अतियाह-सिंगर सूचकांक प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 47: Line 47:
यदि D, k वेरिएबल्स <math>x_1, \dots, x_k</math> में क्रम n के यूक्लिडियन स्पेस पर डिफरेंशियल ऑपरेटर है, तब इसका प्रतीक 2k अंतर ऑपरेटर का वेरिएबल <math>x_1, \dots, x_k, y_1, \dots, y_k</math> का कार्य है, जो n से कम क्रम की सभी नियमों को हटाकर और <math>\partial/\partial x_i</math>को <math>y_i</math> प्रतिस्थापित करके दिया गया है तब प्रतीक डिग्री n के वेरिएबल y में सजातीय है। यद्यपि प्रतीक अच्छी तरह से परिभाषित है तथापि <math>\partial/\partial x_i</math>, <math>x_i</math>के साथ आवागमन नहीं करता क्योंकि हम केवल उच्चतम ऑर्डर नियमों को रखते हैं और अंतर ऑपरेटर निम्न-ऑर्डर नियमों तक कम्यूट करते हैं। यदि प्रतीक अशून्य है तब ऑपरेटर को वृत्ताकार कहा जाता है, जब भी कम से कम ''y'' अशून्य होता है।
यदि D, k वेरिएबल्स <math>x_1, \dots, x_k</math> में क्रम n के यूक्लिडियन स्पेस पर डिफरेंशियल ऑपरेटर है, तब इसका प्रतीक 2k अंतर ऑपरेटर का वेरिएबल <math>x_1, \dots, x_k, y_1, \dots, y_k</math> का कार्य है, जो n से कम क्रम की सभी नियमों को हटाकर और <math>\partial/\partial x_i</math>को <math>y_i</math> प्रतिस्थापित करके दिया गया है तब प्रतीक डिग्री n के वेरिएबल y में सजातीय है। यद्यपि प्रतीक अच्छी तरह से परिभाषित है तथापि <math>\partial/\partial x_i</math>, <math>x_i</math>के साथ आवागमन नहीं करता क्योंकि हम केवल उच्चतम ऑर्डर नियमों को रखते हैं और अंतर ऑपरेटर निम्न-ऑर्डर नियमों तक कम्यूट करते हैं। यदि प्रतीक अशून्य है तब ऑपरेटर को वृत्ताकार कहा जाता है, जब भी कम से कम ''y'' अशून्य होता है।


उदाहरण: ''k'' वेरिएबल में लाप्लास ऑपरेटर का प्रतीक <math>y_1^2 + \cdots + y_k^2</math> होता है, और इसलिए यह वृत्ताकार है क्योंकि जब भी <math>y_i</math> इनमें से कोई भी अशून्य होता है शून्येतर हैं. वेव ऑपरेटर का प्रतीक <math>-y_1^2 + \cdots + y_k^2</math> होता है , जो कि <math>k\ge 2</math> वृत्ताकार नहीं है यदि , क्योंकि प्रतीक ys के कुछ गैर-शून्य मानों के लिए गायब हो जाता है।
उदाहरण: ''k'' वेरिएबल में लाप्लास ऑपरेटर का प्रतीक <math>y_1^2 + \cdots + y_k^2</math> होता है, और इसलिए यह वृत्ताकार है क्योंकि जब भी <math>y_i</math> इनमें से कोई भी अशून्य होता है शून्येतर हैं. वेव ऑपरेटर का प्रतीक <math>-y_1^2 + \cdots + y_k^2</math> होता है , जो कि <math>k\ge 2</math> वृत्ताकार नहीं है यदि , क्योंकि प्रतीक ys के कुछ गैर-शून्य मानों के लिए विलुप्त हो जाता है।


स्मूथ मैनिफोल्ड X पर ऑर्डर n के डिफरेंशियल ऑपरेटर का प्रतीक स्थानीय समन्वय चार्ट का उपयोग करके उसी तरह परिभाषित किया गया है,और X के कोटैंजेंट बंडल पर एक फलन है, जो प्रत्येक कोटैंजेंट स्पेस पर डिग्री n का सजातीय है। सामान्यतः, अंतर ऑपरेटर समन्वय परिवर्तन ([[जेट बंडल]] देखें) के अनुसार समष्टि विधियों से बदलते हैं; चूंकि, उच्चतम क्रम के शब्द टेंसर की तरह बदलते हैं, इसलिए हमें कोटैंजेंट रिक्त स्थान पर अच्छी तरह से परिभाषित सजातीय कार्य मिलते हैं जो स्थानीय चार्ट की पसंद से स्वतंत्र होते हैं अधिक सामान्यतः, दो सदिश बंडलों ''E'' और ''F'' के बीच अंतर ऑपरेटर का प्रतीक बंडल होम (''E, F'') के ''X'' के कोटैंजेंट स्पेस के पुलबैक का खंड है। अंतर ऑपरेटर को वृत्ताकार कहा जाता है यदि होम(''E<sub>x</sub>'', ''F<sub>x</sub>'') का अवयव X के किसी भी बिंदु x पर सभी गैर-शून्य कोटैंजेंट वैक्टर के लिए विपरीत है।
स्मूथ मैनिफोल्ड X पर ऑर्डर n के डिफरेंशियल ऑपरेटर का प्रतीक स्थानीय समन्वय चार्ट का उपयोग करके उसी तरह परिभाषित किया गया है,और X के कोटैंजेंट बंडल पर एक फलन है, जो प्रत्येक कोटैंजेंट स्पेस पर डिग्री n का सजातीय है। सामान्यतः, अंतर ऑपरेटर समन्वय परिवर्तन ([[जेट बंडल]] देखें) के अनुसार समष्टि विधियों से बदलते हैं; चूंकि, उच्चतम क्रम के शब्द टेंसर की तरह बदलते हैं, इसलिए हमें कोटैंजेंट रिक्त स्थान पर अच्छी तरह से परिभाषित सजातीय कार्य मिलते हैं जो स्थानीय चार्ट की पसंद से स्वतंत्र होते हैं अधिक सामान्यतः, दो सदिश बंडलों ''E'' और ''F'' के बीच अंतर ऑपरेटर का प्रतीक बंडल होम (''E, F'') के ''X'' के कोटैंजेंट स्पेस के पुलबैक का खंड है। अंतर ऑपरेटर को वृत्ताकार कहा जाता है यदि होम(''E<sub>x</sub>'', ''F<sub>x</sub>'') का अवयव X के किसी भी बिंदु x पर सभी गैर-शून्य कोटैंजेंट वैक्टर के लिए विपरीत है।
Line 72: Line 72:
**<math>d(p^*E,p^*F,\sigma(D))</math> <math>K(B(X)/S(X))</math> में अंतर अवयव है जो <math>B(X)</math> पर दो सदिश बंडलों  <math>p^*E</math> और <math>p^*F</math>  से जुड़ा है और उपस्थान <math>S(X)</math> पर उनके बीच समरूपता <math>\sigma(D)</math> होती है  .
**<math>d(p^*E,p^*F,\sigma(D))</math> <math>K(B(X)/S(X))</math> में अंतर अवयव है जो <math>B(X)</math> पर दो सदिश बंडलों  <math>p^*E</math> और <math>p^*F</math>  से जुड़ा है और उपस्थान <math>S(X)</math> पर उनके बीच समरूपता <math>\sigma(D)</math> होती है  .
**<math>\sigma(D)</math> <math>D</math> का प्रतीक है  
**<math>\sigma(D)</math> <math>D</math> का प्रतीक है  
कुछ स्थितियों में, कम्प्यूटेशनल उद्देश्यों के लिए उपरोक्त सूत्र को सरल बनाना संभव है। विशेषकर, यदि <math>X</math> है <math>2m</math>-आयामी उन्मुख (कॉम्पैक्ट) गैर-शून्य [[यूलर वर्ग]] के साथ अनेक गुना <math>e(TX)</math>, फिर थॉम समरूपता को प्रयुक्त करना और यूलर वर्ग द्वारा विभाजित करना,<ref>{{citation|last=Shanahan|first= P.|title=The Atiyah–Singer index theorem: an introduction|isbn=978-0-387-08660-6 |series=Lecture Notes in Mathematics |volume=638|publisher= Springer|year= 1978|doi=10.1007/BFb0068264|citeseerx= 10.1.1.193.9222}}</ref><ref>{{citation|first1=H. Blane|last1=Lawson|author1-link=H. Blaine Lawson|first2=Marie-Louise|last2=Michelsohn|author2-link=Marie-Louise Michelsohn|title=Spin Geometry|year=1989|isbn=0-691-08542-0|publisher=Princeton University Press}}</ref> टोपोलॉजिकल इंडेक्स को इस प्रकार व्यक्त किया जा सकता है     
कुछ स्थितियों में, कम्प्यूटेशनल उद्देश्यों के लिए उपरोक्त सूत्र को सरल बनाना संभव है। विशेषकर, यदि <math>X</math>, <math>2m</math>-आयामी उन्मुख (कॉम्पैक्ट) गैर-शून्य [[यूलर वर्ग]] के साथ अनेक गुना <math>e(TX)</math>, फिर थॉम समरूपता को प्रयुक्त करना और यूलर वर्ग द्वारा विभाजित करना,<ref>{{citation|last=Shanahan|first= P.|title=The Atiyah–Singer index theorem: an introduction|isbn=978-0-387-08660-6 |series=Lecture Notes in Mathematics |volume=638|publisher= Springer|year= 1978|doi=10.1007/BFb0068264|citeseerx= 10.1.1.193.9222}}</ref><ref>{{citation|first1=H. Blane|last1=Lawson|author1-link=H. Blaine Lawson|first2=Marie-Louise|last2=Michelsohn|author2-link=Marie-Louise Michelsohn|title=Spin Geometry|year=1989|isbn=0-691-08542-0|publisher=Princeton University Press}}</ref> टोपोलॉजिकल इंडेक्स को इस प्रकार व्यक्त किया जा सकता है     
:<math>(-1)^m\int_X \frac{\operatorname{ch}(E)-\operatorname{ch}(F)}{e(TX)}\operatorname{Td}(X)</math>
:<math>(-1)^m\int_X \frac{\operatorname{ch}(E)-\operatorname{ch}(F)}{e(TX)}\operatorname{Td}(X)</math>
जहाँ खींचने से विभाजन का अर्थ होता है <math>e(TX)^{-1}</math> वर्गीकृत स्थान के कोहोमोलॉजी रिंग से वापस <math>BSO</math>.
जहाँ वर्गीकृत स्थान <math>BSO</math> के कोहोमोलॉजी रिंग से <math>e(TX)^{-1}</math> वापस खींचने से विभाजन का अर्थ होता है


