अभाज्य पुनरावर्ती अंकगणित: Difference between revisions

From Vigyanwiki
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 22: Line 22:
जहां <math>x \neq y</math> सदैव <math>x = y</math> के निषेधन को दर्शाता है, उदाहरण के लिए, <math>S(0) = 0</math> एक निषेधात्मक प्रस्ताव है।
जहां <math>x \neq y</math> सदैव <math>x = y</math> के निषेधन को दर्शाता है, उदाहरण के लिए, <math>S(0) = 0</math> एक निषेधात्मक प्रस्ताव है।


इसके अतिरिक्त, प्रत्येक अभाज्य पुनरावर्ती फलन के लिए पुनरावर्ती परिभाषित समीकरणों को इच्छानुसार स्वयंसिद्धों के रूप में अपनाया जा सकता है। उदाहरण के लिए, अभाज्य पुनरावर्ती कार्यों का सबसे आम लक्षण वर्णन 0 स्थिरांक और उत्तराधिकारी फलन प्रक्षेपण, संरचना और अभाज्य पुनरावर्तन के तहत बंद है। तो (n+1)-स्थान फलन f के लिए, जिसे n-स्थान बेस फलन g और (n+2)-स्थान पुनरावृत्ति फलन h पर अभाज्य रिकर्सन द्वारा परिभाषित किया गया है, वहां परिभाषित समीकरण होंगे:
इसके अतिरिक्त, प्रत्येक अभाज्य पुनरावर्ती फलन के लिए पुनरावर्ती परिभाषित समीकरणों को इच्छानुसार स्वयंसिद्धों के रूप में अपनाया जा सकता है। उदाहरण के लिए, अभाज्य पुनरावर्ती फलनों का सबसे सामान्य लक्षण वर्णन 0 स्थिरांक और उत्तराधिकारी फलन प्रक्षेपण, संरचना और अभाज्य पुनरावर्तन के अनुसार संवृत है। तो (n+1)-स्थान फलन f के लिए, जिसे n-स्थान बेस फलन g और (n+2)-स्थान पुनरावृत्ति फलन h पर अभाज्य रिकर्सन द्वारा परिभाषित किया गया है, वहां परिभाषित समीकरण होंगे:
* <math>f(0,y_1,\ldots,y_n) = g(y_1,\ldots,y_n)</math>
* <math>f(0,y_1,\ldots,y_n) = g(y_1,\ldots,y_n)</math>
* <math>f(S(x),y_1,\ldots,y_n) = h(x,f(x,y_1,\ldots,y_n),y_1,\ldots,y_n)</math>
* <math>f(S(x),y_1,\ldots,y_n) = h(x,f(x,y_1,\ldots,y_n),y_1,\ldots,y_n)</math>
Line 33: Line 33:
पीआरए प्रथम-क्रम अंकगणित के लिए [[गणितीय प्रेरण]] को (क्वांटिफ़ायर-मुक्त) प्रेरण के नियम से प्रतिस्थापित करता है:
पीआरए प्रथम-क्रम अंकगणित के लिए [[गणितीय प्रेरण]] को (क्वांटिफ़ायर-मुक्त) प्रेरण के नियम से प्रतिस्थापित करता है:
* <math>\varphi(0)</math> और <math>\varphi(x)\to\varphi(S(x))</math> तक, किसी भी विधेय <math>\varphi</math> के लिए <math>\varphi(y)</math> घटाएं।
* <math>\varphi(0)</math> और <math>\varphi(x)\to\varphi(S(x))</math> तक, किसी भी विधेय <math>\varphi</math> के लिए <math>\varphi(y)</math> घटाएं।
प्रथम-क्रम अंकगणित में, एकमात्र अभाज्य पुनरावर्ती कार्य जिन्हें स्पष्ट रूप से स्वयंसिद्ध करने की आवश्यकता होती है वे हैं जोड़ और गुणा। अन्य सभी अभाज्य पुनरावर्ती विधेय को सभी प्राकृतिक संख्याओं पर इन दो अभाज्य पुनरावर्ती कार्यों और परिमाणीकरण (तर्क) का उपयोग करके परिभाषित किया जा सकता है। इस तरीके से अभाज्य पुनरावर्ती कार्यों को परिभाषित करना पीआरए में संभव नहीं है, क्योंकि इसमें क्वांटिफायर का अभाव है।
प्रथम-क्रम अंकगणित में, एकमात्र अभाज्य पुनरावर्ती फलन जिन्हें स्पष्ट रूप से स्वयंसिद्ध करने की आवश्यकता होती है वे हैं जोड़ और गुणा। अन्य सभी अभाज्य पुनरावर्ती विधेय को सभी प्राकृतिक संख्याओं पर इन दो अभाज्य पुनरावर्ती फलनों और परिमाणीकरण (तर्क) का उपयोग करके परिभाषित किया जा सकता है। इस विधि से अभाज्य पुनरावर्ती फलनों को परिभाषित करना पीआरए में संभव नहीं है, क्योंकि इसमें क्वांटिफायर का अभाव है।


