विनाशक विधि: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Method of solving non-homogeneous ordinary differential equations}} {{Unreferenced|date=December 2009}} गणित में, विनाशक वि...")
 
No edit summary
Line 1: Line 1:
{{short description|Method of solving non-homogeneous ordinary differential equations}}
{{short description|Method of solving non-homogeneous ordinary differential equations}}
{{Unreferenced|date=December 2009}}
गणित में, विनाशक विधि एक प्रक्रिया है जिसका उपयोग कुछ प्रकार के गैर-सजातीय अंतर समीकरणों के लिए एक विशेष समाधान खोजने के लिए किया जाता है | गैर-सजातीय [[साधारण अंतर समीकरण]] (ओडीई)। यह अनिर्धारित गुणांकों की विधि के समान है, लेकिन अनिर्धारित गुणांकों की विधि में विशेष समाधान का अनुमान लगाने के बजाय, इस तकनीक में विशेष समाधान को व्यवस्थित रूप से निर्धारित किया जाता है। ''अनिर्धारित गुणांक'' वाक्यांश का उपयोग एनीहिलेटर विधि के उस चरण को संदर्भित करने के लिए भी किया जा सकता है जिसमें गुणांक की गणना की जाती है।
गणित में, विनाशक विधि एक प्रक्रिया है जिसका उपयोग कुछ प्रकार के गैर-सजातीय अंतर समीकरणों के लिए एक विशेष समाधान खोजने के लिए किया जाता है | गैर-सजातीय [[साधारण अंतर समीकरण]] (ओडीई)। यह अनिर्धारित गुणांकों की विधि के समान है, लेकिन अनिर्धारित गुणांकों की विधि में विशेष समाधान का अनुमान लगाने के बजाय, इस तकनीक में विशेष समाधान को व्यवस्थित रूप से निर्धारित किया जाता है। ''अनिर्धारित गुणांक'' वाक्यांश का उपयोग एनीहिलेटर विधि के उस चरण को संदर्भित करने के लिए भी किया जा सकता है जिसमें गुणांक की गणना की जाती है।



Revision as of 20:57, 25 July 2023

गणित में, विनाशक विधि एक प्रक्रिया है जिसका उपयोग कुछ प्रकार के गैर-सजातीय अंतर समीकरणों के लिए एक विशेष समाधान खोजने के लिए किया जाता है | गैर-सजातीय साधारण अंतर समीकरण (ओडीई)। यह अनिर्धारित गुणांकों की विधि के समान है, लेकिन अनिर्धारित गुणांकों की विधि में विशेष समाधान का अनुमान लगाने के बजाय, इस तकनीक में विशेष समाधान को व्यवस्थित रूप से निर्धारित किया जाता है। अनिर्धारित गुणांक वाक्यांश का उपयोग एनीहिलेटर विधि के उस चरण को संदर्भित करने के लिए भी किया जा सकता है जिसमें गुणांक की गणना की जाती है।

संहारक विधि का प्रयोग इस प्रकार किया जाता है। ODE को देखते हुए , कोई अन्य विभेदक ऑपरेटर खोजें ऐसा है कि . इस ऑपरेटर को विनाशक कहा जाता है, इसलिए विधि का नाम। को लागू करने ODE के दोनों तरफ एक सजातीय ODE देता है जिसके लिए हम समाधान का आधार ढूंढते हैं पहले जैसा। फिर मूल अमानवीय ODE का उपयोग ODE को संतुष्ट करने के लिए रैखिक संयोजन के गुणांकों को सीमित करने वाले समीकरणों की एक प्रणाली बनाने के लिए किया जाता है।

यह विधि इस अर्थ में मापदंडों की भिन्नता जितनी सामान्य नहीं है कि एक संहारक हमेशा मौजूद नहीं होता है।

विनाशक तालिका

f(x) A(D)

कहाँ प्राकृतिक संख्या में है, और वास्तविक संख्या में हैं.

अगर तालिका में दिए गए भावों के योग से मिलकर, संहारक संबंधित संहारकों का गुणनफल होता है।

उदाहरण

दिया गया , . का सबसे सरल संहारक है . के शून्य हैं , तो समाधान का आधार है सेटिंग हम देखतें है

सिस्टम दे रहा हूँ

जिसके पास समाधान हैं

,

समाधान सेट दे रहे हैं

इस घोल को सजातीय और गैर-सजातीय भागों में विभाजित किया जा सकता है। विशेष रूप से, एक साधारण अंतर समीकरण है # गैर-सजातीय अंतर समीकरण के लिए सामान्य परिभाषा, और संगत सजातीय समीकरण का एक पूरक समाधान है। के मूल्य और आमतौर पर प्रारंभिक स्थितियों के एक सेट के माध्यम से निर्धारित किया जाता है। चूँकि यह दूसरे क्रम का समीकरण है, इन मानों को निर्धारित करने के लिए ऐसी दो स्थितियाँ आवश्यक हैं।

मौलिक समाधान और यूलर के सूत्र का उपयोग करके इसे फिर से लिखा जा सकता है:

तब , और स्थिरांकों का उपयुक्त पुनर्निर्धारण पूरक समाधान का एक सरल और अधिक समझने योग्य रूप देता है, .


श्रेणी:साधारण अवकल समीकरण