कोई केवल के-सिद्धांत का उपयोग करके टोपोलॉजिकल इंडेक्स को भी परिभाषित कर सकता है (और यह वैकल्पिक परिभाषा उपरोक्त चेर्न-वर्ण निर्माण के साथ निश्चित अर्थ में संगत है)। यदि किसी अवयव का टोपोलॉजिकल इंडेक्स
कोई केवल ''K''-सिद्धांत का उपयोग करके टोपोलॉजिकल इंडेक्स को भी परिभाषित कर सकता है (और यह वैकल्पिक परिभाषा उपरोक्त चेर्न-वर्ण निर्माण के साथ निश्चित अर्थ में संगत है)। यदि किसी अवयव का टोपोलॉजिकल इंडेक्स ''K(TX)'' को ''Y'' के साथ कुछ यूक्लिडियन स्पेस के साथ इस ऑपरेशन की छवि के रूप में परिभाषित किया गया है, जिसके लिए ''K(TY)'' को पूर्णांक 'Z' (बॉट-आवधिकता के परिणामस्वरूप) के साथ स्वाभाविक रूप से पहचाना जा सकता है। यह मानचित्र यूक्लिडियन अंतरिक्ष में एक्स के एम्बेडिंग से स्वतंत्र है। अभी ऊपर जैसा डिफरेंशियल ऑपरेटर स्वाभाविक रूप से ''K(TX)'' के अवयव को परिभाषित करता है, और इस मानचित्र के अनुसार 'Z' में छवि टोपोलॉजिकल इंडेक्स है।
K(TX) को Y के साथ कुछ यूक्लिडियन स्पेस के साथ इस ऑपरेशन की छवि के रूप में परिभाषित किया गया है, जिसके लिए K(TY) को पूर्णांक 'Z' (बॉट-आवधिकता के परिणामस्वरूप) के साथ स्वाभाविक रूप से पहचाना जा सकता है। यह मानचित्र यूक्लिडियन अंतरिक्ष में एक्स के एम्बेडिंग से स्वतंत्र है। अभी ऊपर जैसा डिफरेंशियल ऑपरेटर स्वाभाविक रूप से K(TX) के अवयव को परिभाषित करता है, और इस मानचित्र के अनुसार 'Z' में छवि टोपोलॉजिकल इंडेक्स है।


सदैव की तरह, डी कॉम्पैक्ट मैनिफोल्ड एक्स पर सदिश बंडल और एफ के बीच वृत्ताकार अंतर ऑपरेटर है।
सदैव की तरह, ''D'' कॉम्पैक्ट मैनिफोल्ड एक्स पर सदिश बंडल ''E'' और एफ के बीच वृत्ताकार अंतर ऑपरेटर है।


सूचकांक समस्या निम्नलिखित है: केवल प्रतीक एस और मैनिफोल्ड और सदिश बंडल से प्राप्त टोपोलॉजिकल डेटा का उपयोग करके डी के (विश्लेषणात्मक) सूचकांक की गणना करें। अतियाह-सिंगर सूचकांक प्रमेय इस समस्या का समाधान करता है, और कहता है:
सूचकांक समस्या निम्नलिखित है: केवल प्रतीक ''S'' और मैनिफोल्ड और सदिश बंडल से प्राप्त टोपोलॉजिकल डेटा का उपयोग करके ''D'' के (विश्लेषणात्मक) सूचकांक की गणना करें। अतियाह-सिंगर सूचकांक प्रमेय इस समस्या का समाधान करता है, और कहता है:


:'डी का विश्लेषणात्मक सूचकांक इसके टोपोलॉजिकल इंडेक्स के सामान्तर है।'
:'''D'' का विश्लेषणात्मक सूचकांक इसके टोपोलॉजिकल इंडेक्स के सामान्तर है।'


अपनी दुर्जेय परिभाषा के अतिरिक्त, टोपोलॉजिकल इंडेक्स का स्पष्ट रूप से मूल्यांकन करना सामान्यतः आसान होता है। तबइससे विश्लेषणात्मक सूचकांक का मूल्यांकन करना संभव हो जाता है। (एक वृत्ताकार ऑपरेटर के कोकर्नेल और कर्नेल का व्यक्तिगत रूप से मूल्यांकन करना सामान्यतः अत्यधिक कठिन होता है; सूचकांक प्रमेय से पता चलता है कि हम सामान्यतः कम से कम उनके 'अंतर' का मूल्यांकन कर सकते हैं।) मैनिफोल्ड के अनेक महत्वपूर्ण अपरिवर्तनीय (जैसे कि हस्ताक्षर) दिए जा सकते हैं उपयुक्त अंतर ऑपरेटरों के सूचकांक के रूप में, इसलिए सूचकांक प्रमेय हमें टोपोलॉजिकल डेटा के संदर्भ में इन अपरिवर्तनीयों का मूल्यांकन करने की अनुमति देता है।
अपनी दुर्जेय परिभाषा के अतिरिक्त, टोपोलॉजिकल इंडेक्स का स्पष्ट रूप से मूल्यांकन करना सामान्यतः आसान होता है। तब इससे विश्लेषणात्मक सूचकांक का मूल्यांकन करना संभव हो जाता है। (एक वृत्ताकार ऑपरेटर के कोकर्नेल और कर्नेल का व्यक्तिगत रूप से मूल्यांकन करना सामान्यतः अत्यधिक कठिन होता है; सूचकांक प्रमेय से पता चलता है कि हम सामान्यतः कम से कम उनके 'अंतर' का मूल्यांकन कर सकते हैं।) मैनिफोल्ड के अनेक महत्वपूर्ण अपरिवर्तनीय (जैसे कि हस्ताक्षर) दिए जा सकते हैं उपयुक्त अंतर ऑपरेटरों के सूचकांक के रूप में, इसलिए सूचकांक प्रमेय हमें टोपोलॉजिकल डेटा के संदर्भ में इन अपरिवर्तनीयों का मूल्यांकन करने की अनुमति देता है।


यद्यपि विश्लेषणात्मक सूचकांक का सीधे मूल्यांकन करना सामान्यतः कठिन होता है, यह कम से कम स्पष्ट रूप से पूर्णांक है। टोपोलॉजिकल इंडेक्स परिभाषा के अनुसार परिमेय संख्या है, किन्तुसामान्यतः परिभाषा से यह बिल्कुल भी स्पष्ट नहीं है कि यह अभिन्न भी है। तबअतियाह-सिंगर इंडेक्स प्रमेय कुछ गहरी अभिन्नता गुणों का तात्पर्य करता है, क्योंकि इसका तात्पर्य है कि टोपोलॉजिकल इंडेक्स अभिन्न है।
यद्यपि विश्लेषणात्मक सूचकांक का सीधे मूल्यांकन करना सामान्यतः कठिन होता है, यह कम से कम स्पष्ट रूप से पूर्णांक है। टोपोलॉजिकल इंडेक्स परिभाषा के अनुसार परिमेय संख्या है, किन्तुसामान्यतः परिभाषा से यह बिल्कुल भी स्पष्ट नहीं है कि यह अभिन्न भी है। तबअतियाह-सिंगर इंडेक्स प्रमेय कुछ गहरी अभिन्नता गुणों का तात्पर्य करता है, क्योंकि इसका तात्पर्य है कि टोपोलॉजिकल इंडेक्स अभिन्न है।


यदि ऑपरेटर स्वयं संलग्न है तबवृत्ताकार अंतर ऑपरेटर का सूचकांक स्पष्ट रूप से गायब हो जाता है। यह तब भी गायब हो जाता है जब मैनिफोल्ड
यदि ऑपरेटर स्वयं संलग्न है तब वृत्ताकार अंतर ऑपरेटर का सूचकांक स्पष्ट रूप से विलुप्त हो जाता है। यह तब भी विलुप्त हो जाता है जब मैनिफोल्ड X का आयाम विषम है तो यह भी विलुप्त हो जाता है, चूँकि ऐसे छद्मविभेदक वृत्ताकार ऑपरेटर हैं जिनका सूचकांक विषम आयामों में विलुप्त नहीं होता है।


