ब्रांचिंग क्वांटिफायर: Difference between revisions

From Vigyanwiki
No edit summary
Line 2: Line 2:


:<math>\langle Qx_1\dots Qx_n\rangle</math>
:<math>\langle Qx_1\dots Qx_n\rangle</math>




Line 21: Line 22:


:<math>(Q_Hx_1,x_2,y_1,y_2)\varphi(x_1,x_2,y_1,y_2)\equiv\begin{pmatrix}\forall x_1 \, \exists y_1\\ \forall x_2 \, \exists y_2\end{pmatrix}\varphi(x_1,x_2,y_1,y_2).</math>
:<math>(Q_Hx_1,x_2,y_1,y_2)\varphi(x_1,x_2,y_1,y_2)\equiv\begin{pmatrix}\forall x_1 \, \exists y_1\\ \forall x_2 \, \exists y_2\end{pmatrix}\varphi(x_1,x_2,y_1,y_2).</math>
यह वास्तव में हेनकिन उपसर्ग वाला प्रत्येक सूत्र, न कि केवल सबसे सरल सूत्र इसके दूसरे क्रम के [[शोलेमाइजेशन]] के बराबर है,  
यह (वास्तव में हेनकिन उपसर्ग वाला प्रत्येक सूत्र, न कि केवल सबसे सरल सूत्र) इसके दूसरे क्रम के [[शोलेमाइजेशन|स्कोलेमाइज़ेशन]] के बराबर है, अर्थात
 
अर्थात।


: <math>\exists f \, \exists g \, \forall x_1 \forall x_2 \, \varphi (x_1, x_2, f(x_1), g(x_2)). </math>
: <math>\exists f \, \exists g \, \forall x_1 \forall x_2 \, \varphi (x_1, x_2, f(x_1), g(x_2)). </math>
Line 29: Line 28:


:<math>(Q_{\geq\mathbb{N}}x)\varphi (x)\equiv(\exists a)(Q_Hx_1,x_2,y_1,y_2)[\varphi(a)\land (x_1=x_2 \leftrightarrow y_1=y_2) \land (\varphi (x_1)\rightarrow (\varphi (y_1)\land y_1\neq a))].</math>
:<math>(Q_{\geq\mathbb{N}}x)\varphi (x)\equiv(\exists a)(Q_Hx_1,x_2,y_1,y_2)[\varphi(a)\land (x_1=x_2 \leftrightarrow y_1=y_2) \land (\varphi (x_1)\rightarrow (\varphi (y_1)\land y_1\neq a))].</math>
इससे कई बातें सामने आती हैं, जिनमें प्रथम-क्रम तर्क की गैर-अभिधानत्वीयता भी सम्मिलित है
इससे कई बातें सामने आती हैं, जिनमें से एक है प्रथम क्रम तर्क के साथ <math>Q_H</math> की गैर-अधिविधिकता (गैर-अक्सिओमेटिज़ेबिलिटी)  जिसका पहली बार एहरनफ्यूच्ट द्वारा देखा गया था। <ref>{{Cite journal | last1 = Blass | first1 = A. | last2 = Gurevich | first2 = Y. | doi = 10.1016/0168-0072(86)90040-0 | title = हेनकिन क्वांटिफायर और संपूर्ण समस्याएं| journal = Annals of Pure and Applied Logic | volume = 32 | pages = 1–16 | year = 1986 | url = http://research.microsoft.com/en-us/um/people/gurevich/Opera/66.pdf| hdl = 2027.42/26312 | hdl-access = free }} citing W. Walkoe, Finite {{Sic|hide=y|partially|-}}ordered quantification, Journal of Symbolic Logic 35 (1970) 535–555. {{JSTOR|2271440}}</ref> और द्वितीय क्रम तर्क के विशेषज्ञिका-१ <math>\Sigma_1^1</math>-भाग के समकालिक होने के साथ जोड़ा जा सकता है<ref>Jaakko Hintikka and Gabriel Sandu, "Game-theoretical semantics", in ''Handbook of logic and language'', ed. J. van Benthem and [[Alice ter Meulen|A. ter Meulen]], Elsevier 2011 (2nd ed.) citing Enderton, H.B., 1970. Finite {{Sic|hide=y|partially|-}}ordered quantifiers. Z. Math. Logik Grundlag. Math. 16, 393–397 {{doi|10.1002/malq.19700160802}}.</ref> जिसे पहले 1970 में हरबर्ट एंडरटन और डब्लू. वॉको ने अलग-अलग प्रकाशित किया था।<ref name="Badia2009" />  
 
