ब्रांचिंग क्वांटिफायर: Difference between revisions
Line 44: | Line 44: | ||
==प्राकृतिक भाषाओं से संबंध== | ==प्राकृतिक भाषाओं से संबंध== | ||
1973 के एक पेपर में | हिंटिक्का ने 1973 के एक पेपर में एक सिद्धांत आगे बढ़ाया कि कुछ प्राकृतिक भाषाओं में कुछ वाक्यांश ब्रांचिंग क्वांटिफायर्स के माध्यम से सबसे अच्छी तरीके से समझा जा सकता है<ref name="Amsterdam">{{Cite journal | last1 = Gierasimczuk | first1 = N. | last2 = Szymanik | first2 = J. | doi = 10.1093/jos/ffp008 | title = शाखा परिमाणीकरण बनाम दोतरफा परिमाणीकरण| journal = Journal of Semantics | volume = 26 | issue = 4 | pages = 367 | year = 2009 | url = http://www.jakubszymanik.com/papers/HTR.pdf}}</ref>, उदाहरण के लिए: प्रत्येक ग्रामीण के कुछ रिश्तेदार और प्रत्येक शहरवासी के कुछ रिश्तेदार एक-दूसरे से नफरत करते हैं, हिंटिका के अनुसार, इसकी व्याख्या इस प्रकार की जानी चाहिए:<ref>{{Cite journal | last1 = Sher | first1 = G. | title = परिमाणकों को शाखाबद्ध करने के तरीके| doi = 10.1007/BF00630749 | journal = Linguistics and Philosophy | volume = 13 | issue = 4 | pages = 393–422 | year = 1990 | s2cid = 61362436 | url = https://escholarship.org/content/qt41g2927h/qt41g2927h.pdf?t=nww5sf }}</ref><ref>{{Cite journal | last1 = Hintikka | first1 = J. | title = परिमाणक बनाम परिमाणीकरण सिद्धांत| doi = 10.1111/j.1746-8361.1973.tb00624.x | journal = Dialectica | volume = 27 | issue = 3–4 | pages = 329–358 | year = 1973 }}</ref> | ||
: <math>\begin{pmatrix}\forall x_1 \, \exists y_1\\ \forall x_2 \, \exists y_2\end{pmatrix} [(V(x_1) \wedge T(x_2)) \rightarrow (R(x_1,y_1) \wedge R(x_2,y_2) \wedge H(y_1, y_2) \wedge H(y_2, y_1))]. </math> | : <math>\begin{pmatrix}\forall x_1 \, \exists y_1\\ \forall x_2 \, \exists y_2\end{pmatrix} [(V(x_1) \wedge T(x_2)) \rightarrow (R(x_1,y_1) \wedge R(x_2,y_2) \wedge H(y_1, y_2) \wedge H(y_2, y_1))]. </math> | ||
यह ज्ञात है कि इसका कोई प्रथम-क्रम तर्क समतुल्य नहीं है।<ref name="Amsterdam"/> | यह ज्ञात है कि इसका कोई प्रथम-क्रम तर्क समतुल्य नहीं है।<ref name="Amsterdam"/> | ||
शाखाओं में बँटने का विचार आवश्यक रूप से | शाखाओं में बँटने का विचार आवश्यक रूप से पारंपरिक परिमाणकों को पत्तियों के रूप में उपयोग करने तक ही सीमित नहीं है। 1979 के एक पेपर में,<ref>{{Cite journal | last1 = Barwise | first1 = J. | title = अंग्रेजी में ब्रांचिंग क्वांटिफायर पर| doi = 10.1007/BF00258419 | journal = Journal of Philosophical Logic | volume = 8 | year = 1979 | pages = 47–80| s2cid = 31950692 }}</ref> [[जॉन बारवाइज]] ने हिंटिक्का वाक्यों की विविधताएं प्रस्तावित कीं जिसमें आंतरिक परिमाणक स्वयं [[सामान्यीकृत परिमाणक]] होते हैं, उदाहरण के लिए: अधिकांश ग्रामीण और अधिकांश शहरवासी एक-दूसरे से नफरत करते हैं।<ref name="Amsterdam"/> | ||