=== ग्रोथेंडिक-रीमैन-रोच से संबंध ===
=== ग्रोथेंडिक-रीमैन-रोच से संबंध ===
Line 125: Line 124:
*अतियाह-सिंगर प्रमेय वृत्ताकार स्यूडोडिफरेंशियल ऑपरेटरों पर उसी तरह प्रयुक्त होता है जैसे वृत्ताकार अंतर ऑपरेटरों के लिए। वास्तव में, टेक्निकल कारणों से अधिकांश प्रारंभिक प्रमाणों ने विभेदक ऑपरेटरों के अतिरिक्त छद्मविभेदक के साथ काम किया: उनके अतिरिक्त लचीलेपन ने प्रमाणों के कुछ वेरिएबल णों को आसान बना दिया।
*अतियाह-सिंगर प्रमेय वृत्ताकार स्यूडोडिफरेंशियल ऑपरेटरों पर उसी तरह प्रयुक्त होता है जैसे वृत्ताकार अंतर ऑपरेटरों के लिए। वास्तव में, टेक्निकल कारणों से अधिकांश प्रारंभिक प्रमाणों ने विभेदक ऑपरेटरों के अतिरिक्त छद्मविभेदक के साथ काम किया: उनके अतिरिक्त लचीलेपन ने प्रमाणों के कुछ वेरिएबल णों को आसान बना दिया।
*दो सदिश बंडलों के बीच वृत्ताकार ऑपरेटर के साथ काम करने के अतिरिक्त, कभी-कभी वृत्ताकार कॉम्प्लेक्स के साथ काम करना अधिक सुविधाजनक होता है <math display="block">0\rightarrow E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow \dotsm \rightarrow E_m \rightarrow 0</math> सदिश बंडलों का. अंतर यह है कि प्रतीक अभी स्पष्ट अनुक्रम बनाते हैं (शून्य खंड से हटकर)। ऐसे स्तिथि में जब कॉम्प्लेक्स में सिर्फ दो गैर-शून्य बंडल होते हैं, तबइसका कारण है कि प्रतीक शून्य खंड से समरूपता है, इसलिए 2 शब्दों वाला वृत्ताकार कॉम्प्लेक्स अनिवार्य रूप से दो सदिश बंडलों के बीच वृत्ताकार ऑपरेटर के समान है। इसके विपरीत, वृत्ताकार कॉम्प्लेक्स के लिए सूचकांक प्रमेय को आसानी से वृत्ताकार ऑपरेटर के स्तिथि में कम किया जा सकता है: दो सदिश बंडल कॉम्प्लेक्स के सम या विषम शब्दों के योग द्वारा दिए जाते हैं, और वृत्ताकार ऑपरेटर ऑपरेटरों का योग है वृत्ताकार परिसर और उनके जोड़, सम बंडलों के योग तक सीमित हैं।
*दो सदिश बंडलों के बीच वृत्ताकार ऑपरेटर के साथ काम करने के अतिरिक्त, कभी-कभी वृत्ताकार कॉम्प्लेक्स के साथ काम करना अधिक सुविधाजनक होता है <math display="block">0\rightarrow E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow \dotsm \rightarrow E_m \rightarrow 0</math> सदिश बंडलों का. अंतर यह है कि प्रतीक अभी स्पष्ट अनुक्रम बनाते हैं (शून्य खंड से हटकर)। ऐसे स्तिथि में जब कॉम्प्लेक्स में सिर्फ दो गैर-शून्य बंडल होते हैं, तबइसका कारण है कि प्रतीक शून्य खंड से समरूपता है, इसलिए 2 शब्दों वाला वृत्ताकार कॉम्प्लेक्स अनिवार्य रूप से दो सदिश बंडलों के बीच वृत्ताकार ऑपरेटर के समान है। इसके विपरीत, वृत्ताकार कॉम्प्लेक्स के लिए सूचकांक प्रमेय को आसानी से वृत्ताकार ऑपरेटर के स्तिथि में कम किया जा सकता है: दो सदिश बंडल कॉम्प्लेक्स के सम या विषम शब्दों के योग द्वारा दिए जाते हैं, और वृत्ताकार ऑपरेटर ऑपरेटरों का योग है वृत्ताकार परिसर और उनके जोड़, सम बंडलों के योग तक सीमित हैं।
*यदि मैनिफोल्ड को सीमाबद्ध करने की अनुमति है, तबपरिमित सूचकांक सुनिश्चित करने के लिए वृत्ताकार ऑपरेटर के डोमेन पर कुछ प्रतिबंध लगाए जाने चाहिए। यह स्थितियां स्थानीय हो सकती हैं (जैसे यह मांग करना कि डोमेन में अनुभाग सीमा पर गायब हो जाएं) या अधिक समष्टि वैश्विक स्थितियां (जैसे कि यह आवश्यक है कि डोमेन में अनुभाग कुछ अंतर समीकरण को हल करें)। स्थानीय स्तिथि पर अतियाह और बॉट द्वारा काम किया गया था, किन्तुउन्होंने दिखाया कि अनेक रोचक ऑपरेटर (उदाहरण के लिए, [[हस्ताक्षर ऑपरेटर]]) स्थानीय सीमा नियमों को स्वीकार नहीं करते हैं। इन ऑपरेटरों को संभालने के लिए, माइकल अतियाह, [[विजय कुमार पटोदी]] और इसादोर सिंगर ने वैश्विक सीमा नियमों की शुरुआत की, जो सीमा के साथ सिलेंडर को मैनिफ़ोल्ड से जोड़ने और फिर डोमेन को उन अनुभागों तक सीमित करने के सामान्तर है जो सिलेंडर के साथ वृत्ताकार एकीकृत हैं। के प्रमाण में यह दृष्टिकोण अपनाया जाता है {{harvtxt|मेलरोज़|1993}} अतियाह-पटोदी-सिंगर सूचकांक प्रमेय के।
*यदि मैनिफोल्ड को सीमाबद्ध करने की अनुमति है, तबपरिमित सूचकांक सुनिश्चित करने के लिए वृत्ताकार ऑपरेटर के डोमेन पर कुछ प्रतिबंध लगाए जाने चाहिए। यह स्थितियां स्थानीय हो सकती हैं (जैसे यह मांग करना कि डोमेन में अनुभाग सीमा पर विलुप्त हो जाएं) या अधिक समष्टि वैश्विक स्थितियां (जैसे कि यह आवश्यक है कि डोमेन में अनुभाग कुछ अंतर समीकरण को हल करें)। स्थानीय स्तिथि पर अतियाह और बॉट द्वारा काम किया गया था, किन्तुउन्होंने दिखाया कि अनेक रोचक ऑपरेटर (उदाहरण के लिए, [[हस्ताक्षर ऑपरेटर]]) स्थानीय सीमा नियमों को स्वीकार नहीं करते हैं। इन ऑपरेटरों को संभालने के लिए, माइकल अतियाह, [[विजय कुमार पटोदी]] और इसादोर सिंगर ने वैश्विक सीमा नियमों की शुरुआत की, जो सीमा के साथ सिलेंडर को मैनिफ़ोल्ड से जोड़ने और फिर डोमेन को उन अनुभागों तक सीमित करने के सामान्तर है जो सिलेंडर के साथ वृत्ताकार एकीकृत हैं। के प्रमाण में यह दृष्टिकोण अपनाया जाता है {{harvtxt|मेलरोज़|1993}} अतियाह-पटोदी-सिंगर सूचकांक प्रमेय के।
*केवल वृत्ताकार ऑपरेटर के अतिरिक्त, कोई कुछ स्थान Y द्वारा पैरामीटरयुक्त वृत्ताकार ऑपरेटरों के परिवार पर विचार कर सकता है। इस स्तिथि में सूचकांक पूर्णांक के अतिरिक्त Y के K-सिद्धांत का अवयव है। यदि परिवार में ऑपरेटर वास्तविक हैं, तबसूचकांक Y के वास्तविक K-सिद्धांत में निहित है। यह थोड़ी अतिरिक्त जानकारी देता है, क्योंकि Y के वास्तविक K-सिद्धांत से लेकर समष्टि K-सिद्धांत तक का नक्शा सदैव इंजेक्शन योग्य नहीं होता है। .
*केवल वृत्ताकार ऑपरेटर के अतिरिक्त, कोई कुछ स्थान Y द्वारा पैरामीटरयुक्त वृत्ताकार ऑपरेटरों के परिवार पर विचार कर सकता है। इस स्तिथि में सूचकांक पूर्णांक के अतिरिक्त Y के K-सिद्धांत का अवयव है। यदि परिवार में ऑपरेटर वास्तविक हैं, तबसूचकांक Y के वास्तविक K-सिद्धांत में निहित है। यह थोड़ी अतिरिक्त जानकारी देता है, क्योंकि Y के वास्तविक K-सिद्धांत से लेकर समष्टि K-सिद्धांत तक का नक्शा सदैव इंजेक्शन योग्य नहीं होता है। .
*यदि वृत्ताकार ऑपरेटर के साथ चलते हुए, कॉम्पैक्ट मैनिफोल्ड इसके अतिरिक्त, किसी को [[लेफ्शेट्ज़ निश्चित-बिंदु प्रमेय]] का सामान्यीकरण मिलता है, जिसमें समूह जी के निश्चित-बिंदु उपमानों से आने वाले शब्द होते हैं। यह भी देखें: [[समतुल्य सूचकांक प्रमेय]]।
*यदि वृत्ताकार ऑपरेटर के साथ चलते हुए, कॉम्पैक्ट मैनिफोल्ड इसके अतिरिक्त, किसी को [[लेफ्शेट्ज़ निश्चित-बिंदु प्रमेय]] का सामान्यीकरण मिलता है, जिसमें समूह जी के निश्चित-बिंदु उपमानों से आने वाले शब्द होते हैं। यह भी देखें: [[समतुल्य सूचकांक प्रमेय]]।
*{{harvtxt|अतियाह|1976}} ने दिखाया कि इंडेक्स प्रमेय को कुछ गैर-कॉम्पैक्ट मैनिफोल्ड्स तक कैसे बढ़ाया जाए, जिस पर कॉम्पैक्ट भागफल के साथ भिन्न समूह द्वारा कार्य किया जाता है। इस स्तिथि में वृत्ताकार ऑपरेटर का कर्नेल सामान्य रूप से अनंत आयामी है, किन्तु [[वॉन न्यूमैन बीजगणित]] पर मॉड्यूल के आयाम का उपयोग करके परिमित सूचकांक प्राप्त करना संभव है; यह सूचकांक पूर्णांक मान के अतिरिक्त सामान्यतः वास्तविक है। इस संस्करण को ''एल'' कहा जाता है<sup>2</sup>सूचकांक प्रमेय, और द्वारा उपयोग किया गया था {{harvtxt|अतियाह|श्मिड|1977}} [[अर्धसरल झूठ समूह]]ों के [[असतत श्रृंखला प्रतिनिधित्व]] के गुणों को पुनः प्राप्त करने के लिए।
*{{harvtxt|अतियाह|1976}} ने दिखाया कि इंडेक्स प्रमेय को कुछ गैर-कॉम्पैक्ट मैनिफोल्ड्स तक कैसे बढ़ाया जाए, जिस पर कॉम्पैक्ट भागफल के साथ भिन्न समूह द्वारा कार्य किया जाता है। इस स्तिथि में वृत्ताकार ऑपरेटर का कर्नेल सामान्य रूप से अनंत आयामी है, किन्तु [[वॉन न्यूमैन बीजगणित]] पर मॉड्यूल के आयाम का उपयोग करके परिमित सूचकांक प्राप्त करना संभव है; यह सूचकांक पूर्णांक मान के अतिरिक्त सामान्यतः वास्तविक है। इस संस्करण को ''एल'' कहा जाता है<sup>2</sup>सूचकांक प्रमेय, और द्वारा उपयोग किया गया था {{harvtxt|अतियाह|श्मिड|1977}} [[अर्धसरल झूठ समूह]]ों के [[असतत श्रृंखला प्रतिनिधित्व]] के गुणों को पुनः प्राप्त करने के लिए।
*कैलियास सूचकांक प्रमेय गैर-कॉम्पैक्ट विषम-आयामी स्थान पर डिराक ऑपरेटर के लिए सूचकांक प्रमेय है। अतियाह-सिंगर इंडेक्स केवल कॉम्पैक्ट स्पेस पर परिभाषित किया गया है, और जब उनका आयाम विषम होता है तबगायब हो जाता है। 1978 में [[कॉन्स्टेंटाइन कैलियास]] ने अपने पीएच.डी. के सुझाव पर। सलाहकार [[रोमन जैकिव]] ने [[हिग्स फील्ड]] नामक [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्युह]] से सुसज्जित स्थानों पर इस सूचकांक प्रमेय को प्राप्त करने के लिए [[चिरल विसंगति]] का उपयोग किया।<ref>[https://projecteuclid.org/download/pdf_1/euclid.cmp/1103904395  Index Theorems on Open Spaces]</ref> डिराक ऑपरेटर का सूचकांक टोपोलॉजिकल इनवेरिएंट है जो अनंत पर गोले पर हिग्स फ़ील्ड की वाइंडिंग को मापता है। यदि यू हिग्स फ़ील्ड की दिशा में इकाई आव्युह है, तबसूचकांक यू (डीयू) के अभिन्न अंग के समानुपाती होता है<sup>n−1</sup> अनंत पर (n−1)-गोले पर। यदि n सम है, तबयह सदैव शून्य होता है।
*कैलियास सूचकांक प्रमेय गैर-कॉम्पैक्ट विषम-आयामी स्थान पर डिराक ऑपरेटर के लिए सूचकांक प्रमेय है। अतियाह-सिंगर इंडेक्स केवल कॉम्पैक्ट स्पेस पर परिभाषित किया गया है, और जब उनका आयाम विषम होता है तबविलुप्त हो जाता है। 1978 में [[कॉन्स्टेंटाइन कैलियास]] ने अपने पीएच.डी. के सुझाव पर। सलाहकार [[रोमन जैकिव]] ने [[हिग्स फील्ड]] नामक [[हर्मिटियन मैट्रिक्स|हर्मिटियन आव्युह]] से सुसज्जित स्थानों पर इस सूचकांक प्रमेय को प्राप्त करने के लिए [[चिरल विसंगति]] का उपयोग किया।<ref>[https://projecteuclid.org/download/pdf_1/euclid.cmp/1103904395  Index Theorems on Open Spaces]</ref> डिराक ऑपरेटर का सूचकांक टोपोलॉजिकल इनवेरिएंट है जो अनंत पर गोले पर हिग्स फ़ील्ड की वाइंडिंग को मापता है। यदि यू हिग्स फ़ील्ड की दिशा में इकाई आव्युह है, तबसूचकांक यू (डीयू) के अभिन्न अंग के समानुपाती होता है<sup>n−1</sup> अनंत पर (n−1)-गोले पर। यदि n सम है, तबयह सदैव शून्य होता है।
**इस अपरिवर्तनीय की टोपोलॉजिकल व्याख्या और [[बोरिस फेडोसोव]] द्वारा प्रस्तावित होर्मेंडर इंडेक्स के साथ इसका संबंध, जैसा कि लार्स होर्मेंडर द्वारा सामान्यीकृत किया गया था, राउल बॉट और [[रॉबर्ट थॉमस सीली]] द्वारा प्रकाशित किया गया था।<ref>[https://projecteuclid.org/download/pdf_1/euclid.cmp/1103904396  Some Remarks on the Paper of Callias]</ref>
**इस अपरिवर्तनीय की टोपोलॉजिकल व्याख्या और [[बोरिस फेडोसोव]] द्वारा प्रस्तावित होर्मेंडर इंडेक्स के साथ इसका संबंध, जैसा कि लार्स होर्मेंडर द्वारा सामान्यीकृत किया गया था, राउल बॉट और [[रॉबर्ट थॉमस सीली]] द्वारा प्रकाशित किया गया था।<ref>[https://projecteuclid.org/download/pdf_1/euclid.cmp/1103904396  Some Remarks on the Paper of Callias]</ref>