इससे कई बातें सामने आती हैं जिनमें पहले ओथर लॉजिक को "<math>Q_H</math>" के साथ नॉनअक्सिओमेटिज़ेबिलिटी नहीं किया जा सकता जिसे पहली बार एहरनफ्यूच्ट द्वारा देखा गया था <ref>{{Cite journal | last1 = Blass | first1 = A. | last2 = Gurevich | first2 = Y. | doi = 10.1016/0168-0072(86)90040-0 | title = हेनकिन क्वांटिफायर और संपूर्ण समस्याएं| journal = Annals of Pure and Applied Logic | volume = 32 | pages = 1–16 | year = 1986 | url = http://research.microsoft.com/en-us/um/people/gurevich/Opera/66.pdf| hdl = 2027.42/26312 | hdl-access = free }} citing W. Walkoe, Finite {{Sic|hide=y|partially|-}}ordered quantification, Journal of Symbolic Logic 35 (1970) 535–555. {{JSTOR|2271440}}</ref>और दूसरे ओथर लॉजिक के समानता को <math>\Sigma_1^1</math>-के साथ समान माना जा सकता है<ref>Jaakko Hintikka and Gabriel Sandu, "Game-theoretical semantics", in ''Handbook of logic and language'', ed. J. van Benthem and [[Alice ter Meulen|A. ter Meulen]], Elsevier 2011 (2nd ed.) citing Enderton, H.B., 1970. Finite {{Sic|hide=y|partially|-}}ordered quantifiers. Z. Math. Logik Grundlag. Math. 16, 393–397 {{doi|10.1002/malq.19700160802}}.</ref> यह दूसरा परिणाम [[हर्बर्ट एंडर्टन]] और डब्ल्यू वॉको ने 1970 में अलग-अलग प्रकाशित किया था।<ref name="Badia2009" />


निम्नलिखित क्वांटिफायर भी <math>Q_H</math> द्वारा परिभाषित किये जा सकते हैं :
Q_{H} के द्वारा निम्नलिखित क्वांटिफायर्स को परिभाषित किया जा सकता है: :  


* राइकर्ट: φs की संख्या ψs की संख्या से कम या उसके बराबर है
* राइकर्ट: "φs की संख्या ψs की संख्या से कम या उसके बराबर है"


::<math>(Q_Lx)(\varphi x,\psi x)\equiv \operatorname{Card}(\{ x \colon\varphi x\} )\leq \operatorname{Card}(\{ x \colon\psi x\} ) \equiv (Q_Hx_1x_2y_1y_2)[(x_1=x_2 \leftrightarrow y_1=y_2) \land (\varphi x_1 \rightarrow \psi y_1)]</math>
::<math>(Q_Lx)(\varphi x,\psi x)\equiv \operatorname{Card}(\{ x \colon\varphi x\} )\leq \operatorname{Card}(\{ x \colon\psi x\} ) \equiv (Q_Hx_1x_2y_1y_2)[(x_1=x_2 \leftrightarrow y_1=y_2) \land (\varphi x_1 \rightarrow \psi y_1)]</math>

Revision as of 10:37, 24 July 2023

तर्कशास्त्र में, ब्रांचिंग क्वांटिफायर, जिसे हेंकिन क्वांटिफायर, सीमित आंशिक क्रमबद्ध क्वांटिफायर या गैर-रैखिक क्वांटिफायर भी कहा जाता है[1], एक आंशिक क्रमबद्धता है। इसका उपयोग करके वाक्यांशों को व्यक्त किया जाता है जिनमें किसी भी सामान्य क्वांटिफायर के साथ व्यक्त नहीं किया जा सकता है।


क्वांटिफायर Q ∈ {∀, ∃} के बारे में, यह एक विशेष स्थिति है जो जनरलाइज़्ड क्वांटिफायर का एक रूप है। शास्त्रीय तर्क में,

क्वांटिफायर प्रत्यय पूर्वावस्था एक सरल अनुक्रम में होते हैं जिसमें चर ym , क्वांटिफायर Qm द्वारा बाधित होता है, और चरों के मूल्य का निर्धारण करता है। इसका अर्थ है कि एक क्वांटिफायर के संदर्भ में बाधित चर की मान्यता पर दूसरे क्वांटिफायर के संदर्भ में बाधित चर की मान्यता प्रभावित होती है।

y1, ..., ym−1

क्वांटिफायर्स द्वारा बाधित

Qy1, ..., Qym−1

पूर्ववर्ती Qm आंशिक रूप से क्रमबद्ध क्वांटिफायर वाले तर्क में यह सामान्य स्थिति नहीं है।[2]