बार्वाइस ने ध्यान देकर देखा कि <math>\Sigma_1^1</math> निषेध के अंतर्गत बंद नहीं होता है। इसे देखते हुए उन्होंने एक व्यावहारिक परीक्षण भी प्रस्तावित किया कि क्या प्राकृतिक भाषा के वाक्यांश वास्तव में ब्रांचिंग क्वांटिफायर्स को सम्मिलित करते हैं, इसका अर्थ है, उनके प्राकृतिक भाषा के नकारात्मक को यह जाँचने के लिए कि वे सच में एक समूही क्वांटिफायर के ऊपर समानांतर कथन करते हैं (एक Π₁₁ कथन), उसे वे प्राकृतिक भाषा में क्या जांचते हैं।<ref>{{cite journal | first1 = Michael | last1 = Hand | title = Reviewed work: On Branching Quantifiers in English, Jon Barwise; Branching Generalized Quantifiers and Natural Language. Generalized Quantifiers, Linguistic and Logical Approaches, Dag Westerståhl, Peter Gärdenfors; Ways of Branching Quantifiers, Gila Sher | journal = The Journal of Symbolic Logic | volume = 63 | issue = 4 | year = 1998 | jstor = 2586678 | pages = 1611–1614 | doi = 10.2307/2586678 | s2cid = 117833401 }}</ref> | |||
हिंटिक्का का प्रस्तावना कुछ तर्कशास्त्रियों ने संदेह के साथ स्वीकार किया क्योंकि कुछ पहले क्रम के वाक्यांश नीचे दिए गए प्राकृतिक भाषा हिंटिक्का वाक्यांश को पर्याप्त रूप से प्रस्तुत करने लगे हैं। | |||
: <math>[\forall x_1 \, \exists y_1 \, \forall x_2 \, \exists y_2\, \varphi (x_1, x_2, y_1, y_2)] \wedge [\forall x_2 \, \exists y_2 \, \forall x_1 \, \exists y_1\, \varphi (x_1, x_2, y_1, y_2)]</math> | : <math>[\forall x_1 \, \exists y_1 \, \forall x_2 \, \exists y_2\, \varphi (x_1, x_2, y_1, y_2)] \wedge [\forall x_2 \, \exists y_2 \, \forall x_1 \, \exists y_1\, \varphi (x_1, x_2, y_1, y_2)]</math> |
Revision as of 14:26, 20 July 2023
ब्रांचिंग क्वांटिफायर एक लॉजिकीय अवधारणा है,[1] जिसे हिंदी में "हेंकिन क्वांटिफायर" भी कहा जाता है। यह एक आंशिक क्रमबद्धता की एक विशेषता है जो लॉजिक में प्रयोग की जाती है। इसे "सीमित आंशिक क्रमबद्ध क्वांटिफायर" या "अनैक लीनियर क्वांटिफायर" भी कहा जाता है।
क्वांटिफायर के बारे में जो Q ∈ {∀, ∃} द्वारा निर्दिष्ट किया गया है, वे विशेष रूप से सामान्यीकृत क्वांटिफायर के एक विशेष प्रकार हैं। पारंपरिक तर्क में, क्वांटिफायर प्रत्ययांश रूपांतरित करने के लिए रेखांकित विधि से व्यवस्थित होते हैं जिससे क्वांटिफायर Qm द्वारा बांधी गई चर ym का मूल्य पिछले क्वांटिफायर द्वारा बांधी गई चर के मूल्य पर निर्भर करता है।
- y1, ..., ym−1
क्वांटिफायर से बंधा हुआ
- Qy1, ..., Qym−1
पूर्ववर्ती Qm.सीमित या आंशिक क्रमबद्ध परिमाणन वाले तर्क में, क्वांटिफायर प्रत्ययांशों का लगातार व्यवस्थित होने का सामान्य अवधारणा नहीं होता है।[2]
ब्रांचिंग परिमाणन का प्रथम उल्लेख 1959 में लियॉन हेंकिन के एक सम्मेलन पत्र में हुआ था। आंशिक रूप से क्रमबद्ध परिमाणीकरण की प्रणालियाँ पहले-क्रम तर्क और दूसरे-क्रम तर्क के बीच की ताकत में मध्यवर्ती हैं। इन्हें हिंटिका और गेब्रियल सैंडू के स्वतंत्रता-अनुकूल तर्क के आधार के रूप में उपयोग किया जा रहा है।
