ब्रांचिंग क्वांटिफायर
तर्कशास्त्र में, ब्रांचिंग क्वांटिफायर, जिसे हेंकिन क्वांटिफायर, सीमित आंशिक क्रमबद्ध क्वांटिफायर या गैर-रैखिक क्वांटिफायर भी कहा जाता है[1], एक आंशिक क्रमबद्धता है। इसका उपयोग करके वाक्यांशों को व्यक्त किया जाता है जिनमें किसी भी सामान्य क्वांटिफायर के साथ व्यक्त नहीं किया जा सकता है।[2]
क्वांटिफायर Q ∈ {∀, ∃} के बारे में, यह एक विशेष स्थिति है जो जनरलाइज़्ड क्वांटिफायर का एक रूप है। शास्त्रीय तर्क में,
क्वांटिफायर प्रत्यय पूर्वावस्था एक सरल अनुक्रम में होते हैं जिसमें चर ym, क्वांटिफायर Qm द्वारा बाधित होता है, और चरों के मूल्य का निर्धारण करता है। इसका अर्थ है कि एक क्वांटिफायर के संदर्भ में बाधित चर की मान्यता पर दूसरे क्वांटिफायर के संदर्भ में बाधित चर की मान्यता प्रभावित होती है।
- y1, ..., ym−1
क्वांटिफायर्स द्वारा बाधित
- Qy1, ..., Qym−1
पूर्ववर्ती Qm आंशिक रूप से क्रमबद्ध क्वांटिफायर वाले तर्क में यह सामान्य स्थिति नहीं है।[3]
ब्रांचिंग क्वांटिफायर पहली बार 1959 में लियॉन हेंकिन के सम्मेलन पत्र में दिखाई दियाआंशिक रूप से क्रमबद्ध परिमाणीकरण की प्रणालियाँ पहले-क्रम तर्क और दूसरे-क्रम तर्क के मध्य की ताकत में मध्यवर्ती हैं। इन्हें हिंटिका और गेब्रियल सैंडू के स्वतंत्रता-अनुकूल तर्क के आधार के रूप में उपयोग किया जा रहा है।
परिभाषा और गुण
सबसे सरल हेनकिन क्वांटिफायर है
यह (वास्तव में हेनकिन उपसर्ग वाला प्रत्येक सूत्र, न कि केवल सबसे सरल सूत्र) इसके दूसरे क्रम के स्कोलेमाइज़ेशन के बराबर है, अर्थात
यह क्वांटिफायर को परिभाषित करने के लिए भी पर्याप्त प्रभावशाली के रूप में परिभाषित किया गया है:
इससे कई बातें सामने आती हैं, जिनमें से एक है प्रथम क्रम तर्क के साथ की गैर-अधिविधिकता (गैर-अक्सिओमेटिज़ेबिलिटी) जिसका पहली बार एहरनफ्यूच्ट द्वारा देखा गया था। [4] और द्वितीय क्रम तर्क के विशेषज्ञिका-१ -भाग के समकालिक होने के साथ जोड़ा जा सकता है[5] जिसे पहले 1970 में हरबर्ट एंडरटन और डब्लू. वॉको ने अलग-अलग प्रकाशित किया था।[2]
Q_{H} के द्वारा निम्नलिखित क्वांटिफायर्स को परिभाषित किया जा सकता है: :
- राइकर्ट: "φs की संख्या ψs की संख्या से कम या उसके बराबर है"
- हार्टिग: φs, ψs के साथ समसंख्यक हैं
- चांग: "φs की संख्या प्रारूप के क्षेत्र से समानांतर है
"हेंकिन क्वांटिफायर स्वयं को एक प्रकार (4) लिंडस्ट्रम क्वांटिफायर के रूप में व्यक्त किया जा सकता है"[2]
प्राकृतिक भाषाओं से संबंध
1973 में हिंटिक्का ने अपने पेपर में यह संभावना प्रस्तुत की थी कि कुछ प्राकृतिक भाषाओं में कुछ वाक्य को ब्रांचिंग क्वांटिफायर्स के तर्क में सर्वोत्तम रूप से समझा जा सकता है।[6], उदाहरण के लिए: "प्रत्येक ग्रामीण के कुछ रिश्तेदार और प्रत्येक शहरवासी के कुछ रिश्तेदार एक दूसरे से घृणा करते हैं", हिंटिका के अनुसार, इसकी व्याख्या इस प्रकार की जानी चाहिए:[7][8]
यह ज्ञात है कि इसका कोई प्रथम-क्रम तर्क समतुल्य नहीं है[6]
1979 में जॉन बारवाइज ने एक पेपर में संभाव्य भाषा के वाक्यों के लिए ब्रांचिंग की विभिन्न अवधारणाएँ प्रस्तावित कीं। उन्होंने हिंटिक्का के वाक्यों के अभिविकल्प प्रस्तावित किए, जिनमें आंतरिक क्वांटिफायर्स भी उन्हीं क्वांटिफायर्स के विभिन्न रूपों का प्रयोग करते हैं।[9][6]
बार्वाइस ने ध्यान देकर देखा कि प्रतिवाद के अंतर्गत बंद नहीं होता है। इसे देखते हुए उन्होंने एक व्यावहारिक परीक्षण भी प्रस्तावित किया कि क्या प्राकृतिक भाषा के वाक्यांश वास्तव में ब्रांचिंग क्वांटिफायर्स को सम्मिलित करते हैं, इस परीक्षण के अंतर्गत उन्होंने वाक्यों के प्राकृतिक-भाषा नकारात्मक का जांच किया, जो एक समुच्चय चर के उपर सर्वसम्भवित क्वांटिफायर का सम्मिलित करता हो[10]