ब्रांचिंग क्वांटिफायर पहली बार 1959 में लियॉन हेंकिन के सम्मेलन पत्र में दिखाई दियाआंशिक रूप से क्रमबद्ध परिमाणीकरण की प्रणालियाँ पहले-क्रम तर्क और दूसरे-क्रम तर्क के मध्य की ताकत में मध्यवर्ती हैं। इन्हें हिंटिका और गेब्रियल सैंडू के स्वतंत्रता-अनुकूल तर्क के आधार के रूप में उपयोग किया जा रहा है।

परिभाषा और गुण

सबसे सरल हेनकिन क्वांटिफायर है

यह (वास्तव में हेनकिन उपसर्ग वाला प्रत्येक सूत्र, न कि केवल सबसे सरल सूत्र) इसके दूसरे क्रम के स्कोलेमाइज़ेशन के बराबर है, अर्थात

यह क्वांटिफायर को परिभाषित करने के लिए भी पर्याप्त प्रभावशाली के रूप में परिभाषित किया गया है:

इससे कई बातें सामने आती हैं, जिनमें से एक है प्रथम क्रम तर्क के साथ की गैर-अधिविधिकता (गैर-अक्सिओमेटिज़ेबिलिटी) जिसका पहली बार एहरनफ्यूच्ट द्वारा देखा गया था। [3] और द्वितीय क्रम तर्क के विशेषज्ञिका-१ -भाग के समकालिक होने के साथ जोड़ा जा सकता है[4] जिसे पहले 1970 में हरबर्ट एंडरटन और डब्लू. वॉको ने अलग-अलग प्रकाशित किया था।[5]

Q_{H} के द्वारा निम्नलिखित क्वांटिफायर्स को परिभाषित किया जा सकता है: :

  • राइकर्ट: "φs की संख्या ψs की संख्या से कम या उसके बराबर है"
  • हार्टिग: φs, ψs के साथ समसंख्यक हैं
  • चांग: प्रारूप के क्षेत्र के साथ φs की संख्या समतुल्य है

हेनकिन क्वांटिफायर स्वयं को एक प्रकार (4) लिंडस्ट्रॉम क्वांटिफायर के रूप में व्यक्त किया जा सकता है।[5]


प्राकृतिक भाषाओं से संबंध

हिंटिक्का ने 1973 के एक पेपर में एक सिद्धांत आगे बढ़ाया कि कुछ प्राकृतिक भाषाओं में कुछ वाक्यांश ब्रांचिंग क्वांटिफायर्स के माध्यम से सबसे अच्छी तरीके से समझा जा सकता है[6], उदाहरण के लिए: प्रत्येक ग्रामीण के कुछ रिश्तेदार और प्रत्येक शहरवासी के कुछ रिश्तेदार एक-दूसरे से नफरत करते हैं, हिंटिका के अनुसार, इसकी व्याख्या इस प्रकार की जानी चाहिए:[7][8]

यह ज्ञात है कि इसका कोई प्रथम-क्रम तर्क समतुल्य नहीं है।[6]

शाखाओं में बँटने का विचार आवश्यक रूप से पारंपरिक परिमाणकों को पत्तियों के रूप में उपयोग करने तक ही सीमित नहीं है। 1979 के एक पेपर में,[9] जॉन बारवाइज ने हिंटिक्का वाक्यों की विविधताएं प्रस्तावित कीं जिसमें आंतरिक परिमाणक स्वयं सामान्यीकृत परिमाणक होते हैं, उदाहरण के लिए: अधिकांश ग्रामीण और अधिकांश शहरवासी एक-दूसरे से नफरत करते हैं।[6]

बार्वाइस ने ध्यान देकर देखा कि निषेध के अंतर्गत बंद नहीं होता है। इसे देखते हुए उन्होंने एक व्यावहारिक परीक्षण भी प्रस्तावित किया कि क्या प्राकृतिक भाषा के वाक्यांश वास्तव में ब्रांचिंग क्वांटिफायर्स को सम्मिलित करते हैं, इसका अर्थ है, उनके प्राकृतिक भाषा के नकारात्मक को यह जाँचने के लिए कि वे सच में एक समूही क्वांटिफायर के ऊपर समानांतर कथन करते हैं (एक Π₁₁ कथन), उसे वे प्राकृतिक भाषा में क्या जांचते हैं।[10]