परिभाषा और गुण
सबसे सरल हेनकिन क्वांटिफायर है
यह वास्तव में हेनकिन उपसर्ग वाला प्रत्येक सूत्र, न कि केवल सबसे सरल सूत्र इसके दूसरे क्रम के शोलेमाइजेशन के बराबर है,
अर्थात।
यह क्वांटिफायर को परिभाषित करने के लिए भी पर्याप्त प्रभावशाली के रूप में परिभाषित किया गया है:
इससे कई बातें सामने आती हैं, जिनमें प्रथम-क्रम तर्क की गैर-अभिधानत्वीयता भी सम्मिलित है
इससे कई बातें सामने आती हैं जिनमें पहले ओथर लॉजिक को "" के साथ नॉनअक्सिओमेटिज़ेबिलिटी नहीं किया जा सकता जिसे पहली बार एहरनफ्यूच्ट द्वारा देखा गया था [3]और दूसरे ओथर लॉजिक के समानता को -के साथ समान माना जा सकता है[4] यह दूसरा परिणाम हर्बर्ट एंडर्टन और डब्ल्यू वॉको ने 1970 में अलग-अलग प्रकाशित किया था।[5]
निम्नलिखित क्वांटिफायर भी द्वारा परिभाषित किये जा सकते हैं :
- राइकर्ट: φs की संख्या ψs की संख्या से कम या उसके बराबर है
- हार्टिग: φs, ψs के साथ समसंख्यक हैं
- चांग: प्रारूप के क्षेत्र के साथ φs की संख्या समतुल्य है
हेनकिन क्वांटिफायर स्वयं को एक प्रकार (4) लिंडस्ट्रॉम क्वांटिफायर के रूप में व्यक्त किया जा सकता है।[5]
प्राकृतिक भाषाओं से संबंध
हिंटिक्का ने 1973 के एक पेपर में एक सिद्धांत आगे बढ़ाया कि कुछ प्राकृतिक भाषाओं में कुछ वाक्यांश ब्रांचिंग क्वांटिफायर्स के माध्यम से सबसे अच्छी तरीके से समझा जा सकता है[6], उदाहरण के लिए: प्रत्येक ग्रामीण के कुछ रिश्तेदार और प्रत्येक शहरवासी के कुछ रिश्तेदार एक-दूसरे से नफरत करते हैं, हिंटिका के अनुसार, इसकी व्याख्या इस प्रकार की जानी चाहिए:[7][8]
यह ज्ञात है कि इसका कोई प्रथम-क्रम तर्क समतुल्य नहीं है।[6]
शाखाओं में बँटने का विचार आवश्यक रूप से पारंपरिक परिमाणकों को पत्तियों के रूप में उपयोग करने तक ही सीमित नहीं है। 1979 के एक पेपर में,[9] जॉन बारवाइज ने हिंटिक्का वाक्यों की विविधताएं प्रस्तावित कीं जिसमें आंतरिक परिमाणक स्वयं सामान्यीकृत परिमाणक होते हैं, उदाहरण के लिए: अधिकांश ग्रामीण और अधिकांश शहरवासी एक-दूसरे से नफरत करते हैं।[6]
बार्वाइस ने ध्यान देकर देखा कि निषेध के अंतर्गत बंद नहीं होता है। इसे देखते हुए उन्होंने एक व्यावहारिक परीक्षण भी प्रस्तावित किया कि क्या प्राकृतिक भाषा के वाक्यांश वास्तव में ब्रांचिंग क्वांटिफायर्स को सम्मिलित करते हैं, इसका अर्थ है, उनके प्राकृतिक भाषा के नकारात्मक को यह जाँचने के लिए कि वे सच में एक समूही क्वांटिफायर के ऊपर समानांतर कथन करते हैं (एक Π₁₁ कथन), उसे वे प्राकृतिक भाषा में क्या जांचते हैं।[10]
हिंटिक्का का प्रस्तावना कुछ तर्कशास्त्रियों ने संदेह के साथ स्वीकार किया क्योंकि कुछ पहले क्रम के वाक्यांश नीचे दिए गए प्राकृतिक भाषा हिंटिक्का वाक्यांश को पर्याप्त रूप से प्रस्तुत करने लगे हैं।
कहाँ
अर्थ है