हिंटिका के प्रस्ताव को कई तर्कशास्त्रियों ने संदेह के साथ स्वीकार किया क्योंकि नीचे दिए गए जैसे कुछ प्रथम-क्रम वाक्य प्राकृतिक भाषा हिंटिका वाक्यांश को पर्याप्त रूप से प्रस्तुत करने लगे हैं।
जहाँ
अर्थ है
पूरी तरह से सिद्धांतिक विवाद के पश्चात, 2009 में तर्कशास्त्र में, में प्रशिक्षित छात्रों के साथ कुछ अनुभवशील परीक्षण किए गए, जिनसे पाया गया कि वे कई प्राकृतिक भाषा के भिन्न संरचनाओं को देखकर "द्विदिशीय" प्रथम-क्रम वाक्य से अधिक "ब्रांचिंग -क्वांटिफायर्स" वाक्यों को विकल्पित करने से अधिक प्रवृत होते हैं, जो हिंटिक्का वाक्य से प्राप्त होते हैं। उदाहरण के लिए, छात्रों को निर्देशित द्विपक्षीय अविमुखी आरेख दिखाए गए - और पूछा गया कि क्या 3 से अधिक वृत्त और 3 से अधिक वर्ग रेखाओं से जुड़े हुए हैं, वाक्य आरेख को सही ढंग से वर्णन कर रहे थे।[6]
यह भी देखें
- खेल शब्दार्थ
- निर्भरता तर्क
- स्वतंत्रता-अनुकूल तर्क
- मोस्टोव्स्की क्वांटिफ़ायर
- लिंडस्ट्रॉम क्वांटिफ़ायर
- नॉनफर्स्टऑर्डरिज़ेबिलिटी
संदर्भ
- ↑ Stanley Peters; Dag Westerståhl (2006). भाषा और तर्क में परिमाणक. Clarendon Press. pp. 66–72. ISBN 978-0-19-929125-0.
- ↑ 2.0 2.1 2.2 Antonio Badia (2009). Quantifiers in Action: Generalized Quantification in Query, Logical and Natural Languages. Springer. p. 74–76. ISBN 978-0-387-09563-9.
- ↑ Henkin, L. "Some Remarks on Infinitely Long Formulas". Infinitistic Methods: Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 2–9 September 1959, Panstwowe Wydawnictwo Naukowe and Pergamon Press, Warsaw, 1961, pp. 167–183. OCLC 2277863
- ↑ Blass, A.; Gurevich, Y. (1986). "हेनकिन क्वांटिफायर और संपूर्ण समस्याएं" (PDF). Annals of Pure and Applied Logic. 32: 1–16. doi:10.1016/0168-0072(86)90040-0. hdl:2027.42/26312. citing W. Walkoe, Finite partially-ordered quantification, Journal of Symbolic Logic 35 (1970) 535–555. JSTOR 2271440
- ↑ Jaakko Hintikka and Gabriel Sandu, "Game-theoretical semantics", in Handbook of logic and language, ed. J. van Benthem and A. ter Meulen, Elsevier 2011 (2nd ed.) citing Enderton, H.B., 1970. Finite partially-ordered quantifiers. Z. Math. Logik Grundlag. Math. 16, 393–397 doi:10.1002/malq.19700160802.
- ↑ 6.0 6.1 6.2 6.3 Gierasimczuk, N.; Szymanik, J. (2009). "शाखा परिमाणीकरण बनाम दोतरफा परिमाणीकरण" (PDF). Journal of Semantics. 26 (4): 367. doi:10.1093/jos/ffp008.
- ↑ Sher, G. (1990). "परिमाणकों को शाखाबद्ध करने के तरीके" (PDF). Linguistics and Philosophy. 13 (4): 393–422. doi:10.1007/BF00630749. S2CID 61362436.
- ↑ Hintikka, J. (1973). "परिमाणक बनाम परिमाणीकरण सिद्धांत". Dialectica. 27 (3–4): 329–358. doi:10.1111/j.1746-8361.1973.tb00624.x.
- ↑ Barwise, J. (1979). "अंग्रेजी में ब्रांचिंग क्वांटिफायर पर". Journal of Philosophical Logic. 8: 47–80. doi:10.1007/BF00258419. S2CID 31950692.
- ↑ Hand, Michael (1998). "Reviewed work: On Branching Quantifiers in English, Jon Barwise; Branching Generalized Quantifiers and Natural Language. Generalized Quantifiers, Linguistic and Logical Approaches, Dag Westerståhl, Peter Gärdenfors; Ways of Branching Quantifiers, Gila Sher". The Journal of Symbolic Logic. 63 (4): 1611–1614. doi:10.2307/2586678. JSTOR 2586678. S2CID 117833401.
बाहरी संबंध
- Game-theoretical quantifier at PlanetMath.