== तर्क-मुक्त कलन ==
== तर्क-मुक्त कलन ==
पीआरए को इस प्रकार से औपचारिक बनाना संभव है कि इसमें कोई तार्किक संयोजकता न हो - पीआरए का वाक्य सिर्फ दो शब्दों के बीच समीकरण है। इस सेटिंग में शब्द शून्य या अधिक वेरिएबल का अभाज्य पुनरावर्ती कार्य है। {{harvtxt|करी|1941}} ने पहली ऐसी व्यवस्था दी। करी की प्रणाली में प्रेरण का नियम असामान्य था। {{harvtxt|गुडस्टीन|1954}} द्वारा बाद में परिशोधन दिया गया था। गुडस्टीन की प्रणाली में प्रेरण के [[अनुमान का नियम]] है:
पीआरए को इस प्रकार से औपचारिक बनाना संभव है कि इसमें कोई तार्किक संयोजकता न हो - पीआरए का वाक्य सिर्फ दो शब्दों के बीच समीकरण है। इस सेटिंग में शब्द शून्य या अधिक वेरिएबल का अभाज्य पुनरावर्ती फलन है। {{harvtxt|करी|1941}} ने पहली ऐसी व्यवस्था दी। करी की प्रणाली में प्रेरण का नियम असामान्य था। {{harvtxt|गुडस्टीन|1954}} द्वारा बाद में परिशोधन दिया गया था। गुडस्टीन की प्रणाली में प्रेरण के [[अनुमान का नियम]] है:


:<math>{F(0) = G(0) \quad F(S(x)) = H(x,F(x)) \quad G(S(x)) = H(x,G(x)) \over F(x) = G(x)}.</math>
:<math>{F(0) = G(0) \quad F(S(x)) = H(x,F(x)) \quad G(S(x)) = H(x,G(x)) \over F(x) = G(x)}.</math>
Line 42: Line 42:


:<math>{F(x) = G(x) \over F(A) = G(A)} \qquad {A = B \over F(A) = F(B)} \qquad {A = B \quad A = C \over B = C}.</math>
:<math>{F(x) = G(x) \over F(A) = G(A)} \qquad {A = B \over F(A) = F(B)} \qquad {A = B \quad A = C \over B = C}.</math>
यहां ''A'', ''B'', और ''C'' कोई भी पद (शून्य या अधिक वेरिएबल के अभाज्य पुनरावर्ती कार्य) हैं। अंत में, किसी भी अभाज्य पुनरावर्ती कार्यों के लिए संबंधित परिभाषित समीकरणों के साथ प्रतीक हैं, जैसा कि ऊपर स्कोलेम की प्रणाली में है।
यहां ''A'', ''B'', और ''C'' कोई भी पद (शून्य या अधिक वेरिएबल के अभाज्य पुनरावर्ती फलन) हैं। अंत में, किसी भी अभाज्य पुनरावर्ती फलनों के लिए संबंधित परिभाषित समीकरणों के साथ प्रतीक हैं, जैसा कि ऊपर स्कोलेम की प्रणाली में है।


इस प्रकार प्रस्तावात्मक गणना को पूरी तरह से निरस्त किया जा सकता है। तार्किक ऑपरेटरों को पूरी तरह से अंकगणितीय रूप से व्यक्त किया जा सकता है, उदाहरण के लिए, दो संख्याओं के अंतर का पूर्ण मूल्य अभाज्य पुनरावृत्ति द्वारा परिभाषित किया जा सकता है:
इस प्रकार प्रस्तावात्मक गणना को पूरी तरह से निरस्त किया जा सकता है। तार्किक ऑपरेटरों को पूरी तरह से अंकगणितीय रूप से व्यक्त किया जा सकता है, उदाहरण के लिए, दो संख्याओं के अंतर का पूर्ण मूल्य अभाज्य पुनरावृत्ति द्वारा परिभाषित किया जा सकता है:
Line 60: Line 60:
*[[हेटिंग अंकगणित]]
*[[हेटिंग अंकगणित]]
* पीनो अंकगणित
* पीनो अंकगणित
* अभाज्य पुनरावर्ती कार्य
* अभाज्य पुनरावर्ती फलन
* [[रॉबिन्सन अंकगणित]]
* [[रॉबिन्सन अंकगणित]]
* [[दूसरे क्रम का अंकगणित]]
* [[दूसरे क्रम का अंकगणित]]
Line 174: Line 174:


