का विरोधाभास, बुराली-फोर्टी विरोधाभास, और कैंटर का विरोधाभास। | ||
अपने सरल सिद्धांतों के साथ, जीएसटी भोले समुच्चय सिद्धांत के तीन महान विरोधाभासों से भी प्रतिरक्षित है: रसेल का विरोधाभास | |||
जीएसटी | जीएसटी संबंध बीजगणित में व्याख्या योग्य है क्योंकि किसी भी जीएसटी सिद्धांत का कोई भी हिस्सा तीन से अधिक [[परिमाणक (तर्क)]] के कार्यक्षेत्र में नहीं आता है। यह टार्स्की और गिवंत (1987) में दी गई आवश्यक और पर्याप्त परिस्थिति है। | ||
===पीनो अंकगणित=== | ===पीनो अंकगणित=== | ||
φ(x) को पृथक्करण में x≠x पर समुच्चय करना, और यह मानते हुए कि [[किसी फ़ंक्शन का डोमेन]] गैर-रिक्त है, [[खाली सेट| | φ(x) को पृथक्करण में x≠x पर समुच्चय करना, और यह मानते हुए कि [[किसी फ़ंक्शन का डोमेन|किसी फलन का कार्यछेत्र]] गैर-रिक्त है, [[खाली सेट|रिक्त समुच्चय]] के अस्तित्व का आश्वासन देता है। अनुबंधी का तात्पर्य है कि यदि x एक समुच्चय है, तो <math>S(x) = x \cup \{x\}</math> ऐसा ही है। अनुबंधी को देखते हुए, रिक्त समुच्चय से उत्तराधिकारी वर्गांक का सामान्य निर्माण आगे बढ़ सकता है, जिसमें [[प्राकृतिक संख्या]] <math>\varnothing,\,S(\varnothing),\,S(S(\varnothing)),\,\ldots,</math> को परिभाषित किया गया है। पीनो के अभिगृहीत देखें। जीएसटी [[पीनो अंकगणित]] के साथ परस्पर व्याख्या योग्य है (इस प्रकार इसमें पीए के समान प्रमाण-सैद्धांतिक ताकत है)। | ||
जीएसटी [[पीनो अंकगणित]] के साथ परस्पर व्याख्या योग्य है (इस प्रकार इसमें पीए के समान प्रमाण-सैद्धांतिक ताकत है)। | |||
एसटी (और इसलिए जीएसटी) के बारे में सबसे उल्लेखनीय तथ्य यह है कि समुच्चय सिद्धांत के ये छोटे खंड ऐसे समृद्ध मेटामैथेमेटिक्स को | एसटी (और इसलिए जीएसटी) के बारे में सबसे उल्लेखनीय तथ्य यह है कि समुच्चय सिद्धांत के ये छोटे खंड ऐसे समृद्ध मेटामैथेमेटिक्स को उत्पन्न करते हैं। जबकि एसटी प्रसिद्ध विहित समुच्चय सिद्धांतों जेडएफसी और वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत, एसटी व्याख्यात्मकता [[रॉबिन्सन अंकगणित]] (क्यू) का एक छोटा सा खंड है, ताकि एसटी को क्यू के गैर-तुच्छ मेटामैथेमेटिक्स विरासत में मिले। उदाहरण के लिए, एसटी निर्णायकता है ( तर्क) क्योंकि क्यू है, और प्रत्येक सुसंगत सिद्धांत जिसके प्रमेयों में एसटी स्वयंसिद्ध सम्मिलित हैं, वह भी अनिवार्य रूप से अनिर्णीत है। <ref>Burgess (2005), 2.2, p. 91.</ref> इसमें जीएसटी और विचार करने योग्य प्रत्येक स्वयंसिद्ध समुच्चय सिद्धांत सम्मिलित है, यह मानते हुए कि ये सुसंगत हैं। वास्तव में, एसटी की निर्णायकता (तर्क) का तात्पर्य एकल युग्मक विधेय पत्र के साथ [[प्रथम-क्रम तर्क]] की अनिश्चितता से है। <ref>Tarski et al. (1953), p. 34.</ref> गोडेल के अपूर्णता प्रमेय के अर्थ में भी Q अधूरा है। कोई भी स्वयंसिद्ध सिद्धांत, जैसे कि एसटी और जीएसटी, जिनके प्रमेयों में क्यू स्वयंसिद्ध सम्मिलित हैं। इसके अतिरिक्त, जीएसटी की स्थिरता को जीएसटी के भीतर ही सिद्ध नहीं किया जा सकता, जब तक कि जीएसटी वास्तव में असंगत न हो। | ||