Revision as of 15:22, 22 July 2023

अतियाह-सिंगर सूचकांक प्रमेय
Fieldविभेदक ज्यामिति
First proof byमाइकल अतियाह और इसादोर सिंगर
First proof in1963
Consequencesचेर्न-गॉस-बोनट प्रमेय
ग्रोथेंडिक-रीमैन-रोच प्रमेय
हिरज़ेब्रुच हस्ताक्षर प्रमेय
रोक्लिन का प्रमेय

विभेदक ज्यामिति में, अतियाह-सिंगर सूचकांक प्रमेय, माइकल अतियाह और इसादोर सिंगर (1963) द्वारा सिद्ध किया गया है,[1] जिसमे यह बताता है कि कॉम्पैक्ट मैनिफोल्ड पर वृत्ताकार ऑपरेटर के लिए, विश्लेषणात्मक सूचकांक (समाधान के स्थान के आयाम से संबंधित) टोपोलॉजिकल इंडेक्स (कुछ टोपोलॉजिकल डेटा के संदर्भ में परिभाषित) के सामान्तर है। इसमें अनेक अन्य प्रमेय सम्मिलित हैं, जैसे चेर्न-गॉस-बोनट प्रमेय और रीमैन-रोच प्रमेय, विशेष स्थितियों के रूप में, और सैद्धांतिक भौतिकी के लिए इसके अनुप्रयोग हैं।[2][3]

इतिहास

वृत्ताकार अंतर ऑपरेटरों के लिए सूचकांक समस्या इज़राइल गेलफैंड द्वारा प्रस्तुत की गई थी।[4] उन्होंने सूचकांक के होमोटॉपी इनवेरिएंस पर ध्यान दिया, और टोपोलॉजिकल अपरिवर्तनीय माध्यम से इसके लिए सूत्र मांगा। कुछ प्रेरक उदाहरणों में रीमैन-रोच प्रमेय और इसका सामान्यीकरण, हिरज़ेब्रुक-रीमैन-रोच प्रमेय, और हिरज़ेब्रुक हस्ताक्षर प्रमेय सम्मिलित हैं। फ्रेडरिक हिरज़ेब्रुच और आर्मंड बोरेल ने स्पिन मैनिफोल्ड के जीनस की अभिन्नता को सिद्ध किया था, और अतियाह ने सुझाव दिया कि इस अभिन्नता को समझाया जा सकता है यदि यह डिराक ऑपरेटर का सूचकांक होता (जिसे 1961 में अतियाह और सिंगर द्वारा फिर से खोजा गया था)।

अतियाह-सिंगर प्रमेय की घोषणा 1963 में की गई थी।[1] इस घोषणा में दिए गए प्रमाण उनके द्वारा कभी प्रकाशित नहीं किए गए, चूंकि यह पैलैस की पुस्तक में दिखाई देता है।[5] यह कार्टन-श्वार्ट्ज सेमिनार 1963/64 में भी दिखाई देता है[6] जो प्रिंसटन विश्वविद्यालय में रिवेरिएबल ्ड पैलेस के नेतृत्व में सेमिनार के साथ-साथ पेरिस में आयोजित किया गया था। पेरिस में आखिरी बातचीत अतियाह ने सीमा के साथ मैनिफोल्ड्स पर की थी। उनका पहला प्रकाशित प्रमाण[7] ने पहले प्रमाण के सह-बॉर्डिज्म सिद्धांत को के-सिद्धांत से बदल दिया, और उन्होंने इसका उपयोग कागजात के दूसरे अनुक्रम में विभिन्न सामान्यीकरणों के प्रमाण देने के लिए किया।[8]

  • 1965: सर्गेई नोविकोव (गणितज्ञ)| सर्गेई पी. नोविकोव ने स्मूथ मैनिफोल्ड्स पर तर्कसंगत पोंट्रीगिन वर्ग के टोपोलॉजिकल इनवेरिएंस पर अपने परिणाम प्रकाशित किए थे।[9]
  • रॉबिन किर्बी और लॉरेंट सी. सिबेनमैन के परिणाम,[10] रेने थॉम के पेपर के साथ संयुक्त[11] टोपोलॉजिकल मैनिफोल्ड्स पर तर्क संगत पोंट्रीगिन वर्गों के अस्तित्व को सिद्ध किया। तर्क संगत पोंट्रीगिन कक्षाएं चिकनी और टोपोलॉजिकल मैनिफोल्ड्स पर सूचकांक प्रमेय के आवश्यक अवयव हैं।
  • 1969: माइकल अतियाह ने इच्छा से मीट्रिक स्थानों पर अमूर्त वृत्ताकार ऑपरेटरों को परिभाषित किया। कास्पारोव के सिद्धांत और कोन्स की गैर-अनुवांशिक अंतर ज्यामिति में सार वृत्ताकार संचालक नायक बन गए थे ।[12]
  • 1971: इसाडोर सिंगर ने सूचकांक सिद्धांत के भविष्य के विस्तार के लिए व्यापक कार्यक्रम का प्रस्ताव रखा गया था ।[13]
  • 1972: गेनाडी जी. कास्पारोव ने अमूर्त वृत्ताकार ऑपरेटरों द्वारा K-होमोलॉजी की प्राप्ति पर अपना काम प्रकाशित किया।[14]
  • 1973: अतियाह, राउल बॉट और विजय पटोदी ने सूचकांक प्रमेय का नया प्रमाण दिया[15] मेलरोज़ द्वारा पेपर में वर्णित ऊष्मा समीकरण का उपयोग करते हुए।[16]
  • 1977: डेनिस सुलिवान ने 4 से भिन्न आयामों के टोपोलॉजिकल मैनिफोल्ड्स पर लिप्सचिट्ज़ और क्वासिकोन फॉर्मल मानचित्रण संरचनाओं के अस्तित्व और विशिष्टता पर अपना प्रमेय स्थापित किया था।[17]
  • 1983: एज्रा गेट्ज़लर[18] एडवर्ड विटन के विचारों से प्रेरित[19] और लुइस अल्वारेज़ गौम ने उन ऑपरेटरों के लिए स्थानीय सूचकांक प्रमेय का संक्षिप्त प्रमाण दिया जो स्थानीय रूप से डायराक ऑपरेटर हैं; इसमें अनेक उपयोगी स्तिथि सम्मिलित हैं।
  • 1983: निकोले टेलीमैन ने सिद्ध किया कि सदिश बंडलों में मूल्यों वाले हस्ताक्षर ऑपरेटरों के विश्लेषणात्मक सूचकांक टोपोलॉजिकल इनवेरिएंट हैं।[20]
  • 1984: टेलीमैन ने टोपोलॉजिकल मैनिफोल्ड्स पर इंडेक्स प्रमेय स्थापित किया था ।[21]
  • 1986: एलेन कोन्स ने गैर-अनुवांशिक ज्यामिति पर अपना मौलिक पेपर प्रकाशित किया था ।[22]
  • 1989: साइमन डोनाल्डसन|साइमन के. डोनाल्डसन और सुलिवन ने आयाम 4 के क्वासिकोनफॉर्मल मैनिफोल्ड्स पर यांग-मिल्स सिद्धांत का अध्ययन किया था । वहडिग्री दो के विभेदक रूपों पर परिभाषित हस्ताक्षर ऑपरेटर S का परिचय देते हैं।[23]
  • 1990: कोन्स और हेनरी मोस्कोविसी ने गैर-कम्यूटेटिव ज्यामिति के संदर्भ में स्थानीय सूचकांक सूत्र को सिद्ध किया।[24]
  • 1994: कॉन्स, सुलिवन और टेलीमैन ने क्वासिकोनफॉर्मल मैनिफोल्ड्स पर हस्ताक्षर ऑपरेटरों के लिए सूचकांक प्रमेय को सिद्ध किया था।[25]