{{Mathematical logic}}
{{Mathematical logic}}
[[Category: रचनावाद (गणित)]] [[Category: अंकगणित के औपचारिक सिद्धांत]]


 
[[Category:CS1 maint]]
 
[[Category:Collapse templates]]
[[Category: Machine Translated Page]]
[[Category:Created On 07/07/2023]]
[[Category:Created On 07/07/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics navigational boxes]]
[[Category:Navbox orphans]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Philosophy and thinking navigational boxes]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:अंकगणित के औपचारिक सिद्धांत]]
[[Category:रचनावाद (गणित)]]

Latest revision as of 15:35, 28 July 2023

अभाज्य पुनरावर्ती अंकगणित (पीआरए) प्राकृतिक संख्याओं का एक परिमाणीकरण (तर्क)-मुक्त औपचारिकीकरण है। यह सबसे पहले नॉर्वेजियन गणितज्ञ स्कोलेम (1923) द्वारा प्रस्तावित किया गया था,[1] अंकगणित की नींव की उनकी परिमितवादी अवधारणा को औपचारिक रूप देने के रूप में, और यह व्यापक रूप से सहमत है कि पीआरए के सभी तर्क परिमितवादी हैं। कई लोग यह भी मानते हैं कि सभी परिमितवाद को पीआरए द्वारा पकड़ लिया गया है,[2] किन्तु दूसरों का मानना ​​है कि परिमितवाद को अभाज्य पुनरावर्तन से अधिक, ε0 तक, पुनरावर्तन के रूपों तक बढ़ाया जा सकता है,[3] जो पीनो अंकगणित का प्रमाण-सैद्धांतिक क्रमसूचक है। पीआरए का प्रमाण सिद्धांतिक क्रमसूचक ωω है, जहां ω सबसे छोटी अनंत संख्या है। पीआरए को कभी-कभी स्कोलेम अंकगणित भी कहा जाता है।

पीआरए की भाषा प्राकृतिक संख्याओं और किसी भी अभाज्य पुनरावर्ती फलन से जुड़े अंकगणितीय प्रस्तावों को व्यक्त कर सकती है, जिसमें जोड़, गुणा और घातांक के संचालन सम्मिलित हैं। पीआरए प्राकृतिक संख्याओं के क्षेत्र में स्पष्ट रूप से मात्रा निर्धारित नहीं कर सकता है। पीआरए को अधिकांश प्रमाण सिद्धांत के लिए मूल मेटामैथमैटिकऔपचारिक प्रणाली के रूप में लिया जाता है, विशेष रूप से स्थिरता प्रमाणों के लिए जैसे कि जेंटज़ेन के प्रथम-क्रम अंकगणित की स्थिरता प्रमाण के लिए।

भाषा और स्वयंसिद्ध

पीआरए की भाषा में सम्मिलित हैं:

  • वेरिएबल x, y, z,.... की गणनीय अनंत संख्या
  • प्रस्तावित कलन तार्किक संयोजक;
  • समानता प्रतीक =, स्थिर प्रतीक 0, और अभाज्य पुनरावर्ती फलन प्रतीक S (अर्थात् जोड़ें);
  • प्रत्येक अभाज्य पुनरावर्ती फलन के लिए प्रतीक।

पीआरए के तार्किक अभिगृहीत हैं:

पीआरए के तार्किक नियम मोडस पोनेन्स और वेरिएबल प्रतिस्थापन हैं।

गैर-तार्किक स्वयंसिद्ध बातें, सबसे पहले हैं:

  • ;

जहां सदैव के निषेधन को दर्शाता है, उदाहरण के लिए, एक निषेधात्मक प्रस्ताव है।

इसके अतिरिक्त, प्रत्येक अभाज्य पुनरावर्ती फलन के लिए पुनरावर्ती परिभाषित समीकरणों को इच्छानुसार स्वयंसिद्धों के रूप में अपनाया जा सकता है। उदाहरण के लिए, अभाज्य पुनरावर्ती फलनों का सबसे सामान्य लक्षण वर्णन 0 स्थिरांक और उत्तराधिकारी फलन प्रक्षेपण, संरचना और अभाज्य पुनरावर्तन के अनुसार संवृत है। तो (n+1)-स्थान फलन f के लिए, जिसे n-स्थान बेस फलन g और (n+2)-स्थान पुनरावृत्ति फलन h पर अभाज्य रिकर्सन द्वारा परिभाषित किया गया है, वहां परिभाषित समीकरण होंगे:

विशेष रूप से:

  • ... और इसी प्रकार।

पीआरए प्रथम-क्रम अंकगणित के लिए गणितीय प्रेरण को (क्वांटिफ़ायर-मुक्त) प्रेरण के नियम से प्रतिस्थापित करता है:

  • और तक, किसी भी विधेय के लिए घटाएं।

प्रथम-क्रम अंकगणित में, एकमात्र अभाज्य पुनरावर्ती फलन जिन्हें स्पष्ट रूप से स्वयंसिद्ध करने की आवश्यकता होती है वे हैं जोड़ और गुणा। अन्य सभी अभाज्य पुनरावर्ती विधेय को सभी प्राकृतिक संख्याओं पर इन दो अभाज्य पुनरावर्ती फलनों और परिमाणीकरण (तर्क) का उपयोग करके परिभाषित किया जा सकता है। इस विधि से अभाज्य पुनरावर्ती फलनों को परिभाषित करना पीआरए में संभव नहीं है, क्योंकि इसमें क्वांटिफायर का अभाव है।

तर्क-मुक्त कलन

पीआरए को इस प्रकार से औपचारिक बनाना संभव है कि इसमें कोई तार्किक संयोजकता न हो - पीआरए का वाक्य सिर्फ दो शब्दों के बीच समीकरण है। इस सेटिंग में शब्द शून्य या अधिक वेरिएबल का अभाज्य पुनरावर्ती फलन है। करी (1941) ने पहली ऐसी व्यवस्था दी। करी की प्रणाली में प्रेरण का नियम असामान्य था। गुडस्टीन (1954) द्वारा बाद में परिशोधन दिया गया था। गुडस्टीन की प्रणाली में प्रेरण के अनुमान का नियम है:

यहां x वैरिएबल है, S उत्तराधिकारी ऑपरेशन है, और F, G, और H कोई अभाज्य पुनरावर्ती फलन हैं जिनमें दिखाए गए पैरामीटर के अतिरिक्त अन्य पैरामीटर भी हो सकते हैं। गुडस्टीन की प्रणाली के एकमात्र अन्य अनुमान नियम प्रतिस्थापन नियम हैं, जो इस प्रकार हैं:

यहां A, B, और C कोई भी पद (शून्य या अधिक वेरिएबल के अभाज्य पुनरावर्ती फलन) हैं। अंत में, किसी भी अभाज्य पुनरावर्ती फलनों के लिए संबंधित परिभाषित समीकरणों के साथ प्रतीक हैं, जैसा कि ऊपर स्कोलेम की प्रणाली में है।

इस प्रकार प्रस्तावात्मक गणना को पूरी तरह से निरस्त किया जा सकता है। तार्किक ऑपरेटरों को पूरी तरह से अंकगणितीय रूप से व्यक्त किया जा सकता है, उदाहरण के लिए, दो संख्याओं के अंतर का पूर्ण मूल्य अभाज्य पुनरावृत्ति द्वारा परिभाषित किया जा सकता है:

इस प्रकार, समीकरण x=y और समतुल्य है। इसलिए समीकरण और समीकरण x=y और u=v के क्रमशः तार्किक संयोजन और वियोजन को व्यक्त करें। निषेध को इस प्रकार व्यक्त किया जा सकता है।

यह भी देखें

टिप्पणियाँ

  1. reprinted in translation in van Heijenoort (1967)
  2. Tait 1981.
  3. Kreisel 1960.


संदर्भ

  • Curry, Haskell B. (1941). "A formalization of recursive arithmetic". American Journal of Mathematics. 63: 263–282. doi:10.2307/2371522. MR 0004207.
  • Goodstein, R. L. (1954). "Logic-free formalisations of recursive arithmetic". Mathematica Scandinavica. 2: 247–261. MR 0087614.
  • van Heijenoort, Jean (1967). From Frege to Gödel. A source book in mathematical logic, 1879–1931. Cambridge, Mass.: Harvard University Press. pp. 302–333. MR 0209111.
Additional reading
  • Rose, H. E. (1961). "On the consistency and undecidability of recursive arithmetic". Zeitschrift für Mathematische Logik und Grundlagen der Mathematik. 7: 124–135. doi:10.1002/malq.19610070707. MR 0140413.