गोडेल के अपूर्णता प्रमेय के अर्थ में भी Q अधूरा है। कोई भी स्वयंसिद्ध सिद्धांत, जैसे कि एसटी और जीएसटी, जिनके प्रमेयों में क्यू स्वयंसिद्ध सम्मिलित | |||
===अनंत समुच्चय=== | ===अनंत समुच्चय=== | ||
जेडएफसी के किसी भी | जेडएफसी के किसी भी प्रतिरूप M को देखते हुए, M में आनुवंशिक रूप से सीमित सम्मुच्चयों का संग्रह जीएसटी सिद्धांतों को पूरा करेगा। इसलिए, जीएसटी एक गणनीय अनंत समुच्चय के अस्तित्व को भी सिद्ध नहीं कर सकता है, अर्थात एक समुच्चय जिसकी कार्डिनैलिटी ℵ<sub>0</sub> है। भले ही जीएसटी ने एक अनगिनत अनंत समुच्चय को वहन किया हो, जीएसटी एक ऐसे समुच्चय के अस्तित्व को सिद्ध नहीं कर सका जिसकी [[प्रमुखता]] <math>\aleph_1</math> है, क्योंकि जीएसटी में घात समुच्चय के सिद्धांत का अभाव है। इसलिए जीएसटी [[गणितीय विश्लेषण]] और [[ज्यामिति]] को आधार नहीं बना सकता है, और [[गणित की नींव]] के रूप में काम करने के लिए यह बहुत शक्तिहीन है। | ||
==इतिहास== | ==इतिहास== | ||
बूलोस को जीएसटी में केवल ज़र्मेलो समुच्चय सिद्धांत के एक खंड के रूप में | बूलोस को जीएसटी में केवल ज़र्मेलो समुच्चय सिद्धांत के एक खंड के रूप में रुचि थी जो पीनो अंकगणित की व्याख्या करने के लिए पर्याप्त शक्तिशाली है। उन्होंने कभी भी जीएसटी पर ध्यान नहीं दिया, केवल कई पत्रों में इसका संक्षेप में उल्लेख किया, जिसमें [[पूछा|फ्रेगे]] की [[अंकगणित की नींव|ग्रुंडलगेन]] और ग्रुंडगेसेट्ज़ की प्रणालियों पर चर्चा की गई, और रसेल के विरोधाभास को समाप्त करने के लिए उन्हें कैसे संशोधित किया जा सकता है। प्रणाली 'Aξ[δ<sub>0</sub>] टार्स्की और गिवंत (1987: 223) में अनिवार्य रूप से जीएसटी है जिसमें एक पीनो स्वयंसिद्ध विनिर्देश के स्वयंसिद्ध रूपरेखा की जगह लेता है, और एक रिक्त समुच्चय के अस्तित्व को स्पष्ट रूप से माना जाता है। | ||
बर्गेस (2005), पी में जीएसटी को एसटीजेड कहा जाता है। | बर्गेस (2005), पी में जीएसटी को एसटीजेड कहा जाता है। <ref>The [[axiom of empty set|Empty Set]] axiom in STZ is redundant, because the existence of the empty set is derivable from the axiom schema of Specification.</ref> बर्गेस का सिद्धांत एस.टी <ref>Called S' in Tarski et al. (1953: 34).</ref> जीएसटी रिक्त समुच्चय के स्वयंसिद्ध के साथ विनिर्देश के स्वयंसिद्ध रूपरेखा की जगह ले रहा है। जीएसटी में एसटी अक्षर भी अंकित होना एक संयोग है। | ||
== फ़ुटनोट == | == फ़ुटनोट == |