हालाँकि बहुत अधिक सैद्धांतिक बहस हुई, लेकिन 2009 तक ऐसा नहीं हुआ कि तर्क में प्रशिक्षित छात्रों के साथ कुछ अनुभवजन्य परीक्षणों में पाया गया कि वे कई प्राकृतिक-भाषा निर्माणों के लिए ब्रांचिंग-क्वांटिफायर वाक्य के बजाय द्विदिश प्रथम-क्रम वाक्य से मेल खाने वाले मॉडल निर्दिष्ट करने की अधिक संभावना रखते हैं। हिंटिका वाक्य से लिया गया है। उदाहरण के लिए, छात्रों को अप्रत्यक्ष द्विदलीय ग्राफ़ दिखाए गए - जिसमें वर्ग और वृत्त शीर्ष के रूप में थे - और यह बताने के लिए कहा गया कि क्या 3 से अधिक वृत्त और 3 से अधिक वर्ग रेखाओं से जुड़े हुए हैं, जैसे वाक्य आरेखों का सही वर्णन कर रहे हैं।[6]
यह भी देखें
- खेल शब्दार्थ
- निर्भरता तर्क
- स्वतंत्रता-अनुकूल तर्क (आईएफ तर्क)
- मोस्टोव्स्की क्वांटिफ़ायर
- लिंडस्ट्रॉम क्वांटिफ़ायर
- नॉनफर्स्टऑर्डरिज़ेबिलिटी
संदर्भ
- ↑ Stanley Peters; Dag Westerståhl (2006). भाषा और तर्क में परिमाणक. Clarendon Press. pp. 66–72. ISBN 978-0-19-929125-0.
- ↑ Henkin, L. "Some Remarks on Infinitely Long Formulas". Infinitistic Methods: Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 2–9 September 1959, Panstwowe Wydawnictwo Naukowe and Pergamon Press, Warsaw, 1961, pp. 167–183. OCLC 2277863
- ↑ Blass, A.; Gurevich, Y. (1986). "हेनकिन क्वांटिफायर और संपूर्ण समस्याएं" (PDF). Annals of Pure and Applied Logic. 32: 1–16. doi:10.1016/0168-0072(86)90040-0. hdl:2027.42/26312. citing W. Walkoe, Finite partially-ordered quantification, Journal of Symbolic Logic 35 (1970) 535–555. JSTOR 2271440
- ↑ Jaakko Hintikka and Gabriel Sandu, "Game-theoretical semantics", in Handbook of logic and language, ed. J. van Benthem and A. ter Meulen, Elsevier 2011 (2nd ed.) citing Enderton, H.B., 1970. Finite partially-ordered quantifiers. Z. Math. Logik Grundlag. Math. 16, 393–397 doi:10.1002/malq.19700160802.
- ↑ 5.0 5.1 Cite error: Invalid
<ref>
tag; no text was provided for refs namedBadia2009
- ↑ 6.0 6.1 6.2 6.3 Gierasimczuk, N.; Szymanik, J. (2009). "शाखा परिमाणीकरण बनाम दोतरफा परिमाणीकरण" (PDF). Journal of Semantics. 26 (4): 367. doi:10.1093/jos/ffp008.
- ↑ Sher, G. (1990). "परिमाणकों को शाखाबद्ध करने के तरीके" (PDF). Linguistics and Philosophy. 13 (4): 393–422. doi:10.1007/BF00630749. S2CID 61362436.
- ↑ Hintikka, J. (1973). "परिमाणक बनाम परिमाणीकरण सिद्धांत". Dialectica. 27 (3–4): 329–358. doi:10.1111/j.1746-8361.1973.tb00624.x.
- ↑ Barwise, J. (1979). "अंग्रेजी में ब्रांचिंग क्वांटिफायर पर". Journal of Philosophical Logic. 8: 47–80. doi:10.1007/BF00258419. S2CID 31950692.
- ↑ Hand, Michael (1998). "Reviewed work: On Branching Quantifiers in English, Jon Barwise; Branching Generalized Quantifiers and Natural Language. Generalized Quantifiers, Linguistic and Logical Approaches, Dag Westerståhl, Peter Gärdenfors; Ways of Branching Quantifiers, Gila Sher". The Journal of Symbolic Logic. 63 (4): 1611–1614. doi:10.2307/2586678. JSTOR 2586678. S2CID 117833401.
बाहरी संबंध
- Game-theoretical quantifier at PlanetMath.