संकेतन

  • X सघन स्थान स्मूथ अनेक गुना (बिना सीमा के) है।
  • E और F, X के ऊपर चिकने सदिश बंडल हैं।
  • D, E से F तक वृत्ताकार अंतर ऑपरेटर है। इसलिए स्थानीय निर्देशांक में यह अंतर ऑपरेटर के रूप में कार्य करता है, जो E के चिकने खंडों को F के चिकने खंडों तक ले जाता है।

डिफरेंशियल ऑपरेटर का प्रतीक

यदि D, k वेरिएबल्स में क्रम n के यूक्लिडियन स्पेस पर डिफरेंशियल ऑपरेटर है, तब इसका प्रतीक 2k अंतर ऑपरेटर का वेरिएबल का कार्य है, जो n से कम क्रम की सभी नियमों को हटाकर और को प्रतिस्थापित करके दिया गया है तब प्रतीक डिग्री n के वेरिएबल y में सजातीय है। यद्यपि प्रतीक अच्छी तरह से परिभाषित है तथापि , के साथ आवागमन नहीं करता क्योंकि हम केवल उच्चतम ऑर्डर नियमों को रखते हैं और अंतर ऑपरेटर निम्न-ऑर्डर नियमों तक कम्यूट करते हैं। यदि प्रतीक अशून्य है तब ऑपरेटर को वृत्ताकार कहा जाता है, जब भी कम से कम y अशून्य होता है।

उदाहरण: k वेरिएबल में लाप्लास ऑपरेटर का प्रतीक होता है, और इसलिए यह वृत्ताकार है क्योंकि जब भी इनमें से कोई भी अशून्य होता है शून्येतर हैं. वेव ऑपरेटर का प्रतीक होता है , जो कि वृत्ताकार नहीं है यदि , क्योंकि प्रतीक ys के कुछ गैर-शून्य मानों के लिए विलुप्त हो जाता है।

स्मूथ मैनिफोल्ड X पर ऑर्डर n के डिफरेंशियल ऑपरेटर का प्रतीक स्थानीय समन्वय चार्ट का उपयोग करके उसी तरह परिभाषित किया गया है,और X के कोटैंजेंट बंडल पर एक फलन है, जो प्रत्येक कोटैंजेंट स्पेस पर डिग्री n का सजातीय है। सामान्यतः, अंतर ऑपरेटर समन्वय परिवर्तन (जेट बंडल देखें) के अनुसार समष्टि विधियों से बदलते हैं; चूंकि, उच्चतम क्रम के शब्द टेंसर की तरह बदलते हैं, इसलिए हमें कोटैंजेंट रिक्त स्थान पर अच्छी तरह से परिभाषित सजातीय कार्य मिलते हैं जो स्थानीय चार्ट की पसंद से स्वतंत्र होते हैं अधिक सामान्यतः, दो सदिश बंडलों E और F के बीच अंतर ऑपरेटर का प्रतीक बंडल होम (E, F) के X के कोटैंजेंट स्पेस के पुलबैक का खंड है। अंतर ऑपरेटर को वृत्ताकार कहा जाता है यदि होम(Ex, Fx) का अवयव X के किसी भी बिंदु x पर सभी गैर-शून्य कोटैंजेंट वैक्टर के लिए विपरीत है।

वृत्ताकार ऑपरेटरों की प्रमुख संपत्ति यह है कि वह लगभग विपरीत होते हैं; इसका इस तथ्य से गहरा संबंध है कि उनके प्रतीक लगभग विपरीत हैं। अधिक स्पष्ट रूप से, कॉम्पैक्ट मैनिफोल्ड पर वृत्ताकार ऑपरेटर D में (गैर-अद्वितीय) 'पैरामीट्रिक्स ' (या 'छद्मविपरीत') D' होता है जैसे कि डीडी' -1 और डी'डी -1 दोनों कॉम्पैक्ट ऑपरेटर होते हैं। महत्वपूर्ण परिणाम यह है कि D का कर्नेल परिमित-आयामी है, क्योंकि कर्नेल के अतिरिक्त, कॉम्पैक्ट ऑपरेटरों के सभी आइजनस्पेस परिमित-आयामी हैं। (वृत्ताकार विभेदक संचालिका का छद्म व्युत्क्रम लगभग कभी भी विभेदक संचालिका नहीं होता है। चूँकि, यह वृत्ताकार छद्मविभेदक संचालिका है।)

विश्लेषणात्मक सूचकांक

चूंकि वृत्ताकार अंतर ऑपरेटर D में छद्म व्युत्क्रम है, यह फ्रेडहोम संचालक है। किसी भी फ्रेडहोम ऑपरेटर के पास सूचकांक होता है, जिसे D के कर्नेल (बीजगणित) के (परिमित) आयाम (डीएफ = 0 के समाधान) और D के कोकर्नेल के (परिमित) आयाम Df = g, (जैसे अमानवीय समीकरण के दाईं ओर की बाधाओं या समकक्ष संचालिका का कर्नेल ) के बीच अंतर के रूप में परिभाषित किया गया है। दूसरे शब्दों में,

Index(D) = dim Ker(D) − dim Coker(D) = dim Ker(D) − dim Ker(D*)

इसे कभी-कभी D का 'विश्लेषणात्मक सूचकांक' भी कहा जाता है।

'उदाहरण:' मान लीजिए कि मैनिफोल्ड वृत्त है (जिसे 'R'/'Z' माना जाता है), और D कुछ समष्टि स्थिरांक λ के लिए ऑपरेटर d/dx - λ है। (यह वृत्ताकार ऑपरेटर का सबसे सरल उदाहरण है।) तब कर्नेल ईएक्सपी (λx) के गुणकों का स्थान है यदि λ 2πi का अभिन्न गुणक है और अन्यथा 0 है, और सहायक का कर्नेल λ के साथ समान स्थान है इसके समष्टि संयुग्म द्वारा प्रतिस्थापित किया गया। तब D का सूचकांक 0 है। यह उदाहरण दिखाता है कि वृत्ताकार ऑपरेटरों के कर्नेल और कोकर्नेल वृत्ताकार ऑपरेटर के भिन्न होने पर लगातार कूद सकते हैं, इसलिए निरंतर टोपोलॉजिकल डेटा के संदर्भ में उनके आयामों के लिए कोई अच्छा सूत्र नहीं है। चूँकि कर्नेल और कोकर्नेल के आयामों में उछाल समान है, इसलिए उनके आयामों के अंतर से दिया गया सूचकांक, वास्तव में लगातार बदलता रहता है, और सूचकांक प्रमेय द्वारा टोपोलॉजिकल डेटा के संदर्भ में दिया जा सकता है।

टोपोलॉजिकल इंडेक्स

-आयामी कॉम्पैक्ट मैनिफोल्ड पर चिकने सदिश बंडलों के बीच और के बीच वृत्ताकार विभेदक ऑपरेटर का टोपोलॉजिकल सूचकांक दिया गया है

दूसरे शब्दों में मैनिफोल्ड के मौलिक होमोलॉजी वर्ग पर मिश्रित कोहोमोलॉजी वर्ग के शीर्ष आयामी घटक का मूल्य चिह्न के अंतर तक होता है यहाँ,

  • के समष्टि स्पर्शरेखा बंडल का टोड वर्ग है |.
  • के सामान्तर है , जहाँ
    • गोलाकार बंडल के लिए थॉम इसोमोर्फिस्म है
    • चेर्न चरित्र है
    • में अंतर अवयव है जो पर दो सदिश बंडलों और से जुड़ा है और उपस्थान पर उनके बीच समरूपता होती है .
    • का प्रतीक है

कुछ स्थितियों में, कम्प्यूटेशनल उद्देश्यों के लिए उपरोक्त सूत्र को सरल बनाना संभव है। विशेषकर, यदि , -आयामी उन्मुख (कॉम्पैक्ट) गैर-शून्य यूलर वर्ग के साथ अनेक गुना , फिर थॉम समरूपता को प्रयुक्त करना और यूलर वर्ग द्वारा विभाजित करना,[26][27] टोपोलॉजिकल इंडेक्स को इस प्रकार व्यक्त किया जा सकता है

जहाँ वर्गीकृत स्थान के कोहोमोलॉजी रिंग से वापस खींचने से विभाजन का अर्थ होता है

कोई केवल K-सिद्धांत का उपयोग करके टोपोलॉजिकल इंडेक्स को भी परिभाषित कर सकता है (और यह वैकल्पिक परिभाषा उपरोक्त चेर्न-वर्ण निर्माण के साथ निश्चित अर्थ में संगत है)। यदि किसी अवयव का टोपोलॉजिकल इंडेक्स K(TX) को Y के साथ कुछ यूक्लिडियन स्पेस के साथ इस ऑपरेशन की छवि के रूप में परिभाषित किया गया है, जिसके लिए K(TY) को पूर्णांक 'Z' (बॉट-आवधिकता के परिणामस्वरूप) के साथ स्वाभाविक रूप से पहचाना जा सकता है। यह मानचित्र यूक्लिडियन अंतरिक्ष में एक्स के एम्बेडिंग से स्वतंत्र है। अभी ऊपर जैसा डिफरेंशियल ऑपरेटर स्वाभाविक रूप से K(TX) के अवयव को परिभाषित करता है, और इस मानचित्र के अनुसार 'Z' में छवि टोपोलॉजिकल इंडेक्स है।

सदैव की तरह, D कॉम्पैक्ट मैनिफोल्ड एक्स पर सदिश बंडल E और एफ के बीच वृत्ताकार अंतर ऑपरेटर है।

सूचकांक समस्या निम्नलिखित है: केवल प्रतीक S और मैनिफोल्ड और सदिश बंडल से प्राप्त टोपोलॉजिकल डेटा का उपयोग करके D के (विश्लेषणात्मक) सूचकांक की गणना करें। अतियाह-सिंगर सूचकांक प्रमेय इस समस्या का समाधान करता है, और कहता है:

'D का विश्लेषणात्मक सूचकांक इसके टोपोलॉजिकल इंडेक्स के सामान्तर है।'