Revision as of 08:20, 24 July 2023
सामान्य समुच्चय सिद्धांत (जीएसटी) स्वयंसिद्ध समुच्चय सिद्धांत ज़र्मेलो समुच्चय सिद्धांत के एक खंड के लिए जॉर्ज बूलोस (1998) का नाम है। जीएसटी सभी गणित के लिए पर्याप्त है जिसमें अनंत समुच्चय की आवश्यकता नहीं होती है, और यह सबसे शक्तिहीन ज्ञात समुच्चय सिद्धांत है जिसके प्रमेय में पीनो सूक्ति सम्मिलित हैं।
तात्विकी
जीएसटी की तात्विकी जेडएफसी के समान है, और इसलिए पूरी तरह से विहित है। जीएसटी में एक एकल आदिम धारणा तात्विकी धारणा, समुच्चय (गणित) और एक एकल तात्विकी धारणा सम्मिलित है, अर्थात् संलाप का क्षेत्र में सभी वैयक्तिक (इसलिए सभी गणितीय वस्तुएं) समुच्चय हैं। एक एकल आदिम धारणा द्विआधारी संबंध, तत्व (गणित) है; वह समुच्चय a, समुच्चय b का एक घटक a ∈ b लिखा जाता है (सामान्यतः a पढ़ा जाता है जो b का एक तत्व (गणित) है)।
सूक्ति
नीचे दिए गए प्रतीकात्मक सिद्धांत बूलोस (1998:196) से हैं, और यह नियंत्रित करते हैं कि समुच्चय कैसे व्यवहार करते हैं और परस्पर क्रिया करते हैं। ज़र्मेलो समुच्चय सिद्धांत की तरह, जीएसटी के लिए पृष्ठभूमि तर्क अभिज्ञान (दर्शन) के साथ प्रथम क्रम तर्क है। वास्तव में, जीएसटी, संघ के स्वयंसिद्ध, शक्ति समुच्चय के स्वयंसिद्ध, प्राथमिक समुच्चय (अनिवार्य रूप से युग्मित स्वयंसिद्ध) और अनंत के स्वयंसिद्ध को छोड़कर और फिर Z, अनुबंधी के एक प्रमेय को एक स्वयंसिद्ध के रूप में लेने से प्राप्त जेड का खंड है। स्वयंसिद्धों के प्राकृतिक भाषा संस्करणों का उद्देश्य अंतर्ज्ञान की सहायता करना है।
1) विस्तारशीलता का अभिगृहीत: समुच्चय x और y एक ही समुच्चय हैं यदि उनके सदस्य समान हों।
- ।
इस अभिगृहीत का व्युत्क्रम समानता के प्रतिस्थापन गुण से आता है।
2) विशिष्टता (या पृथक्करण या प्रतिबंधित समझ) की स्वयंसिद्ध रूपरेखा: यदि z एक समुच्चय है और क्या कोई विशेषता है जो z के सभी, कुछ, या किसी भी तत्व से संतुष्ट हो सकती है, तो z का एक उपसमुच्चय y उपस्थित है जिसमें z में केवल वे तत्व x सम्मिलित हैं जो विशेषता को संतुष्ट करते हैं। रसेल के विरोधाभास और इसके परिवर्ती से बचने के लिए z पर प्रतिबंध (गणित) आवश्यक है। अधिक औपचारिक रूप से, आइए जीएसटी की भाषा में कोई भी फॉर्मूला हो जिसमें x स्वतंत्र रूप से घटित हो सकता है और y नहीं हो सकता है। फिर निम्नलिखित रूपरेखा के सभी उदाहरण स्वयंसिद्ध हैं:
3) संयोजन का अभिगृहीत: यदि x और y समुच्चय हैं, तो एक समुच्चय w उपस्थित है, जो x और y का संयोजक है, जिसके सदस्य सिर्फ y हैं और x के सदस्य हैं। [1]
- ।
अनुबंधी दो सम्मुच्चयों पर एक प्राथमिक संचालन को संदर्भित करता है, और गणित में अन्यत्र, सहायक संचालिका सहित, उस शब्द के उपयोग पर इसका कोई प्रभाव नहीं पड़ता है।