हिंटिक्का का प्रस्तावना कुछ तर्कशास्त्रियों ने संदेह के साथ स्वीकार किया क्योंकि कुछ पहले क्रम के वाक्यांश नीचे दिए गए प्राकृतिक भाषा हिंटिक्का वाक्यांश को पर्याप्त रूप से प्रस्तुत करने लगे हैं।

जहाँ

अर्थ है

यद्यपि बहुत अधिक सैद्धांतिक बहस हुई, परंतु 2009 तक ऐसा नहीं हुआ कि तर्क में प्रशिक्षित छात्रों के साथ कुछ अनुभवजन्य परीक्षणों में पाया गया कि वे कई प्राकृतिक-भाषा निर्माणों के लिए ब्रांचिंग-क्वांटिफायर वाक्य के अतिरिक्त द्विदिश प्रथम-क्रम वाक्य से मेल खाने वाले प्रारूप निर्दिष्ट करने की अधिक संभावना रखते हैं। हिंटिका वाक्य से लिया गया है। उदाहरण के लिए, छात्रों को अप्रत्यक्ष द्विदलीय आरेख दिखाए गए - जिसमें वर्ग और वृत्त शीर्ष के रूप में थे - और यह बताने के लिए कहा गया कि क्या 3 से अधिक वृत्त और 3 से अधिक वर्ग रेखाओं से जुड़े हुए हैं, जैसे वाक्य आरेखों का सही वर्णन कर रहे हैं।[6]


यह भी देखें

संदर्भ

  1. Stanley Peters; Dag Westerståhl (2006). भाषा और तर्क में परिमाणक. Clarendon Press. pp. 66–72. ISBN 978-0-19-929125-0.
  2. Henkin, L. "Some Remarks on Infinitely Long Formulas". Infinitistic Methods: Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 2–9 September 1959, Panstwowe Wydawnictwo Naukowe and Pergamon Press, Warsaw, 1961, pp. 167–183. OCLC 2277863
  3. Blass, A.; Gurevich, Y. (1986). "हेनकिन क्वांटिफायर और संपूर्ण समस्याएं" (PDF). Annals of Pure and Applied Logic. 32: 1–16. doi:10.1016/0168-0072(86)90040-0. hdl:2027.42/26312. citing W. Walkoe, Finite partially-ordered quantification, Journal of Symbolic Logic 35 (1970) 535–555. JSTOR 2271440
  4. Jaakko Hintikka and Gabriel Sandu, "Game-theoretical semantics", in Handbook of logic and language, ed. J. van Benthem and A. ter Meulen, Elsevier 2011 (2nd ed.) citing Enderton, H.B., 1970. Finite partially-ordered quantifiers. Z. Math. Logik Grundlag. Math. 16, 393–397 doi:10.1002/malq.19700160802.
  5. 5.0 5.1 Cite error: Invalid <ref> tag; no text was provided for refs named Badia2009
  6. 6.0 6.1 6.2 6.3 Gierasimczuk, N.; Szymanik, J. (2009). "शाखा परिमाणीकरण बनाम दोतरफा परिमाणीकरण" (PDF). Journal of Semantics. 26 (4): 367. doi:10.1093/jos/ffp008.
  7. Sher, G. (1990). "परिमाणकों को शाखाबद्ध करने के तरीके" (PDF). Linguistics and Philosophy. 13 (4): 393–422. doi:10.1007/BF00630749. S2CID 61362436.
  8. Hintikka, J. (1973). "परिमाणक बनाम परिमाणीकरण सिद्धांत". Dialectica. 27 (3–4): 329–358. doi:10.1111/j.1746-8361.1973.tb00624.x.
  9. Barwise, J. (1979). "अंग्रेजी में ब्रांचिंग क्वांटिफायर पर". Journal of Philosophical Logic. 8: 47–80. doi:10.1007/BF00258419. S2CID 31950692.
  10. Hand, Michael (1998). "Reviewed work: On Branching Quantifiers in English, Jon Barwise; Branching Generalized Quantifiers and Natural Language. Generalized Quantifiers, Linguistic and Logical Approaches, Dag Westerståhl, Peter Gärdenfors; Ways of Branching Quantifiers, Gila Sher". The Journal of Symbolic Logic. 63 (4): 1611–1614. doi:10.2307/2586678. JSTOR 2586678. S2CID 117833401.


बाहरी संबंध