अपनी दुर्जेय परिभाषा के अतिरिक्त, टोपोलॉजिकल इंडेक्स का स्पष्ट रूप से मूल्यांकन करना सामान्यतः आसान होता है। तब इससे विश्लेषणात्मक सूचकांक का मूल्यांकन करना संभव हो जाता है। (एक वृत्ताकार ऑपरेटर के कोकर्नेल और कर्नेल का व्यक्तिगत रूप से मूल्यांकन करना सामान्यतः अत्यधिक कठिन होता है; सूचकांक प्रमेय से पता चलता है कि हम सामान्यतः कम से कम उनके 'अंतर' का मूल्यांकन कर सकते हैं।) मैनिफोल्ड के अनेक महत्वपूर्ण अपरिवर्तनीय (जैसे कि हस्ताक्षर) दिए जा सकते हैं उपयुक्त अंतर ऑपरेटरों के सूचकांक के रूप में, इसलिए सूचकांक प्रमेय हमें टोपोलॉजिकल डेटा के संदर्भ में इन अपरिवर्तनीयों का मूल्यांकन करने की अनुमति देता है।

यद्यपि विश्लेषणात्मक सूचकांक का सीधे मूल्यांकन करना सामान्यतः कठिन होता है, यह कम से कम स्पष्ट रूप से पूर्णांक है। टोपोलॉजिकल इंडेक्स परिभाषा के अनुसार परिमेय संख्या है, किन्तुसामान्यतः परिभाषा से यह बिल्कुल भी स्पष्ट नहीं है कि यह अभिन्न भी है। तबअतियाह-सिंगर इंडेक्स प्रमेय कुछ गहरी अभिन्नता गुणों का तात्पर्य करता है, क्योंकि इसका तात्पर्य है कि टोपोलॉजिकल इंडेक्स अभिन्न है।

यदि ऑपरेटर स्वयं संलग्न है तब वृत्ताकार अंतर ऑपरेटर का सूचकांक स्पष्ट रूप से विलुप्त हो जाता है। यह तब भी विलुप्त हो जाता है जब मैनिफोल्ड X का आयाम विषम है तो यह भी विलुप्त हो जाता है, चूँकि ऐसे छद्मविभेदक वृत्ताकार ऑपरेटर हैं जिनका सूचकांक विषम आयामों में विलुप्त नहीं होता है।

ग्रोथेंडिक-रीमैन-रोच से संबंध

ग्रोथेंडिक-रीमैन-रोच प्रमेय | ग्रोथेंडिक-रीमैन-रोच प्रमेय सूचकांक प्रमेय के पीछे मुख्य प्रेरणाओं में से था क्योंकि सूचकांक प्रमेय वास्तविक मैनिफोल्ड्स की समुच्चयिंग में इस प्रमेय का समकक्ष है। अभी, यदि कोई नक्शा है कॉम्पैक्ट स्थिर रूप से लगभग समष्टि मैनिफ़ोल्ड का, फिर क्रमविनिमेय आरेख होता है[28]182x182पिक्सेल

यदि बिंदु है, तबहम उपरोक्त कथन को पुनर्प्राप्त करते हैं। यहाँ समष्टि सदिश बंडलों का ग्रोथेंडिक समूह है। यह क्रमविनिमेय आरेख औपचारिक रूप से जीआरआर प्रमेय के समान है क्योंकि दाईं ओर के होमोलोजी समूहों को चिकनी प्रकार के चाउ रिंग द्वारा प्रतिस्थापित किया जाता है, और बाईं ओर ग्रोथेंडिक समूह को बीजगणितीय सदिश बंडलों के ग्रोथेंडिक समूह द्वारा दिया जाता है।

अतियाह-सिंगर सूचकांक प्रमेय का विस्तार

टेलीमैन इंडेक्स प्रमेय

इस कारण (टेलीमैन 1983), (टेलीमैन 1984):

किसी भी अमूर्त वृत्ताकार ऑपरेटर के लिए (अतियाह 1970) बंद, उन्मुख, टोपोलॉजिकल मैनिफोल्ड पर, विश्लेषणात्मक सूचकांक टोपोलॉजिकल सूचकांक के सामान्तर होता है।

इस परिणाम का प्रमाण विशिष्ट विचारों से होकर गुजरता है, जिसमें कॉम्बिनेटरियल और लिप्सचिट्ज़ मैनिफोल्ड्स पर हॉज सिद्धांत का विस्तार सम्मिलित है। (टेलीमैन 1980), (टेलीमैन 1983), अतियाह-सिंगर के हस्ताक्षर ऑपरेटर का लिप्सचिट्ज़ मैनिफोल्ड्स तक विस्तार (टेलीमैन 1983), कास्परोव की के-होमोलॉजी (कास्पारोव 1972) और टोपोलॉजिकल कोबॉर्डिज्म (किर्बी & सिबेनमैन 1977).

इस परिणाम से पता चलता है कि सूचकांक प्रमेय केवल भिन्नता कथन नहीं है, किंतु टोपोलॉजिकल कथन है।

कॉन्स-डोनाल्डसन-सुलिवन-टेलीमैन इंडेक्स प्रमेय

इस कारण (डोनाल्डसन & सुलिवन 1989), (कोन्स, सुलिवान & टेलीमैन 1994):

किसी भी क्वासिकोनफॉर्मल मैनिफोल्ड के लिए हिरज़ेब्रुच-थॉम विशेषता वर्गों का स्थानीय निर्माण उपस्थित है।

यह सिद्धांत हस्ताक्षर ऑपरेटर एस पर आधारित है, जिसे सम-आयामी क्वासिकोनफॉर्मल मैनिफोल्ड्स पर मध्य डिग्री अंतर रूपों पर परिभाषित किया गया है (तुलना करें) (डोनाल्डसन & सुलिवान 1989)).

टोपोलॉजिकल कोबॉर्डिज्म और के-होमोलॉजी का उपयोग करके कोई व्यक्ति क्वासिकोनफॉर्मल मैनिफोल्ड्स पर सूचकांक प्रमेय का पूरा विवरण प्रदान कर सकता है (पृष्ठ 678 देखें) (कोन्स, सुलिवान & टेलीमैन 1994)). काम (कोन्स, सुलिवान & टेलीमैन 1994) आयाम दो में मापने योग्य रीमैन मानचित्रण के उच्च आयामी रिश्तेदारों और आयाम चार में यांग-मिल्स सिद्धांत के आधार पर विशिष्ट वर्गों के लिए स्थानीय निर्माण प्रदान करता है।

यह परिणाम गणित में सिंगर के कार्यक्रम संभावनाओं की तर्ज पर महत्वपूर्ण प्रगति का गठन करते हैं (सिंगर 1971). साथ ही, वहटोपोलॉजिकल मैनिफोल्ड्स पर तर्कसंगत पोंट्रजागिन कक्षाओं का प्रभावी निर्माण भी प्रदान करते हैं। कागज़ (टेलीमैन 1985) थॉम के तर्कसंगत पोंट्रजागिन वर्गों के मूल निर्माण के बीच लिंक प्रदान करता है (थॉम 1956) और सूचकांक सिद्धांत.

यह उल्लेख करना महत्वपूर्ण है कि सूचकांक सूत्र टोपोलॉजिकल कथन है। मिल्नोर, केरवायर, किर्बी, सिबेनमैन, सुलिवन, डोनाल्डसन के कारण बाधा सिद्धांत बताते हैं कि केवल अल्पसंख्यक टोपोलॉजिकल मैनिफोल्ड्स में भिन्न-भिन्न संरचनाएं होती हैं और यह आवश्यक नहीं कि अद्वितीय हों। लिप्सचिट्ज़ और क्वासिकोनफॉर्मल संरचनाओं पर सुलिवन का परिणाम (सुलिवान 1979) दर्शाता है कि 4 से भिन्न आयाम में किसी भी टोपोलॉजिकल मैनिफोल्ड में ऐसी संरचना होती है जो अद्वितीय होती है (पहचान के करीब आइसोटोप तक)।

क्वासिकोनफॉर्मल संरचनाएं (कोन्स, सुलिवान & टेलीमैन 1994) और अधिक सामान्यतः एलपी-संरचनाएँ, पी > एन(एन+1)/2, एम. हिल्सम द्वारा प्रस्तुत (हिल्सम 1999), आयाम n के टोपोलॉजिकल मैनिफोल्ड्स पर सबसे अशक्त विश्लेषणात्मक संरचनाएं हैं जिनके लिए सूचकांक प्रमेय को जाना जाता है।