एसटी जीएसटी है जिसमें विनिर्देशन की स्वयंसिद्ध रूपरेखा को रिक्त समुच्चय के स्वयंसिद्ध द्वारा प्रतिस्थापित किया गया है।
चर्चा
मेटामैथेमेटिक्स
ध्यान दें कि विशिष्टता एक स्वयंसिद्ध रूपरेखा है। इन स्वयंसिद्धों द्वारा दिया गया सिद्धांत स्वयंसिद्ध रूपरेखा नहीं है। मोंटेग्यू (1961) ने दिखाया कि जेडएफसी अंतिम रूप से स्वयंसिद्ध नहीं है, और उनका तर्क जीएसटी पर लागू होता है। इसलिए जीएसटी के किसी भी स्वयंसिद्धीकरण में कम से कम एक स्वयंसिद्ध रूपरेखा सम्मिलित होना चाहिए। अपने सरल सिद्धांतों के साथ, जीएसटी भोले समुच्चय सिद्धांत के तीन महान विरोधाभासों से भी प्रतिरक्षित है: रसेल का विरोधाभास, बुराली-फोर्टी विरोधाभास, और कैंटर का विरोधाभास।
जीएसटी संबंध बीजगणित में व्याख्या योग्य है क्योंकि किसी भी जीएसटी सिद्धांत का कोई भी हिस्सा तीन से अधिक परिमाणक (तर्क) के कार्यक्षेत्र में नहीं आता है। यह टार्स्की और गिवंत (1987) में दी गई आवश्यक और पर्याप्त परिस्थिति है।
पीनो अंकगणित
φ(x) को पृथक्करण में x≠x पर समुच्चय करना, और यह मानते हुए कि किसी फलन का कार्यछेत्र गैर-रिक्त है, रिक्त समुच्चय के अस्तित्व का आश्वासन देता है। अनुबंधी का तात्पर्य है कि यदि x एक समुच्चय है, तो ऐसा ही है। अनुबंधी को देखते हुए, रिक्त समुच्चय से उत्तराधिकारी वर्गांक का सामान्य निर्माण आगे बढ़ सकता है, जिसमें प्राकृतिक संख्या को परिभाषित किया गया है। पीनो के अभिगृहीत देखें। जीएसटी पीनो अंकगणित के साथ परस्पर व्याख्या योग्य है (इस प्रकार इसमें पीए के समान प्रमाण-सैद्धांतिक ताकत है)।
एसटी (और इसलिए जीएसटी) के बारे में सबसे उल्लेखनीय तथ्य यह है कि समुच्चय सिद्धांत के ये छोटे खंड ऐसे समृद्ध मेटामैथेमेटिक्स को उत्पन्न करते हैं। जबकि एसटी प्रसिद्ध विहित समुच्चय सिद्धांतों जेडएफसी और वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत, एसटी व्याख्यात्मकता रॉबिन्सन अंकगणित (क्यू) का एक छोटा सा खंड है, ताकि एसटी को क्यू के गैर-तुच्छ मेटामैथेमेटिक्स विरासत में मिले। उदाहरण के लिए, एसटी निर्णायकता है ( तर्क) क्योंकि क्यू है, और प्रत्येक सुसंगत सिद्धांत जिसके प्रमेयों में एसटी स्वयंसिद्ध सम्मिलित हैं, वह भी अनिवार्य रूप से अनिर्णीत है। [2] इसमें जीएसटी और विचार करने योग्य प्रत्येक स्वयंसिद्ध समुच्चय सिद्धांत सम्मिलित है, यह मानते हुए कि ये सुसंगत हैं। वास्तव में, एसटी की निर्णायकता (तर्क) का तात्पर्य एकल युग्मक विधेय पत्र के साथ प्रथम-क्रम तर्क की अनिश्चितता से है। [3] गोडेल के अपूर्णता प्रमेय के अर्थ में भी Q अधूरा है। कोई भी स्वयंसिद्ध सिद्धांत, जैसे कि एसटी और जीएसटी, जिनके प्रमेयों में क्यू स्वयंसिद्ध सम्मिलित हैं। इसके अतिरिक्त, जीएसटी की स्थिरता को जीएसटी के भीतर ही सिद्ध नहीं किया जा सकता, जब तक कि जीएसटी वास्तव में असंगत न हो।