अन्य एक्सटेंशन

  • अतियाह-सिंगर प्रमेय वृत्ताकार स्यूडोडिफरेंशियल ऑपरेटरों पर उसी तरह प्रयुक्त होता है जैसे वृत्ताकार अंतर ऑपरेटरों के लिए। वास्तव में, टेक्निकल कारणों से अधिकांश प्रारंभिक प्रमाणों ने विभेदक ऑपरेटरों के अतिरिक्त छद्मविभेदक के साथ काम किया: उनके अतिरिक्त लचीलेपन ने प्रमाणों के कुछ वेरिएबल णों को आसान बना दिया।
  • दो सदिश बंडलों के बीच वृत्ताकार ऑपरेटर के साथ काम करने के अतिरिक्त, कभी-कभी वृत्ताकार कॉम्प्लेक्स के साथ काम करना अधिक सुविधाजनक होता है
    सदिश बंडलों का. अंतर यह है कि प्रतीक अभी स्पष्ट अनुक्रम बनाते हैं (शून्य खंड से हटकर)। ऐसे स्तिथि में जब कॉम्प्लेक्स में सिर्फ दो गैर-शून्य बंडल होते हैं, तबइसका कारण है कि प्रतीक शून्य खंड से समरूपता है, इसलिए 2 शब्दों वाला वृत्ताकार कॉम्प्लेक्स अनिवार्य रूप से दो सदिश बंडलों के बीच वृत्ताकार ऑपरेटर के समान है। इसके विपरीत, वृत्ताकार कॉम्प्लेक्स के लिए सूचकांक प्रमेय को आसानी से वृत्ताकार ऑपरेटर के स्तिथि में कम किया जा सकता है: दो सदिश बंडल कॉम्प्लेक्स के सम या विषम शब्दों के योग द्वारा दिए जाते हैं, और वृत्ताकार ऑपरेटर ऑपरेटरों का योग है वृत्ताकार परिसर और उनके जोड़, सम बंडलों के योग तक सीमित हैं।
  • यदि मैनिफोल्ड को सीमाबद्ध करने की अनुमति है, तबपरिमित सूचकांक सुनिश्चित करने के लिए वृत्ताकार ऑपरेटर के डोमेन पर कुछ प्रतिबंध लगाए जाने चाहिए। यह स्थितियां स्थानीय हो सकती हैं (जैसे यह मांग करना कि डोमेन में अनुभाग सीमा पर विलुप्त हो जाएं) या अधिक समष्टि वैश्विक स्थितियां (जैसे कि यह आवश्यक है कि डोमेन में अनुभाग कुछ अंतर समीकरण को हल करें)। स्थानीय स्तिथि पर अतियाह और बॉट द्वारा काम किया गया था, किन्तुउन्होंने दिखाया कि अनेक रोचक ऑपरेटर (उदाहरण के लिए, हस्ताक्षर ऑपरेटर) स्थानीय सीमा नियमों को स्वीकार नहीं करते हैं। इन ऑपरेटरों को संभालने के लिए, माइकल अतियाह, विजय कुमार पटोदी और इसादोर सिंगर ने वैश्विक सीमा नियमों की शुरुआत की, जो सीमा के साथ सिलेंडर को मैनिफ़ोल्ड से जोड़ने और फिर डोमेन को उन अनुभागों तक सीमित करने के सामान्तर है जो सिलेंडर के साथ वृत्ताकार एकीकृत हैं। के प्रमाण में यह दृष्टिकोण अपनाया जाता है मेलरोज़ (1993) अतियाह-पटोदी-सिंगर सूचकांक प्रमेय के।
  • केवल वृत्ताकार ऑपरेटर के अतिरिक्त, कोई कुछ स्थान Y द्वारा पैरामीटरयुक्त वृत्ताकार ऑपरेटरों के परिवार पर विचार कर सकता है। इस स्तिथि में सूचकांक पूर्णांक के अतिरिक्त Y के K-सिद्धांत का अवयव है। यदि परिवार में ऑपरेटर वास्तविक हैं, तबसूचकांक Y के वास्तविक K-सिद्धांत में निहित है। यह थोड़ी अतिरिक्त जानकारी देता है, क्योंकि Y के वास्तविक K-सिद्धांत से लेकर समष्टि K-सिद्धांत तक का नक्शा सदैव इंजेक्शन योग्य नहीं होता है। .
  • यदि वृत्ताकार ऑपरेटर के साथ चलते हुए, कॉम्पैक्ट मैनिफोल्ड इसके अतिरिक्त, किसी को लेफ्शेट्ज़ निश्चित-बिंदु प्रमेय का सामान्यीकरण मिलता है, जिसमें समूह जी के निश्चित-बिंदु उपमानों से आने वाले शब्द होते हैं। यह भी देखें: समतुल्य सूचकांक प्रमेय
  • अतियाह (1976) ने दिखाया कि इंडेक्स प्रमेय को कुछ गैर-कॉम्पैक्ट मैनिफोल्ड्स तक कैसे बढ़ाया जाए, जिस पर कॉम्पैक्ट भागफल के साथ भिन्न समूह द्वारा कार्य किया जाता है। इस स्तिथि में वृत्ताकार ऑपरेटर का कर्नेल सामान्य रूप से अनंत आयामी है, किन्तु वॉन न्यूमैन बीजगणित पर मॉड्यूल के आयाम का उपयोग करके परिमित सूचकांक प्राप्त करना संभव है; यह सूचकांक पूर्णांक मान के अतिरिक्त सामान्यतः वास्तविक है। इस संस्करण को एल कहा जाता है2सूचकांक प्रमेय, और द्वारा उपयोग किया गया था अतियाह & श्मिड (1977) अर्धसरल झूठ समूहों के असतत श्रृंखला प्रतिनिधित्व के गुणों को पुनः प्राप्त करने के लिए।
  • कैलियास सूचकांक प्रमेय गैर-कॉम्पैक्ट विषम-आयामी स्थान पर डिराक ऑपरेटर के लिए सूचकांक प्रमेय है। अतियाह-सिंगर इंडेक्स केवल कॉम्पैक्ट स्पेस पर परिभाषित किया गया है, और जब उनका आयाम विषम होता है तबविलुप्त हो जाता है। 1978 में कॉन्स्टेंटाइन कैलियास ने अपने पीएच.डी. के सुझाव पर। सलाहकार रोमन जैकिव ने हिग्स फील्ड नामक हर्मिटियन आव्युह से सुसज्जित स्थानों पर इस सूचकांक प्रमेय को प्राप्त करने के लिए चिरल विसंगति का उपयोग किया।[29] डिराक ऑपरेटर का सूचकांक टोपोलॉजिकल इनवेरिएंट है जो अनंत पर गोले पर हिग्स फ़ील्ड की वाइंडिंग को मापता है। यदि यू हिग्स फ़ील्ड की दिशा में इकाई आव्युह है, तबसूचकांक यू (डीयू) के अभिन्न अंग के समानुपाती होता हैn−1 अनंत पर (n−1)-गोले पर। यदि n सम है, तबयह सदैव शून्य होता है।
    • इस अपरिवर्तनीय की टोपोलॉजिकल व्याख्या और बोरिस फेडोसोव द्वारा प्रस्तावित होर्मेंडर इंडेक्स के साथ इसका संबंध, जैसा कि लार्स होर्मेंडर द्वारा सामान्यीकृत किया गया था, राउल बॉट और रॉबर्ट थॉमस सीली द्वारा प्रकाशित किया गया था।[30]


उदाहरण

चेर्न-गॉस-बोनट प्रमेय

लगता है कि आयाम का कॉम्पैक्ट ओरिएंटेड मैनिफोल्ड है . यदि हम लेते हैं कोटैंजेंट बंडल की सम बाहरी शक्तियों का योग होना, और विषम शक्तियों का योग होना परिभाषित करें , से मानचित्र के रूप में माना जाता है को . फिर का विश्लेषणात्मक सूचकांक यूलर विशेषता है हॉज कोहोमोलॉजी के , और टोपोलॉजिकल इंडेक्स मैनिफोल्ड पर यूलर वर्ग का अभिन्न अंग है। इस ऑपरेटर के लिए सूचकांक सूत्र चेर्न-गॉस-बोनट प्रमेय उत्पन्न करता है।

ठोस गणना इस प्रकार है: विभाजन सिद्धांत की भिन्नता के अनुसार, यदि आयाम का वास्तविक सदिश बंडल है विशिष्ट वर्गों से जुड़े दावों को सिद्ध करने के लिए, हम मान सकते हैं कि समष्टि रेखा बंडल हैं ऐसा है कि . इसलिए, हम चेर्न जड़ों पर विचार कर सकते हैं , , .

उपरोक्त चेर्न जड़ों और यूलर वर्ग के मानक गुणों का उपयोग करते हुए, हमारे पास वह है . चेर्न वेरिएबल ित्र और टॉड वर्ग के लिए,[31]

सूचकांक प्रमेय को प्रयुक्त करना,

जो चेर्न-गॉस-बोनट प्रमेय का टोपोलॉजिकल संस्करण है (चेर्न-वील समरूपता को प्रयुक्त करके ज्यामितीय संस्करण प्राप्त किया जा रहा है)।

हिर्ज़ेब्रुच-रीमैन-रोच प्रमेय

एक्स को होलोमोर्फिक सदिश बंडल वी के साथ (समष्टि ) आयाम एन के समष्टि मैनिफोल्ड के रूप में लें। हम सदिश बंडल ई और एफ को आई के साथ प्रकार (0, आई) के वी में गुणांक के साथ अंतर रूपों के बंडलों का योग मानते हैं। सम या विषम, और हम अंतर संचालिका D को योग मानते हैं

ई तक सीमित.

यदि हम वृत्ताकार ऑपरेटरों के अतिरिक्त वृत्ताकार परिसरों के लिए सूचकांक प्रमेय का उपयोग करते हैं तबहिरज़ेब्रुक-रीमैन-रोच प्रमेय की यह व्युत्पत्ति अधिक स्वाभाविक है। हम कॉम्प्लेक्स को मान सकते हैं

द्वारा दिए गए अंतर के साथ . फिर i'th सहसंगति समूह केवल सुसंगत सहसमरूपता समूह H हैi(X, V), इसलिए इस कॉम्प्लेक्स का विश्लेषणात्मक सूचकांक V की होलोमोर्फिक यूलर विशेषता है:

चूंकि हम समष्टि बंडलों से निपट रहे हैं, इसलिए टोपोलॉजिकल इंडेक्स की गणना सरल है। चेर्न जड़ों का उपयोग करना और पिछले उदाहरण की तरह समान गणना करना, यूलर वर्ग द्वारा दिया गया है और

सूचकांक प्रमेय को प्रयुक्त करने पर, हम हिरज़ेब्रुच-रीमैन-रोच प्रमेय प्राप्त करते हैं:

वास्तव में हमें सभी समष्टि मैनिफोल्ड्स के लिए इसका सामान्यीकरण मिलता है: हिरज़ेब्रुक का प्रमाण केवल प्रोजेक्टिव कॉम्प्लेक्स मैनिफोल्ड्स X के लिए काम करता है।

हिर्ज़ेब्रुच हस्ताक्षर प्रमेय

हिरज़ेब्रुक हस्ताक्षर प्रमेय में कहा गया है कि आयाम 4k के कॉम्पैक्ट ओरिएंटेड मैनिफोल्ड एक्स का हस्ताक्षर मैनिफोल्ड के एल जीनस द्वारा दिया गया है। यह निम्नलिखित हस्ताक्षर ऑपरेटर पर प्रयुक्त अतियाह-सिंगर सूचकांक प्रमेय का अनुसरण करता है।

बंडल E और F, X के विभेदक रूपों के बंडल पर ऑपरेटर के +1 और −1 एइगेन्स्पकेस द्वारा दिए गए हैं, जो k-रूपों पर कार्य करता है हॉज दोहरे का समय। ऑपरेटर डी हॉज लाप्लासियन है

ई तक ही सीमित है, जहां 'डी' कार्टन बाहरी व्युत्पन्न है और 'डी'* इसका सहायक है।

डी का विश्लेषणात्मक सूचकांक मैनिफोल्ड एक्स का हस्ताक्षर है, और इसका टोपोलॉजिकल इंडेक्स एक्स का एल जीनस है, इसलिए यह सामान्तर हैं।

जीनस और रोचलिन का प्रमेय

जीनस किसी भी मैनिफोल्ड के लिए परिभाषित परिमेय संख्या है, किन्तुसामान्यतः यह पूर्णांक नहीं है। बोरेल और हिरज़ेब्रुच ने दिखाया कि यह स्पिन मैनिफोल्ड्स के लिए अभिन्न है, और पूर्णांक भी है यदि इसके अतिरिक्त आयाम 4 मॉड 8 है। इसे इंडेक्स प्रमेय से निकाला जा सकता है, जिसका अर्थ है कि स्पिन मैनिफोल्ड्स के लिए जीनस डायराक का सूचकांक है ऑपरेटर। आयाम 4 मॉड 8 में 2 का अतिरिक्त कारक इस तथ्य से आता है कि इस स्तिथि में डिराक ऑपरेटर के कर्नेल और कोकर्नेल में चतुर्धातुक संरचना होती है, इसलिए समष्टि सदिश रिक्त स्थान के रूप में उनके आयाम भी होते हैं, इसलिए सूचकांक भी होता है।

आयाम 4 में यह परिणाम रोचलिन के प्रमेय का तात्पर्य है कि 4-आयामी स्पिन मैनिफोल्ड का हस्ताक्षर 16 से विभाज्य है: यह इस प्रकार है क्योंकि आयाम 4 में जीनस हस्ताक्षर का आठवां हिस्सा शून्य से कम है।

प्रमाण तकनीक

छद्मविभेदक ऑपरेटर

यूक्लिडियन स्पेस पर निरंतर गुणांक ऑपरेटरों के स्तिथि में छद्मविभेदक ऑपरेटरों को आसानी से समझाया जा सकता है। इस स्तिथि में, निरंतर गुणांक अंतर ऑपरेटर केवल बहुपदों द्वारा गुणन के फूरियर रूपांतरण हैं, और निरंतर गुणांक छद्मविभेदक ऑपरेटर केवल अधिक सामान्य कार्यों द्वारा गुणन के फूरियर रूपांतरण हैं।

सूचकांक प्रमेय के अनेक प्रमाण विभेदक ऑपरेटरों के अतिरिक्त छद्मविभेदक ऑपरेटरों का उपयोग करते हैं। इसका कारण यह है कि अनेक उद्देश्यों के लिए पर्याप्त अंतर ऑपरेटर नहीं हैं। उदाहरण के लिए, धनात्मक क्रम के वृत्ताकार अंतर ऑपरेटर का छद्म व्युत्क्रम अंतर ऑपरेटर नहीं है, किंतु छद्म अंतर ऑपरेटर है। इसके अतिरिक्त, K(B(X), S(X)) (क्लचिंग फलन) के अवयव ों का प्रतिनिधित्व करने वाले डेटा और वृत्ताकार स्यूडोडिफरेंशियल ऑपरेटरों के प्रतीकों के बीच सीधा पत्राचार है।

स्यूडोडिफ़रेंशियल ऑपरेटरों के पास क्रम होता है, जो कोई भी वास्तविक संख्या या −∞ भी हो सकता है, और उनके प्रतीक होते हैं (जो अभी कोटैंजेंट स्पेस पर बहुपद नहीं होते हैं), और वृत्ताकार डिफरेंशियल ऑपरेटर्स वहहोते हैं जिनके प्रतीक पर्याप्त रूप से बड़े कोटैंजेंट वैक्टर के लिए विपरीत होते हैं। सूचकांक प्रमेय के अधिकांश संस्करणों को वृत्ताकार अंतर ऑपरेटरों से वृत्ताकार छद्मविभेदक ऑपरेटरों तक बढ़ाया जा सकता है।

कोबॉर्डिज्म

प्रारंभिक प्रमाण हिरज़ेब्रुच-रीमैन-रोच प्रमेय (1954) पर आधारित था, और इसमें कोबर्डिज़्म सिद्धांत और छद्म-विभेदक संचालक सम्मिलित थे।

इस प्रथम प्रमाण का विचार मोटे तौर पर इस प्रकार है। जोड़े (एक्स, वी) द्वारा उत्पन्न रिंग पर विचार करें जहां वी कॉम्पैक्ट स्मूथ ओरिएंटेड मैनिफोल्ड एक्स पर स्मूथ सदिश बंडल है, इस संबंध के साथ कि इन जेनरेटर पर रिंग का योग और उत्पाद असंयुक्त संघ और मैनिफोल्ड्स के उत्पाद द्वारा दिया जाता है (के साथ) सदिश बंडलों पर स्पष्ट संचालन), और सदिश बंडल के साथ मैनिफोल्ड की कोई भी सीमा 0 है। यह ओरिएंटेड मैनिफोल्ड्स के कोबॉर्डिज्म रिंग के समान है, सिवाय इसके कि मैनिफोल्ड्स में सदिश बंडल भी होता है। टोपोलॉजिकल और विश्लेषणात्मक सूचकांकों को इस रिंग से पूर्णांक तक के कार्यों के रूप में पुनर्व्याख्यायित किया जाता है। फिर कोई जाँचता है कि यह दोनों कार्य वास्तव में दोनों वलय समरूपताएँ हैं। यह सिद्ध करने के लिए कि वहसमान हैं, केवल यह जांचना आवश्यक है कि वहइस रिंग के जनरेटर के समुच्चय पर समान हैं। थॉम्स का कोबॉर्डिज्म सिद्धांत जनरेटर का समुच्चय देता है; उदाहरण के लिए, सम आयामी क्षेत्रों पर कुछ बंडलों के साथ तुच्छ बंडल के साथ समष्टि सदिश रिक्त स्थान। इसलिए सूचकांक प्रमेय को इन विशेष रूप से सरल स्थितियों पर जांच कर सिद्ध किया जा सकता है।

K-सिद्धांत

अतियाह और सिंगर के पहले प्रकाशित प्रमाण में सह-बॉर्डिज्म के अतिरिक्त के-सिद्धांत का उपयोग किया गया था। यदि मैं एक्स से वाई तक कॉम्पैक्ट मैनिफोल्ड्स का कोई समावेश है, तबउन्होंने 'पुशफॉरवर्ड' ऑपरेशन को परिभाषित किया है! X के वृत्ताकार ऑपरेटरों पर Y के वृत्ताकार ऑपरेटरों पर जो सूचकांक को संरक्षित करता है। Y को कुछ ऐसे गोले के रूप में लेने से जिसमें X एम्बेड होता है, यह क्षेत्रों के स्तिथि में सूचकांक प्रमेय को कम कर देता है। यदि Y गोला है और X, Y में अंतर्निहित कोई बिंदु है, तब Y पर कोई भी वृत्ताकार ऑपरेटर i के अंतर्गत छवि है! बिंदु पर कुछ वृत्ताकार ऑपरेटर का। यह सूचकांक प्रमेय को बिंदु के स्तिथि में कम कर देता है, जहां यह तुच्छ है।

गर्मी समीकरण

(अतियाह, बॉट & पाटोदी 1973) ने ऊष्मा समीकरण का उपयोग करके सूचकांक प्रमेय का नया प्रमाण दिया, उदाहरण देखें। बर्लिन, गेट्ज़लर & वर्गेन (1992). इसका प्रमाण भी प्रकाशित किया गया है (मेलरोज़ 1993) और (गिल्की 1994).

यदि D, आसन्न D* के साथ विभेदक संचालिका है, तबD*D और DD* स्व-संयुक्त संचालिका हैं जिनके गैर-शून्य आइगेनवैल्यूज़ ​​​​की बहुलताएँ समान हैं। चूँकि उनके शून्य एइगेन्स्पकेस में भिन्न-भिन्न बहुलताएँ हो सकती हैं, क्योंकि यह बहुलताएँ D और D* के कर्नेल के आयाम हैं। इसलिए, D का सूचकांक इस प्रकार दिया गया है

किसी भी धनात्मक टी के लिए. दाहिने हाथ की ओर दो हीट ऑपरेटरों के कर्नेल के अंतर का चिन्ह दिया गया है। इनमें छोटे धनात्मक टी के लिए स्पर्शोन्मुख विस्तार है, जिसका उपयोग सीमा का मूल्यांकन करने के लिए किया जा सकता है क्योंकि टी 0 की ओर जाता है, जो अतियाह-सिंगर सूचकांक प्रमेय का प्रमाण देता है। छोटे टी के लिए स्पर्शोन्मुख विस्तार बहुत समष्टि प्रतीत होते हैं, किन्तु अपरिवर्तनीय सिद्धांत से पता चलता है कि शब्दों के बीच बड़े पैमाने पर रद्दीकरण हैं, जिससे प्रमुख शब्दों को स्पष्ट रूप से ढूंढना संभव हो जाता है। इन रद्दीकरणों को पश्चात् में सुपरसिमेट्री का उपयोग करके समझाया गया।

उद्धरण

  1. 1.0 1.1 Atiyah & Singer 1963.
  2. Kayani 2020.
  3. Hamilton 2020, p. 11.
  4. Gel'fand 1960.
  5. Palais 1965.
  6. Cartan-Schwartz 1965.
  7. Atiyah & Singer 1968a.
  8. Atiyah & Singer (1968a); Atiyah & Singer (1968b); Atiyah & Singer (1971a); Atiyah & Singer (1971b).
  9. Novikov 1965.
  10. Kirby & Siebenmann 1969.
  11. Thom 1956.
  12. Atiyah 1970.
  13. Singer 1971.
  14. Kasparov 1972.
  15. Atiyah, Bott & Patodi 1973.
  16. Melrose 1993.
  17. Sullivan 1979.
  18. Getzler 1983.
  19. Witten 1982.
  20. Teleman 1983.
  21. Teleman 1984.
  22. Connes 1986.
  23. Donaldson & Sullivan 1989.
  24. Connes & Moscovici 1990.
  25. Connes, Sullivan & Teleman 1994.
  26. Shanahan, P. (1978), The Atiyah–Singer index theorem: an introduction, Lecture Notes in Mathematics, vol. 638, Springer, CiteSeerX 10.1.1.193.9222, doi:10.1007/BFb0068264, ISBN 978-0-387-08660-6
  27. Lawson, H. Blane; Michelsohn, Marie-Louise (1989), Spin Geometry, Princeton University Press, ISBN 0-691-08542-0
  28. "algebraic topology - How to understand the Todd class?". Mathematics Stack Exchange. Retrieved 2021-02-05.
  29. Index Theorems on Open Spaces
  30. Some Remarks on the Paper of Callias
  31. Nakahara, Mikio (2003), Geometry, topology and physics, Institute of Physics Publishing, ISBN 0-7503-0606-8


संदर्भ

The papers by Atiyah are reprinted in volumes 3 and 4 of his collected works, (Atiyah 1988a, 1988b)


बाहरी संबंध

सिद्धांत पर लिंक

साक्षात्कार के लिंक


श्रेणी:विभेदक ऑपरेटर श्रेणी:वृत्ताकार आंशिक अवकल समीकरण श्रेणी:विभेदक ज्यामिति में प्रमेय