अनंत समुच्चय
जेडएफसी के किसी भी प्रतिरूप M को देखते हुए, M में आनुवंशिक रूप से सीमित सम्मुच्चयों का संग्रह जीएसटी सिद्धांतों को पूरा करेगा। इसलिए, जीएसटी एक गणनीय अनंत समुच्चय के अस्तित्व को भी सिद्ध नहीं कर सकता है, अर्थात एक समुच्चय जिसकी कार्डिनैलिटी ℵ0 है। भले ही जीएसटी ने एक अनगिनत अनंत समुच्चय को वहन किया हो, जीएसटी एक ऐसे समुच्चय के अस्तित्व को सिद्ध नहीं कर सका जिसकी प्रमुखता है, क्योंकि जीएसटी में घात समुच्चय के सिद्धांत का अभाव है। इसलिए जीएसटी गणितीय विश्लेषण और ज्यामिति को आधार नहीं बना सकता है, और गणित की नींव के रूप में काम करने के लिए यह बहुत शक्तिहीन है।
इतिहास
बूलोस को जीएसटी में केवल ज़र्मेलो समुच्चय सिद्धांत के एक खंड के रूप में रुचि थी जो पीनो अंकगणित की व्याख्या करने के लिए पर्याप्त शक्तिशाली है। उन्होंने कभी भी जीएसटी पर ध्यान नहीं दिया, केवल कई पत्रों में इसका संक्षेप में उल्लेख किया, जिसमें फ्रेगे की ग्रुंडलगेन और ग्रुंडगेसेट्ज़ की प्रणालियों पर चर्चा की गई, और रसेल के विरोधाभास को समाप्त करने के लिए उन्हें कैसे संशोधित किया जा सकता है। प्रणाली 'Aξ[δ0] टार्स्की और गिवंत (1987: 223) में अनिवार्य रूप से जीएसटी है जिसमें एक पीनो स्वयंसिद्ध विनिर्देश के स्वयंसिद्ध रूपरेखा की जगह लेता है, और एक रिक्त समुच्चय के अस्तित्व को स्पष्ट रूप से माना जाता है।
बर्गेस (2005), पी में जीएसटी को एसटीजेड कहा जाता है। [4] बर्गेस का सिद्धांत एस.टी [5] जीएसटी रिक्त समुच्चय के स्वयंसिद्ध के साथ विनिर्देश के स्वयंसिद्ध रूपरेखा की जगह ले रहा है। जीएसटी में एसटी अक्षर भी अंकित होना एक संयोग है।
फ़ुटनोट
- ↑ Adjunction is seldom mentioned in the literature. Exceptions are Burgess (2005) passim, and QIII in Tarski and Givant (1987: 223).
- ↑ Burgess (2005), 2.2, p. 91.
- ↑ Tarski et al. (1953), p. 34.
- ↑ The Empty Set axiom in STZ is redundant, because the existence of the empty set is derivable from the axiom schema of Specification.
- ↑ Called S' in Tarski et al. (1953: 34).
संदर्भ
- George Boolos (1999) Logic, Logic, and Logic. Harvard Univ. Press.
- Burgess, John, 2005. Fixing Frege. Princeton Univ. Press.
- Richard Montague (1961) "Semantical closure and non-finite axiomatizability" in Infinistic Methods. Warsaw: 45-69.
- Alfred Tarski, Andrzej Mostowski, and Raphael Robinson (1953) Undecidable Theories. North Holland.
- Tarski, A., and Givant, Steven (1987) A Formalization of Set Theory without Variables. Providence RI: AMS Colloquium Publications, v. 41.
बाहरी संबंध
- Stanford Encyclopedia of Philosophy: Set Theory—by Thomas Jech.